English
新闻公告
More
化学进展 2016, Vol. 28 Issue (5): 711-726 DOI: 10.7536/PC151038 前一篇   后一篇

• 综述与评论 •

基于静电纺丝技术的取向纳米纤维

蒋敏1, 王敏1, 魏仕勇2, 陈志宝2, 木士春1*   

  1. 1. 武汉理工大学材料复合新技术国家重点实验室 武汉 430070;
    2. 江西省科学院 江西省铜钨新材料重点实验室 南昌 330029
  • 收稿日期:2015-10-01 修回日期:2016-01-01 出版日期:2016-05-15 发布日期:2016-03-25
  • 通讯作者: 木士春 E-mail:msc@whut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51372186)、国家重点基础研究发展计划(973)项目(No.2012CB215504)和江西省铜钨新材料重点实验室基金(No.2013-KLP-05)资助

Aligned Nanofibers Based on Electrospinning Technology

Jiang Min1, Wang Min1, Wei Shiyong2, Chen Zhibao2, Mu Shichun1*   

  1. 1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
    2. Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029, China
  • Received:2015-10-01 Revised:2016-01-01 Online:2016-05-15 Published:2016-03-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51372186), the Basic Research Development Program of China (973 Program)(No.2012CB215504) and the Open Foundation of Jiangxi Key Laboratory of Advanced Copper and Tungsten Materials (No.2013-KLP-05).
纳米纤维作为一维纳米材料的一个重要分支,有着广泛的应用前景。静电纺丝技术是一种制备一维纳米纤维的有效方法。然而,传统制备工艺制得的纳米纤维常为无序排列的结构,极大限制了其应用。近十几年来,通过对喷丝装置、纤维分化区及接收装置的改进获得了取向纳米纤维(aligned nanofibers, ANFs),引发了研究者的广泛关注,但对于取向纳米纤维的制备与应用未见系统性的论述。本文系统总结了采用静电纺丝技术制备取向纳米纤维的方法,并评述了这种取向结构在生物组织工程修复、传感器、增强材料及能源等领域中的应用。鉴于ANFs在生物组织工程中得到广泛的关注,本文对其进行了着重介绍。而在能源领域,本文主要阐述在质子交换膜燃料电池方面的应用。最后,本文总结了ANFs存在的问题,并展望了其未来的发展。
Nanofibers have many promising applications as a main component of one-dimensional nanomaterials. Electrospinning technology is a facile and effective way to prepare nanofibers. However, the traditional preparation process only obtains non-aligned nanofibers, which significantly hinders their application. In recent few decades, many efforts have been focused on optimization of the preparation method, and well aligned nanofibers (ANFs) have been successfully obtained through improving spinning set-ups, collectors, and optimizing the separation section of nanofibers. Due to the absence of a systematic appraisal of ANFs, here a review of the preparation methods of ANFs based on electrospinning and their applications in tissue engineering regeneration, sensors, reinforced materials, sensors and energy devices, is present. Owing to the wide application of ANFs in tissue engineering regeneration, a detailed discussion is provided in that regard. In the field of energy, the application of ANFs in PEM fuel cells is focused. Finally, the challenges and outlooks for the development of ANFs are summarized.

Contents
1 Introduction
2 Electrospinning technology
3 Fabrication of electrospun ANFs
3.1 Improved collector methods
3.2 Magnetic assistance mothod
3.3 Conjugate spinneret electrospinning method
3.4 Centrifugal electrospinning method
3.5 Near-field electrospinning method
3.6 Multiple collectors method
4 Applications of electrospun ANFs
4.1 Tissue engineering
4.2 Sensors
4.3 Reinforced materials
4.4 Energy
5 Conclusion and outlook

中图分类号: 

()
[1] Shelley T. Nanotechnology: New Promises, New Dangers, London: Zed Books, 2006.
[2] Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim F, Yan H Q. Adv. Mater., 2003, 15: 353.
[3] Iijima S. Nature, 1991, 354: 56.
[4] Kuchibhatla S V N T, Karakoti A S, Bera D, Seal S. Prog. Mater. Sci., 2007, 52: 699.
[5] Liu H J, Wang X M, Cui W J, Dou Y Q, Zhao D Y, Xia Y Y. J. Mater. Chem., 2010, 20: 4223.
[6] Huang W, Jiang Y, Li X, Li X J, Wang J Y, Wu Q, Liu X K. ACS Appl. Mater. Interfaces, 2013, 5: 8845.
[7] Nessim G D, Acquaviva D, Seita M, O'brien K P, Thompson C V. Adv. Funct. Mater., 2010, 20: 1306.
[8] Liang C H, Meng G W, Lei Y, Phillipp F, Zhang L D. Adv. Mater., 2001, 13: 1330.
[9] Löwik D W P M, Shklyarevskiy I O, Ruizendaal L, Christianen P C M, Maan J C, Hest J C M V. Adv. Mater., 2007, 19: 1191.
[10] Formhals A. USA 1975504, 1934.
[11] Li D, Xia Y N. Adv. Mater., 2004, 16: 1151.
[12] Li D, Wang Y L, Xia Y N. Nano Lett., 2003, 3: 1167.
[13] Li D, Wang Y L, Xia Y N. Adv. Mater., 2004, 16: 361.
[14] Teo W E, Ramakrishna S. Nanotechnology, 2006, 17: R89.
[15] 刘瑞来(Liu R L), 刘海清(Liu H Q), 刘俊劭(Liu J S), 江慧华(Jiang H H). 化学进展(Progress in Chemistry), 2012, 24: 1484.
[16] 金许翔(Jin X X), 张全超(Zhang Q C), 牛鹏飞(Niu P F), 唐山(Tang S), 陈璟(Chen J), 王孝军(Wang X J), 杨杰(Yang J). 高分子通报(Polymer Bulletin), 2009, (2): 42.
[17] Chew S Y, Wen J, Yim E K F, Leong W K. Biomacromolecules, 2005, 6: 2017.
[18] Katta P, Alessandro M, Ramsier R D, Chase G G. Nano Lett., 2004, 4: 2215.
[19] Theron A, Zussman E, Yarin A L. Nanotechnology, 2001, 12: 384.
[20] Dersch R, Liu T Q, Schaper A K, Greiner A, Wendorff J H. J. Polym. Sci., Part A: Polym. Chem., 2003, 41: 545.
[21] Teo W E, Ramakrishna S. Nanotechnology, 2005, 16: 1878.
[22] Ishii Y, Sakai H, Murata H. Mater. Lett., 2008, 62: 3370.
[23] Dalton P D, Klee D, Möller M. Polymer, 2005, 46: 611.
[24] Carnell L S, Siochi E J, Wincheski R A, Holloway N M, Clark R L. Scr. Mater., 2009, 60: 359.
[25] Wu Y Q, Carnell L A, Clark R L. Polymer, 2007, 48: 5653.
[26] Teo W E, Kotaki M, Mo X M, Ramakrishna S. Nanotechnology, 2005, 16: 918.
[27] Smit E, Büttner U, Sanderson R D. Polymer, 2005, 46: 2419.
[28] Teo W E, Gopal R, Ramaseshan R, Fujihara K, Ramaskrishna S. Polymer, 2007, 48: 3400.
[29] Wu Y, Yu J Y, He J H, Wan Y Q. Chaos, Solitons & Fractals, 2007, 32: 5.
[30] Yang D Y, Lu B, Zhao Y, Jiang X Y. Adv. Mater., 2007, 19: 3702.
[31] Pan H, Li L, Hu L, Cui X J. Polymer, 2006, 47: 4901.
[32] 李新松(Li X S), 姚琛(Yao C), 孙复钱(Sun F Q). CN200510095384.0, 2006.
[33] 李新松(Li X S), 姚琛(Yao C), 宋唐英(Song T Y). CN200510038571.5, 2005.
[34] Sarkar K, Gomez C, Zambrano S, Ramirez M, Hoyos E, Vasquez H, Lozano K. Mater. Today, 2010, 13: 12.
[35] Li M M, Long Y Z, Yang D Y, Sun J S, Yin H X, Zhao Z, Kong W H, Jiang X Y, Fan Z Y. J. Mater. Chem., 2011, 21: 13159.
[36] Erickson A E, Edmondson D, Chang F C, Wood D, Gong A, Levengood S L, Zhang M Q. Carbohydr. Polym., 2015, 134: 467.
[37] Sun D H, Chang C, Li S, Lin L W. Nano Lett., 2006, 6: 839.
[38] Pu J, Yan X J, Jiang Y D, Chang C, Lin L W. Sens. Actuators A, 2010, 164: 131.
[39] Zheng J, Long Y Z, Sun B, Zhang Z H, Shao F, Zhang H D, Zhang Z M, Huang J Y. Chin. Phys. B, 2012, 21: 048102.
[40] Zhao J H, Liu H Y, Xu L. Mater. Des., 2016, 90: 1.
[41] Beachley V, Katsanevakis E, Zhang N, Wen X J. Adv. Polym. Sci., 2012, 246: 171.
[42] 蔡开勇(Cai K Y), 林松柏(Lin S B), 姚康德(Yao K D). 化学进展(Progress in Chemistry), 2001, 13: 59.
[43] Lu J, Zou X, Zhao Z, Mu Z D, Zhao Y J, Gu Z Z. ACS Appl. Mater. Interfaces, 2015, 7: 10091.
[44] Aviss K J, Gough J E, Downes S. Eur. Cells Mater., 2010, 19: 193.
[45] Choi J S, Lee S J, Christ G J, Atala A, Yoo J J. Biomaterials, 2008, 29: 2899.
[46] Shang S H, Yang F, Cheng X R, Walboomers X F, Jansen J A. Eur. Cells Mater., 2010, 19: 180.
[47] Meng J, Kong H, Han Z Z, Wang C Y, Zhu G J, Xie S S, Xu H Y. J. Biomed. Mater. Res., Part A, 2009, 88: 105.
[48] Kievit F M, Cooper A, Jana S, Leung M C, Wang K, Edmondson D, Wood D, Lee J S H, Ellenbogen R G, Zhang M Q. Adv. Healthc. Mater., 2013, 2: 1651.
[49] Lee C H, Shin J H, Cho H I, Kang Y M, Kim A I, Park K D, Shin J W. Biomaterials, 2005, 26: 1261.
[50] Kolambkar Y M, Bajin M, Wojtowicz A, Hutmacher D W, García A J, Guldberg R E. Tissue Eng., Part A, 2014, 20: 398.
[51] Ma B, Xie J W, Jiang J, Shuler F D, Bartlett D E. Nanomedicine, 2013, 8: 1459.
[52] Jiang T, Carbone E J, Lo K W H, Laurencin C T. Prog. Polym. Sci., 2014, 46: 1.
[53] Jing X, Mi H Y, Peng J, Peng X F, Turng L S. Carbonhydr. Polym., 2015, 117: 941.
[54] Subramanian A, Krishnan U M, Sethuraman S. J. Biomed. Sci., 2009, 16: 108.
[55] Ribeiro-Resende V T, Koenig B, Nichterwitz S, Oberhoffner S, Schlosshauer B. Biomaterials, 2009, 30: 5251.
[56] Zhang J G, Qiu K X, Sun B B, Fang J, Zhang K H, EI-Hamshary H, Al-Deyabd S S, Mo X M. J. Mater. Sci. B, 2014, 2: 7945.
[57] Chiono V, Tonda-Turo C. Prog. Neurobiol., 2015, 131: 87.
[58] Prabhakaran M P, Vatankhah E, Ramakrishna S. Biotechnol. Bioeng., 2013, 110: 2275.
[59] Christopherson G T, Song H J, Mao H Q. Biomaterials, 2009, 30: 556.
[60] Chew S Y, Mi R, Hoke A, Leong K W. Adv. Funct. Mater., 2007, 17: 1288.
[61] Huang C, Ouyang Y M, Niu H T, He N F, Ke Q F, Jin X Y, Li D W, Fang J, Liu W J, Fan C Y, Lin T, ACS Appl. Mater. Interfaces, 2015, 7: 7189.
[62] Koh H S, Yong T, Teo W E, Chan C K, Puhaindran M E, Tan T C, Lim A, Lim B H, Ramakrishna S. J. Neural. Eng., 2010, 7: 046003.
[63] Xie J W, Liu W Y, MacEwan M R, Bridgman P C, Xia Y N. ACS Nano, 2014, 8: 1878.
[64] Uttayarat P, Perets A, Li M, Pimton P, Stachelek S J, Alferiev I, Composto R J, Levy R J, Lelkes P I. Acta Biomater., 2010, 6: 4229.
[65] Xu H, Li H Y, Ke Q F, Chang J. ACS Appl. Mater. Interfaces, 2015, 7: 8706.
[66] Wu H J, Fan J T, Chu C C, Wu J. J. Mater. Sci.:Mater. Med., 2010, 21: 3207.
[67] Cooper A, Jana S, Bhattarai N, Zhang M Q. J. Mater. Chem., 2010, 20: 8904.
[68] Chen M C, Sun Y C, Chen Y H. Acta Biomater., 2013, 9: 5562.
[69] Barnes C P, Sell S A, Boland E D, Simpson D G, Bowlin G L. Adv. Drug Delivery Rev., 2007, 59: 1413.
[70] Wang L, Wu Y B, Guo B L, Ma P X. ACS Nano, 2015, 9: 9167.
[71] Silber J S, Anderson D G, Daffner S D, Brislin B T, Leland J M, Hilibrand A S, Vaccaro A R, Albert T J. Spine, 2003, 28: 134.
[72] Mankin H J, Hornicek F J, Raskin K A. Clin. Orthop. Relat. Res., 2005, 432: 210.
[73] Ngiam M, Liao S, Patil A J, Cheng Z Y, Chan C K, Ramakrishna S. Bone, 2009, 45: 4.
[74] Peng F, Yu X H, Wei M. Acta Biomater., 2011, 7: 2585.
[75] Shao S J, Zhou S B, Li L, Li J R, Luo C, Wang J X, Li X H, Weng J. Biomaterials, 2011, 32: 2821.
[76] Guo Z Z, Xu J M, Ding S, Li H, Zhou C R, Li L H. J. Biomater. Sci. Polym. Ed., 2015, 26: 989.
[77] Yang C W, Deng G Y, Chen W M, Ye X J, Mo X M. Colloids Surf. B, Biointerfaces, 2014, 122: 270.
[78] Full S M, Delman C, Gluck J M, Abdmaulen R, Shemin R J, Heydarkhan-Hagvall S. J. Biomed. Mater. Res., Part B, 2014, 103: 39.
[79] Liu S, Wu J L, Liu X D, Chen D S, Bowlin G L, Cao L, Lu J X, Li F F, Mo X M, Fan C Y. J. Biomed. Mater. Res., Part A, 2015, 103: 581.
[80] Wise J K, Yarin A L, Megaridis C M, Cho M. Tissue Eng., Part A, 2008, 15: 913.
[81] Baker B M, Mauck R L. Biomaterials, 2007, 28: 1967.
[82] Orr S B, Chainani A, Hippensteel K J, Kishan A, Gilchrist C, Garrigues N W, Ruch D S, Guilak F, Little D. Acta Biomater., 2015, 24: 117.
[83] Bosworth L A, Alam N, Wong J K, Downes S. J. Mater. Sci.: Mater. Med., 2013, 24: 1605.
[84] Xie J W, Li X R, Lipner J, Manning C N, Schwartz A G, Thomopoulos S, Xia Y N. Nanoscale, 2010, 2: 923.
[85] Perán M, García M A, Lopez-Ruiz E, Jiménez G, Marchal J A. Materials, 2013, 6: 1333.
[86] Stehlik J, Edwards L B, Kucheryavaya A Y, Benden C, Christie J D, Dipchand A I, Dobbels F, Kirk R, Rahmel A O, Hertz M I, J. Heart Lung Transplant., 2012, 31: 1052
[87] Fishman J A, N. Engl. J. Med., 2007, 357: 2601.
[88] Tandon V, Zhang B, Radisic M, Murthy S K. Biotechnol. Adv., 2013, 31: 722.
[89] Kharaziha M, Nikkhah M, Shin S R, Annabi N, Masoumi N, Gaharwar A K, Camci-Unal G, Khademhosseini A. Biomaterials, 2013, 34: 6355.
[90] Hsiao C W, Bai M Y, Chang Y, Chung M F, Lee T Y, Wu C T, Maiti B, Liao Z X, Li R K, Sung H W. Biomaterials, 2013, 34: 1063.
[91] Kai D, Prabhakaran M P, Jin G, Ramakrishna S. J. Biomed. Mater. Res., Part B Appl. Biomater., 2011, 98: 379.
[92] Li Y, Huang G, Zhang X, Wang L, Du Y, Lu T J, Xu F. Biotechnol. Adv., 2014, 32: 347
[93] Guex A G, Kocher F M, Fortunato G, Korner E, Hegemann D, Carrel T P, Tevaearai H T, Giraud M N. Acta Biomater., 2012, 8: 1481.
[94] Persano L, Dagdeviren C, Su Y W, Zhang Y H, Girardo S, Pisignano D, Huang Y G, Rogers J A. Nat. Commun., 2013, 4: 1633.
[95] Baniasadi M, Huang J C, Xu Z, Moreno S, Yang X, Chang J, Quevedo-Lopez M A, Naraghi M, Minary-Jolandan M, ACS Appl. Mater. Interfaces, 2015, 7: 5358.
[96] Sharma T, Naik S, Langevine J, Gill B, Zhang J X J. IEEE Trans. Biomed. Eng., 2015, 62: 188.
[97] Sharma T, Aroom K, Naik S, Gill B, Zhang J X J. Ann. Biomed. Eng., 2013, 41: 744.
[98] Kuo C C, Wang C T, Chen W C. Macromol. Mater. Eng., 2008, 293: 999.
[99] Gao Q, Meguro H, Okamoto S, Kimura M. Langmuir, 2012, 28: 17593.
[100] 俞平(Yu P), 黄建业(Huang J Y), 刘伟庭(Liu W T), 顾春欣(Gu C X), 傅新(Fu X), Dario P. 功能材料(Functional Materials), 2014, 45: 16052.
[101] Liu J, Yue Z R, Fong H. Small, 2009, 5: 536.
[102] Xie Z G, Niu H T, Lin T. RSC Advances, 2015, 5: 15147.
[103] 龚光明(Gong G M), 吴俊涛(Wu J T), 江雷(Jiang L). 化学进展(Progress in Chemistry), 2011, 23: 750.
[104] Huang C B, Chen S L, Reneker D H, Lai C L, Hou H Q. Adv. Mater., 2006, 18: 668.
[105] Andersson R L, Ström V, Gedde U W, Mallon P E, Hedenqvist M S, Olsson R T. Sci. Rep., 2014, 4: 6335.
[106] Su Z Q, Li J F, Li Q, Ni T Y, Wei G. Carbon, 2012, 50: 5605.
[107] Wang X R, Si Y, Wang X F, Yang J M, Ding B, Chen L, Hu Z M, Yu J Y. Nanoscale, 2013, 5: 886.
[108] Borges A L S, Münchow E A, Souza A C O, Yoshida T, Vallittu P K, Bottino C M. J. Mech. Behav. Biomed. Mater., 2015, 48: 134.
[109] Li P, Liu D W, Zhu B, Li B, Jia X L, Wang L L, Li G, Yang X P. Compos. Part A: Appl. Sci. Manufac., 2015, 68: 72.
[110] Ramazani S, Karimi M. Mater. Sci. Eng. C, 2015,56: 325.
[111] Lee J, Deng Y L. Macromol. Res., 2012, 20: 76.
[112] Wang Y X, Chen L G. ACS Appl. Mater. Interfaces, 2014, 6: 1709.
[113] Song Y, Zhang C Q, Yang Q B, Li Y X. Chem. Res. Chinese U., 2014, 30: 315.
[114] Liao H Q, Wu Y Q, Wu M Y, Zhan X R, Liu H Q. Cellulose, 2012, 19: 111.
[115] Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S. Compos. Sci. Technol., 2003, 63: 2223.
[116] Cai J, Chen J Y, Zhang Q, Lei M, He J R, Xiao A H, Ma C J, Li S, Xiong H G. Carbohyd. Polym., 2016, 140: 238.
[117] Chen D, Wang R Y, Tjiu W W, Liu T X. Compos. Sci. Technol., 2011, 71: 1556.
[118] Zhang H, Jin M S, Xia Y N. Chem. Soc. Rev., 2012, 41: 8035.
[119] Wu B H, Zheng N F. Nano Today, 2013, 8: 168.
[120] Steele B C H, Heinzel A. Nature, 2001,414: 345.
[121] Takemori R, Kawakami H. J. Power Sources, 2010,195: 5957.
[122] Wycisk R, Pintauro P N, Mather P T, Choi J, Lee K M. Macromolecules, 2008, 41: 4569.
[123] Mollá S, Compañ V, Gimenez E, Blazquez A, Urdanpilleta I. Int. J. Hydrogen Energ., 2011, 36: 9886.
[124] Dong B, Gwee L, Salas-de La Cruz D, Winey K I, Elabd Y A. Nano Lett., 2010, 10: 3785.
[125] Tamura T, Kawakami H. Nano Lett., 2010, 10: 1324.
[126] Tamura T, Takemori R, Kawakami H. J. Power Sources, 2012, 217: 135.
[127] Wu B, Pan J F, Ge L, Wu L, Wang H T, Xu T W. Sci. Rep., 2014, 4: 4334.
[128] Stankus J J, Guan J, Fujimoto K, Wagner W R. Biomaterials, 2006, 27: 735.
[129] Baker B M, Gee A O, Metter R B, Nathan A S, Marklein R A, Burdick J A, Mauck R L. Biomaterials, 2008, 29: 2348.
[130] Jana S, Zhang M Q. J. Mater. Chem. B, 2013, 1: 2575.
[131] Krishnamoorthy T, Thavasi V, Subodh G M, Ramakrishna S. Energy Environ. Sci., 2011, 4: 2807.
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[4] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[5] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[6] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[7] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[8] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[9] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[10] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[11] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[12] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[13] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[14] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[15] 赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 微结构化柔性压力传感器的性能增强机制、实现方法与应用优势[J]. 化学进展, 2022, 34(10): 2202-2221.