English
新闻公告
More
化学进展 2023, Vol. 35 Issue (2): 233-246 DOI: 10.7536/PC220805 前一篇   后一篇

• 综述 •

面向电子应用的聚合物化学镀前表面处理技术

邬学贤1, 张岩1,2, 叶淳懿1, 张志彬1, 骆静利1, 符显珠1,*()   

  1. 1 深圳大学材料学院 深圳 518055
    2 深圳湾实验室坪山生物医药研发转化中心 深圳 518118
  • 收稿日期:2022-08-05 修回日期:2022-10-25 出版日期:2023-02-24 发布日期:2023-02-15
  • 作者简介:
    符显珠 深圳大学材料学院教授,博士生导师,从事电化学能源材料与器件及电子材料与制程研究。2007年厦门大学化学系博士毕业,2008-2012年在加拿大阿尔伯塔大学做博士后并到美国伯克利国家实验室进行访问研究,曾于中国科学院深圳先进技术研究院工作。近5年以通讯作者在Nature Catalysis、Journal of the American Chemical Society、Angewandte Chemie、Energy & Environmental Science、Science Bulletin(《科学通报》)等期刊发表SCI论文100多篇。

Surface Pretreatment of Polymer Electroless Plating for Electronic Applications

Xuexian Wu1, Yan Zhang1,2, Chunyi Ye1, Zhibin Zhang1, Jingli Luo1, Xianzhu Fu1()   

  1. 1 College of Materials Science and Engineering, Shenzhen University,Shenzhen 518055, China
    2 Pingshan Biomedical R&D Transformation Center, Shenzhen Bay Laboratory,Shenzhen 518118, China
  • Received:2022-08-05 Revised:2022-10-25 Online:2023-02-24 Published:2023-02-15
  • Contact: *e-mail: xz.fu@szu.edu.cn

聚合物表面金属化在电子产品的导电互连、电磁屏蔽、导热散热、装饰保护等方面起着重要作用。与真空溅射等方法相比,化学镀是一种金属镀层均匀、低成本、易规模化生产、不需昂贵设备的聚合物表面金属化技术。近年来面向电子信息应用(如芯片制造、5G通信、柔性电子)的环氧树脂、聚酰亚胺(PI)、液晶聚合物(LCP)、聚四氟乙烯(PTFE)、聚二甲基硅氧烷(PDMS)、聚对苯二甲酸乙二酯(PET)、聚氨基甲酸酯(PU)、聚苯乙烯(PS)等聚合物化学镀技术得到积极研究。聚合物化学镀前表面处理,尤其是粗化和活化方法对于化学镀性能至关重要。粗化处理对镀层与基底的结合力、镀层对基底的完整包覆程度有明显影响;同时活化方法对化学镀的速度、镀层的厚度产生影响。在面向电子应用的聚合物化学镀前处理中,粗化过程如化学刻蚀、等离子体处理和接枝处理等,以及活化过程如离子吸附还原、催化剂直接吸附和墨水打印书写等也出现了许多新进展。本文对电子应用中各种聚合物基体化学镀前粗化和活化处理技术的最新进展进行了总结,旨在为应用于电子信息的化学镀新技术发展提供参考。

Metallization of polymer surface plays an important role in conductive interconnect, electromagnetic shielding, thermal management, decoration and protection of electronic products. Compared with vacuum sputtering and other methods, electroless plating has advantages of uniform coating, low cost and easy large-scale production. In recent years, polymer used for electronic applications such as epoxy resin, polyimide (PI), liquid crystal polymer (LCP), polytetrafluoroethylene (PTFE), polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), polyurethane (PU), polystyrene (PS) have been actively studied. Coarsening treatment has obvious influence on the binding force of coating and the degree of coating on the substrate. At the same time, the activation method affects the speed and thickness of electroless plating. In the surface pretreatment of polymer electroless plating, coarsening and activation methods have a great influence on the coating properties, especially for LCP and other polymers that will be used in 5G equipment. In polymer electroless plating pretreatment, coarsening processes such as chemical etching, plasma treatment and graft treatment, as well as activation processes such as ion adsorption reduction, catalyst direct adsorption and ink printing also have many new developments. In this paper, the latest development of coarsening and activation pretreatment of various polymer substrates in electronic applications is summarized, in order to provide reference for the development of electroless plating technology for electronic circuits.

Contents

1 Introduction

2 Application of polymer electroless plating in electronic field

2.1 Mechanism of electroless plating

2.2 Conductive interconnect

2.3 Electromagnetic shielding

2.4 Heat management

3 Polymer surface coarsening method

3.1 Chemical etching

3.2 Plasma treatment

3.3 Grafting treatment

4 Activation method before polymer electroless plating

4.1 Catalyst metal ion adsorption and reduction

4.2 Direct catalyst adsorption

4.3 Direct ink writing and graphic printing

5 Polyimide (PI) pretreatment method for electroless plating

6 Polyethylene terephthalate (PET) pretreatment method for electroless plating

7 Polyurethane (PU) pretreatment method for electroless plating

8 Polydimethylaminosiloxane (PDMS) pretreatment method for electroless plating

9 Polystyrene (PS) pretreatment method for electroless plating

10 Polypropylene (PP) pretreatment method for electroless plating

11 Polytetrafluoroethylene (PTFE) pretreatment method for electroless plating

12 Liquid crystal polymer (LCP) pretreatment method for electroless plating

13 Conclusion and outlook

()
图1 化学镀工艺的流程示意图
Fig.1 Schematic flow diagram of the electroless plating process.
图2 电子领域中化学镀常用的基底材料和粗化、活化方法示意图。粗化:化学刻蚀、接枝、等离子体处理;活化:离子交换、墨水打印、胶体活化
Fig.2 Schematic diagram of commonly used substrate materials and roughening and activation methods for electroless plating in the field of electronics. Roughening: chemical etching, grafting, plasma treatment; activation: ion exchange, ink printing, colloidal activation.
图3 (a)PCB导电互连示意图;(b)在聚合物基底上进行化学镀制备电磁屏蔽层示意图[50];(c)在元器件之上通过一层聚合物绝缘层再进行化学镀进行热量管理的示意图[51]
Fig.3 (a) Schematic diagram of conductive interconnection of PCB; (b) Schematic diagram of electromagnetic shielding layer prepared by electroless plating on a polymer substrate[50]; (c) Schematic representation of heat management by electroless plating of components with a layer of polymer insulation[39]
图4 (a) 接枝改性过程示意图[4];(b) 粗化后试样接触角的变化[4];(c)接枝流程原理图[67];(d,e)胶带撕拉镀层结合力测试[38]
Fig.4 (a) Schematic diagram of graft modification process[4]; (b)Change of contact angle of samples after roughening[4]; (c) process of grafting; (d,e) Adhesive force test of tape pulling coating[36]
图5 (a)离子交换活化流程图[2];(b)胶水稳定性测试[1];(c)催化剂直接吸附活化流程图[53]
Fig.5 (a) Flow diagram of ion exchange activation[2]; (b) Glue stability test[1]; (c) Flow diagram of catalyst direct adsorption activation[53]
图6 催化剂吸附化学镀原理图
Fig.6 Schematic of catalyst adsorption electroless plating
图7 (a)聚酰亚胺结构式;(b)聚酰亚胺化学镀后百格刀测试[47];(c)聚酰亚胺化学镀后弯折实验与导电性变化测试[56];(d)聚酰亚胺化学刻蚀粗化后离子交换活化流程图[1];(e)聚酰亚胺化学刻蚀和接枝粗化后再活化流程图[30]
Fig.7 (a) Structural formula of polyimide; (b) 100-square-knife test after electroless polyimide plating[47]; (c) bending test and conductivity change test after electroless polyimide plating[56] ; (d) Flow chart of ion exchange activation after chemical etching and roughening of polyimide[1]; (e) Flow chart of activation after chemical etching and grafting of polyimide[30]
图8 (a)PET结构式;(b)PET化学镀后弯折和导电线路测试[59];(c)PET经过等离子体处理粗化后Pd催化剂直接吸附活化示意图[52];(d)PET化学镀制备的导电器件[63]
Fig.8 (a) PET structural formula; (b) PET electroless plating after bending and conductive circuit test[59]; (c) Schematic diagram of direct adsorption and activation of Pd catalyst after PET roughening by plasma treatment[52]; (d) Conductive wire prepared by PET electroless plating device[72]
表1 PI常用粗化与活化方法汇总
Table 1 Summary of commonly used methods for coarsening and activation of PI
表2 PET常用粗化与活化方法汇总
Table 2 Summary of commonly used coarsening and activation methods for PET.
图9 (a)PU结构式;(b)PU表面化学镀制备电极[71];(c)PU导电线路最细可达28 μm[71];(d)PU海绵化学镀后弹性测试[24];(e)PU导电线路测试[71];(f)PU表面化学镀弯折实验[72];(g)PU海绵化学镀前处理流程图[72];(h)通过3D打印的PU并化学镀样品[73]
Fig.9 (a) PU structural formula; (b) electrode prepared by electroless plating on PU surface[71]; (c) PU conductive line as thin as 28 μm[71]; (d) elasticity test of PU sponge after electroless plating [24]; (e) PU conductive circuit test[79]; (f) PU surface electroless plating bending experiment [80]; (g) PU sponge electroless plating pretreatment flow chart[80]; (h) 3D printed PU and electroless plating samples[82].
表3 PU常用粗化与活化方法汇总
Table 3 Summary of commonly used coarsening and activation methods for PU
图10 (a)PDMS结构式;(b)PDMS经过多巴胺接枝改性粗化后使用Ag+活化流程图[78];(c)PDMS精确选择性活化化学镀图案[16]
Fig.10 (a) Structural formula of PDMS; (b) flow chart of Ag+ activation after PDMS graft modification with dopamine[78]; (c) Electroless plating pattern of PDMS precise and selective activation[16]
图11 (a)PS结构式;(b)PS微球化学镀铜后的SEM图[85];(c) (d)PS微球经过热压后互相接触形成导电网络[82];(e)PS微球化学镀并经过热压形成三维导电结构流程图[82]
Fig.11 (a) PS structural formula; (b) SEM image of PS microspheres after electroless copper plating[85]; (c) (d) PS microspheres contacted with each other after hot pressing to form a conductive network[82]; (e) PS microspheres electroless plating and Flow chart of forming a three-dimensional conductive structure by hot pressing[82]
表4 PDMS常用粗化与活化方法汇总
Table 4 Summary of common coarsening and activation methods for PDMS.
表5 PS常用粗化与活化方法汇总
Table 5 Summary of common coarsening and activation methods for PS
表6 PP常用粗化与活化方法汇总
Table 6 Summary of commonly used coarsening and activation methods for PP
图12 (a)聚丙烯结构图;(b)聚丙烯表面化学镀制备电子器件[13];(c)聚丙烯化学镀后弯折测试[86];(d)聚丙烯在掩模板下经过紫外光照射粗化,然后使用催化剂直接吸附活化得到精确导电图案示意图[11]
Fig.12 (a) Structure diagram of polypropylene; (b) Electroless plating on polypropylene surface to prepare electronic devices[13]; (c) Bending test of polypropylene after electroless plating[86]; (d) Polypropylene roughened by ultraviolet light under the mask, and then use the catalyst for direct adsorption activation to obtain a precise conductive pattern[11]
[1]
Sato T, Urata C. Mol. Cryst. Liq. Cryst., 2019, 688(1): 98.

doi: 10.1080/15421406.2019.1651074     URL    
[2]
Jones T D A, Ryspayeva A, Esfahani M N, Shuttleworth M P, Harris R A, Kay R W, Desmulliez M P Y, Marques-Hueso J. Surf. Coat. Technol., 2019, 360: 285.

doi: 10.1016/j.surfcoat.2019.01.023     URL    
[3]
Yang C, Li X T, Dong J, Zhao X, Gong J H, Zhang Q H. Acta Polymerica Sinica, 2022, 53(6): 663.
(杨晨, 李琇廷, 董杰, 赵昕, 龚静华, 张清华. 高分子学报, 2022, 53(6): 663.).
[4]
Zhu Y M, Tang J, Jin X, Pan T R, Chang Y, Yang Z G. ACS Appl. Mater. Interfaces, 2020, 12(6): 7679.

doi: 10.1021/acsami.9b17694     URL    
[5]
Yang S T, Kang Z X, Guo T. Nanotechnology, 2020, 31(19): 195710.

doi: 10.1088/1361-6528/ab703e     URL    
[6]
Sahoo S K, Sahu A K, Mahapatra S S. Int. J. Plast. Technol., 2017, 21(2): 297.

doi: 10.1007/s12588-017-9185-4     URL    
[7]
Jia Y K, Chen J X, Asahara H, Hsu Y I, Asoh T A, Uyama H. Polymer, 2020, 200: 122592.

doi: 10.1016/j.polymer.2020.122592     URL    
[8]
Chen Y. Int. J. Electrochem. Sci., 2021, 21112.
[9]
Kim K, Oh H, Kwon D, Lee J, Kim J. Compos. B Eng., 2019, 166: 742.

doi: 10.1016/j.compositesb.2019.02.065     URL    
[10]
Zhang W L, Ding D Y. Jnl Chin. Chemical Soc., 2016, 63(2): 222.

doi: 10.1002/jccs.v63.2     URL    
[11]
Li W L, Li L Y, Sun Q Q, Liu X Y, Kanehara M, Nakayama T, Jiu J T, Sakamoto K, Minari T. Chem. Eng. J., 2021, 416: 127644.

doi: 10.1016/j.cej.2020.127644     URL    
[12]
Chou S C, Sun B Y, Cheang W H, Tso K C, Fan T L, Chiao J C, Wu P W. Ceram. Int., 2021, 47(23): 32554.

doi: 10.1016/j.ceramint.2021.08.150     URL    
[13]
Yeetsorn R, Ouajai W P, Onyu K. RSC Adv., 2020, 10(41): 24330.

doi: 10.1039/D0RA00461H     URL    
[14]
Rao L H, Tang J Y, Hu S F, Shen L G, Xu Y C, Li R J, Lin H J. J. Colloid Interface Sci., 2020, 565: 546.

doi: 10.1016/j.jcis.2020.01.069     URL    
[15]
Qiang Q, Qin J X, Ma Y, Wang Z L, Zhao C. ACS Appl. Mater. Interfaces, 2019, 11(5): 5517.

doi: 10.1021/acsami.8b18209     URL    
[16]
Polywka A, Jakob T, Stegers L, Riedl T, Görrn P. Adv. Mater., 2015, 27(25): 3755.

doi: 10.1002/adma.v27.25     URL    
[17]
Mirmohammadi S M, Hoshian S, Jokinen V P, Franssila S. Sci. Rep., 2021, 11: 12646.

doi: 10.1038/s41598-021-92231-x     pmid: 34135443
[18]
Adamo C B, Poppi R J, de Jesus D P. Microchem. J., 2021, 160: 105704.

doi: 10.1016/j.microc.2020.105704     URL    
[19]
Guo R S, Li H D, Wang H R, Zhao X Y, Yu H, Ye Q. ACS Appl. Mater. Interfaces, 2021, 13(47): 56597.

doi: 10.1021/acsami.1c18065     URL    
[20]
Oshikiri J, Kosuge A, Iimori Y, Watanabe M, Honma H, Takai O. Trans. Jpn. Inst. Electron. Packag., 2017, 10: E16.
[21]
Cheng P W, Chen C Y, Ichibayashi T, Chang T F M, Sone M, Nishimura S. J. Supercrit. Fluids, 2022, 180: 105455.

doi: 10.1016/j.supflu.2021.105455     URL    
[22]
Rytlewski P, Jagodziński B, Malinowski R, Budner B, Moraczewski K, Wojciechowska A, Augustyn P. Molecules, 2021, 26(18): 5571.

doi: 10.3390/molecules26185571     URL    
[23]
Xia S H, Wei C L, Tang J C, Yan J H. ACS Sustainable Chem. Eng., 2021, 9(42): 13999.

doi: 10.1021/acssuschemeng.1c05589     URL    
[24]
Lu J Y, Cheng W H, Shi Y Q, Jia P F, Liao C, Zhang K, Song L, Wang B B, Hu Y. J. Colloid Interface Sci., 2021, 603: 25.

doi: 10.1016/j.jcis.2021.06.103     URL    
[25]
Li Y, Chen Y, Yang Y, Gu J D, Ke K, Yin B, Yang M B. J. Mater. Chem. B, 2021, 9(42): 8801.

doi: 10.1039/d1tb01441b     pmid: 34633022
[26]
Cheng J H, Gan G Y, Li J P, Yu X L, Tang L, Liu C B. Mater. Res. Express, 2021, 8(1): 015018.

doi: 10.1088/2053-1591/abd89c    
[27]
Li Y R, Zheng W, Zhang A B, Xie Z Y, Liu M X. J. Alloys Compd., 2021, 870: 159368.

doi: 10.1016/j.jallcom.2021.159368     URL    
[28]
Kim S H, Bazin N, Shaw J I, Yoo J H, Worsley M A, Satcher J H, Sain J D, Kuntz J D, Kucheyev S O, Baumann T F, Hamza A V. ACS Appl. Mater. Interfaces, 2016, 8(50): 34706.

doi: 10.1021/acsami.6b12320     URL    
[29]
Jinsenji M, Tajiri A, Nishimura Y, Bachman M, Li G P, Takai O. J. Electrochem. Soc., 2019, 166(10): D470.

doi: 10.1149/2.0101912jes    
[30]
Qiang Q, Geng X Y, Wang Z L. J. Adhesion Sci. Technol., 2019, 33(4): 371.

doi: 10.1080/01694243.2018.1507318     URL    
[31]
Huang S E, Shen F Y, Dow W P. J. Electrochem. Soc., 2019, 166(15): D843.

doi: 10.1149/2.1111915jes     URL    
[32]
Gao Q H, Wang M L, Chen J, Zhang M J, Zhao J C, Zhang M X, Hu J T, Wu G Z. RSC Adv., 2020, 10(26): 15139.

doi: 10.1039/D0RA02228D     URL    
[33]
Zhou M Q, Kang Z X, Zhu S M. Nanotechnology, 2019, 30(39): 395701.

doi: 10.1088/1361-6528/ab2a91     URL    
[34]
Kang Z X, Zhang Y, Zhou M Q. Chem. Eng. J., 2019, 368: 223.

doi: 10.1016/j.cej.2019.01.005     URL    
[35]
Liu T J, Sil M C, Chen C M. Compos. Sci. Technol., 2020, 193: 108135.

doi: 10.1016/j.compscitech.2020.108135     URL    
[36]
Zhang H, Kang Z X, Sang J, Hirahara H. Surf. Coat. Technol., 2018, 340: 8.

doi: 10.1016/j.surfcoat.2018.02.005     URL    
[37]
Asano T, Koshiba Y, Ueda Y, Nakagawa K, Yamanaka K, Mori M. Mol. Cryst. Liq. Cryst., 2007, 464(1): 187.
[38]
Chen L J, Wan C C, Wang Y Y. Journal of Colloid & Interface Science, 2006, 297(1): 143-150.
[39]
Lee C, Huang Y, Kuo L. Electrochemistry Communications, 2006, 8(6): 1021.

doi: 10.1016/j.elecom.2006.04.013     URL    
[40]
Biemolt J, van Noordenne D, Liu J W, Antonetti E, Leconte M, van Vliet S, Bliem R, Rothenberg G, Fu X Z, Yan N. ACS Appl. Nano Mater., 2020, 3(10): 10176.

doi: 10.1021/acsanm.0c02162     URL    
[41]
Taghavi Pourian Azar G, Fox D, Fedutik Y, Krishnan L, Cobley A J. Surf. Coat. Technol., 2020, 396: 125971.

doi: 10.1016/j.surfcoat.2020.125971     URL    
[42]
Liu C R, Pan L S, Li C H, Chen H R, Lee C L. J. Electrochem. Soc., 2015, 162(7): D283.

doi: 10.1149/2.0891507jes     URL    
[43]
Xie J Q, Ji Y Q, Kang J H, Sheng J L, Mao D S, Fu X Z, Sun R, Wong C P. Energy Environ. Sci., 2019, 12(1): 194.

doi: 10.1039/C8EE01979G     URL    
[44]
Ghosh S. Thin Solid Films, 2019, 669: 641.

doi: 10.1016/j.tsf.2018.11.016     URL    
[45]
Xu H R, Zhang J H, Feng J, Zhou T. Ind. Eng. Chem. Res., 2021, 60(24): 8821.

doi: 10.1021/acs.iecr.1c01668     URL    
[46]
Siau S, Vervaet A, Schacht E, Van Calster A. J. Electrochem. Soc., 2004, 151(2): C133.
[47]
Song J, Kim M R, Kim Y, Seo D, Ha K, Song T E, Lee W G, Lee Y, Kim K C, Ahn C W, Han H E. Nanotechnology, 2022, 33(6): 065303.

doi: 10.1088/1361-6528/ac353d    
[48]
Liu H G, Feng Z S, Wang K, Lian J Q, Chen Y M, Yang M Y, Wang Y. J. Mater. Sci. Mater. Electron., 2022, 33(16): 13012.

doi: 10.1007/s10854-022-08243-4    
[49]
Xing D, Lu L S, Xie Y X, Tang Y, Teh K S. Mater. Des., 2020, 185: 108227.

doi: 10.1016/j.matdes.2019.108227     URL    
[50]
Zhang N, Zhao R, He D Y, Ma Y Y, Qiu J, Jin C X, Wang C. J. Alloys Compd., 2019, 784: 244.

doi: 10.1016/j.jallcom.2018.12.341     URL    
[51]
Gebrael T, Li J Q, Gamboa A R, Ma J C, Schaadt J, Horowitz L, Pilawa-Podgurski R, Miljkovic N. Nat. Electron., 2022, 5(6): 394.

doi: 10.1038/s41928-022-00748-4    
[52]
Lin F B, Li W, Du X D, Chen N L, Wu Y B, Tang Y S, Jiang J H. Appl. Surf. Sci., 2019, 493: 1.

doi: 10.1016/j.apsusc.2019.06.171     URL    
[53]
Zhang Y B, Zhang T, Shi H B, Liu Q, Wang T. Appl. Surf. Sci., 2021, 547: 149220.

doi: 10.1016/j.apsusc.2021.149220     URL    
[54]
Yang W Z, Liu Y, Xu W, Nie H Y. IEEE Sens. J., 2021, 21(9): 10473.

doi: 10.1109/JSEN.2021.3060281     URL    
[55]
Chen Y Q, Liu Y, Xu W, Zhang Y, Nie H Y. Surf. Topogr.: Metrol. Prop., 2020, 8(3): 035003.
[56]
Wang Y, Wang W, Ding X D, Yu D. Chem. Eng. J., 2020, 380: 122553.

doi: 10.1016/j.cej.2019.122553     URL    
[57]
Liu T J, Chen C H, Wu P Y, Lin C H, Chen C M. Langmuir, 2019, 35(22): 7212.

doi: 10.1021/acs.langmuir.9b00354     URL    
[58]
Wang Y F, Hong Y, Chen Q G, Zhou G Y, He W, Gao Z P, Zhou X, Zhang W H, Su X H, Sun R. J. Taiwan Inst. Chem. Eng., 2019, 97: 450.

doi: 10.1016/j.jtice.2019.02.014     URL    
[59]
Hussain N, Yousif M, Ali A, Mehdi M, Ullah S, Ullah A, Mahar F K, Kim I S. Mater. Chem. Phys., 2020, 255: 123614.

doi: 10.1016/j.matchemphys.2020.123614     URL    
[60]
Liu Q Z, Yi C, Chen J H, Xia M, Lu Y, Wang Y D, Liu X, Li M F, Liu K, Wang D. Compos. B Eng., 2021, 215: 108752.

doi: 10.1016/j.compositesb.2021.108752     URL    
[61]
Zhang Y B, Zhang T, Shi H B, Liu Q, Shi Y L, Wang T. ACS Sustainable Chem. Eng., 2021, 9(35): 11991.

doi: 10.1021/acssuschemeng.1c04613     URL    
[62]
Huang J J, Wu W P, Zhang R X, Lu G Q, Chen B, Chen Z M, Gui C M. Nano Energy, 2022, 92: 106734.

doi: 10.1016/j.nanoen.2021.106734     URL    
[63]
Chang Y, Yang C, Zheng X Y, Wang D Y, Yang Z G. ACS Appl. Mater. Interfaces, 2014, 6(2): 768.

doi: 10.1021/am405539r     URL    
[64]
Wang Y F, Hong Y, Zhou G Y, He W, Gao Z P, Wang S X, Wang C, Chen Y M, Weng Z S, Wang Y Q. ACS Appl. Mater. Interfaces, 2019, 11(47): 44811.

doi: 10.1021/acsami.9b11690     URL    
[65]
Liao Y, Kao Z. ACS Appl. Mater. Interfaces, 2012, 4(10): 5109.

doi: 10.1021/am301654j     URL    
[66]
Huang J J, Xu L L, Zhao D F, Wang J, Chu C R, Chen H D, Liu Y H, Chen Z M. Chem. Eng. J., 2020, 383: 123199.

doi: 10.1016/j.cej.2019.123199     URL    
[67]
Liu X Q, Guo R S, Shi Y X, Deng L B, Li Y. Macromol. Mater. Eng., 2016, 301(11): 1383.

doi: 10.1002/mame.v301.11     URL    
[68]
Liang S Q, Li Y Y, Zhou T J, Yang J B, Zhou X H, Zhu T P, Huang J Q, Zhu J L, Zhu D Y, Liu Y Z, He C X, Zhang J M, Zhou X C. Adv. Sci., 2017, 4(2): 1600313.

doi: 10.1002/advs.201600313     URL    
[69]
Zhu C, Chalmers E, Chen L M, Wang Y Q, Xu ben bin, Li Y, Liu X Q. Small, 2019, 15(35): 1902440.

doi: 10.1002/smll.v15.35     URL    
[70]
Li Y X, Liu Z, Jiang Y C, de Glee B, Li D Z, Zeng J H. J. Mater. Sci., 2018, 53(1): 479.

doi: 10.1007/s10853-017-1530-7     URL    
[71]
Fathi Dehkharghani A M, Divandari M. Trans. IMF, 2015, 93(4): 186.

doi: 10.1179/0020296715Z.000000000248     URL    
[72]
Han F, Su X Y, Huang M Q, Li J H, Zhang Y, Zhao S F, Liu F, Zhang B, Wang Y, Zhang G P, Sun R, Wong C P. J. Mater. Chem. C, 2018, 6(30): 8135.

doi: 10.1039/C8TC02413H     URL    
[73]
Yu Y, Zeng J F, Chen C J, Xie Z, Guo R S, Liu Z L, Zhou X C, Yang Y, Zheng Z J. Adv. Mater., 2014, 26(5): 810.

doi: 10.1002/adma.201303662     URL    
[74]
Ryspayeva A, David Arthur Jones T, Khan S R, Esfahani M N, Shuttleworth M P, Harris R A, Kay R W, Desmulliez M P Y, Marques-Hueso J. IEEE Access, 2019, 7: 104947.

doi: 10.1109/ACCESS.2019.2931594    
[75]
Rytlewski P, Jagodziński B, Malinowski R, Budner B, Moraczewski K, Wojciechowska A, Augustyn P. Appl. Surf. Sci., 2020, 505: 144429.

doi: 10.1016/j.apsusc.2019.144429     URL    
[76]
Ding J L, Zhou P, Guo W L, Su B. Front. Chem., 2021, 8: 630246.

doi: 10.3389/fchem.2020.630246     URL    
[77]
Zhou B, Su B, Li M, Meng J H. J. Micromech. Microeng., 2020, 30(4): 045013.

doi: 10.1088/1361-6439/ab7263     URL    
[78]
Wu C Y, Tang X, Gan L, Li W F, Zhang J, Wang H, Qin Z Y, Zhang T, Zhou T T, Huang J, Xie C S, Zeng D W. ACS Appl. Mater. Interfaces, 2019, 11(22): 20535.

doi: 10.1021/acsami.9b05135     URL    
[79]
Ryspayeva A, Jones T D A, Esfahani M N, Shuttleworth M P, Harris R A, Kay R W, Desmulliez M P Y, Marques-Hueso J. Microelectron. Eng., 2019, 209: 35.

doi: 10.1016/j.mee.2019.03.001    
[80]
Coulm J, LÉonard D, Desroches C, Bessueille F. Colloids Surf. A Physicochem. Eng. Aspects, 2015, 466: 75.

doi: 10.1016/j.colsurfa.2014.10.057     URL    
[81]
Li Y R, Zhang A B, Zheng W, Wang D, Kong J. J. Phys. Chem. C, 2020, 124(1): 1190.

doi: 10.1021/acs.jpcc.9b09892     URL    
[82]
Lee S H, Yu S, Shahzad F, Hong J, Noh S J, Kim W N, Hong S M, Koo C M. Compos. Sci. Technol., 2019, 182: 107778.

doi: 10.1016/j.compscitech.2019.107778     URL    
[83]
Wang C J, Hung P S, Chou S C, Chung W A, Wu P W. Mater. Lett., 2020, 263: 127239.

doi: 10.1016/j.matlet.2019.127239     URL    
[84]
Lee S H, Yu S, Shahzad F, Hong J P, Kim W N, Park C, Hong S M, Koo C M. Compos. Sci. Technol., 2017, 144: 57.

doi: 10.1016/j.compscitech.2017.03.016     URL    
[85]
Hu Y G, Zhao T, Zhu P L, Liang X W, Sun R, Wong C P. RSC Adv., 2015, 5(1): 58.

doi: 10.1039/C4RA12475H     URL    
[86]
Ali Fulazzaky M, Fulazzaky M, Sumeru K. J. Adhesion Sci. Technol., 2019, 33(13): 1438.

doi: 10.1080/01694243.2019.1602021     URL    
[87]
Liu Z D, Chen Z C, Li W, Ding Z K, Xu Z M. Heat Transf. Eng., 2021, 42(22): 1877.

doi: 10.1080/01457632.2020.1834202     URL    
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[6] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[7] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[8] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[9] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[10] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[11] 付素芊, 汪英, 刘凯, 贺军辉. 微纳多孔聚合物薄膜的制备与应用[J]. 化学进展, 2022, 34(2): 241-258.
[12] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[13] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[14] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[15] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.