English
新闻公告
More
化学进展 2015, Vol. 27 Issue (8): 1014-1024 DOI: 10.7536/PC150135 前一篇   后一篇

• 综述与评论 •

有机-无机复合多孔膜制备与应用

杨皓程, 陈一夫, 叶辰, 万灵书, 徐志康*   

  1. 浙江大学高分子科学与工程学系 杭州 310027
  • 收稿日期:2015-01-01 修回日期:2015-04-01 出版日期:2015-08-15 发布日期:2015-06-05
  • 通讯作者: 徐志康 E-mail:xuzk@zju.edu.cn
  • 基金资助:
    教育部博士点基金(No. 20120101110123)和国家级大学生创新创业计划(No. 20141033509412)资助

Advances in Porous Organic-Inorganic Composite Membranes

Yang Haocheng, Chen Yifu, Ye Chen, Wan Lingshu, Xu Zhikang*   

  1. Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2015-01-01 Revised:2015-04-01 Online:2015-08-15 Published:2015-06-05
  • Supported by:
    The work was supported by the Doctoral Scientific Fund Project of the Ministry of Education of China (No. 20120101110123) and the National Undergraducate Scientific and Technological Innovation Project(No. 20141033509412).
日益严重的水污染问题引起了越来越多的科学家对水处理技术,特别是新型的分离膜材料及其分离技术的关注。有机-无机复合分离膜因同时具备有机聚合物与无机物的特点而逐渐成为研究的热点之一。本文综述了近年来有机-无机复合多孔膜研究领域的主要进展。在材料制备方面,着重介绍了基于本体掺杂过程(膜相镶嵌模型)与基于界面复合过程(界面复合模型)制备的有机-无机复合膜,其制备方法包括共混法、原位生成法、表面化学修饰、原子层沉积和仿生矿化法等。在实际应用方面,本文介绍了有机-无机复合膜在抗污染、抗菌、油水分离、催化、吸附、电池隔膜及酶固定化领域的应用。随着膜科学的进一步发展,具有多功能与高性能的分离膜将成为研究的主要方向,而具有更高表面无机覆盖率的“界面复合模型”将成为较优的复合膜构建策略。
Over the past decades, much attention has been paid to develope novel approaches towards water treatment, in particular the membrane filtration, to deal with the severe environmental crisis. One of the research foci is the organic-inorganic composite membranes for their advantages from both polymers and inorganics. In this review, we focus on the composite porous membranes and outline the advances in this field. In recent years, numerous of methods have been developed to fabricate such membranes, including blending, in situ generation, surface modification, atomic layer deposition, and biomineralization. The membranes can be categorized into two models according to the distribution of inorganics in the membrane: the embedding model and enveloping model. In addition, we summarize the practical applications of organic-inorganic composite membranes in anti-fouling and anti-bacterial uses, oil/water separation, catalysis, absorption, battery separator and enzyme immobilization. We suggest the “enveloping model” a better choice to construct the novel organic-inorganic composite membranes with high performance for its high surface mineral coverage.

Contents
1 Introduction
2 Types and fabrication methods
2.1 “Embedding” model
2.2 “Enveloping” model
2.3 Comparison of two models
3 Applications of organic-inorganic porous membranes
3.1 Anti-fouling and anti-bacterial applications
3.2 Oil/water separation
3.3 Catalytic membranes
3.4 Absorption
3.5 Battery separator
3.6 Immobilization of enzymes
4 Conclusion and outlook

中图分类号: 

()
[1] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Nature, 2008, 452: 301.
[2] Wan L S, Liu Z M, Xu Z K. Soft Matter, 2009, 5: 1775.
[3] Kumar P, Guliants V V. Micropor. Mesopor. Mat., 2010, 132: 1.
[4] Le-Clech P, Chen V, Fane T A G. J. Membr. Sci., 2006, 284: 17.
[5] Meng F, Chae S R, Drews A, Kraume M, Shin H-S, Yang F. Water Res., 2009, 43: 1489.
[6] Abetz V, Brinkmann T, Dijkstra M, Ebert K, Fritsch D, Ohlrogge K, Paul D, Peinemann K V, Pereira-Nunes S, Scharnagl N, Schossig M. Adv. Eng. Mater., 2006, 8: 328.
[7] Li Y, He G, Wang S, Yu S, Pan F, Wu H, Jiang Z. J. Mater. Chem. A, 2013, 1: 10058.
[8] Yu L Y, Xu Z L, Shen H M, Yang H. J. Membr. Sci., 2009, 337: 257.
[9] Bottino A, Capannelli G, DAsti V, Piaggio P. Sep. Purif. Technol., 2001, 22/23: 269.
[10] Shen J N, Ruan H M, Wu L G, Gao C J. Chem. Eng. J., 2011, 168: 1272.
[11] Zhang G, Lu S, Zhang L, Meng Q, Shen C, Zhang J. J. Membr. Sci., 2013, 436: 163.
[12] Shi F, Ma Y, Ma J, Wang P, Sun W. J. Membr. Sci., 2012, 389: 522.
[13] Genné I, Kuypers S, Leysen R. J. Membr. Sci., 1996, 113: 343.
[14] Bottino A, Capannelli G, Comite A. Desalination, 2002, 146: 35.
[15] Yan L, Li Y S, Xiang C B, Xianda S. J. Membr. Sci., 2006, 276: 162.
[16] Wang X M, Li X Y, Shih K. J. Membr. Sci., 2011, 368: 134.
[17] Zhang J, Xu Z, Mai W, Min C, Zhou B, Shan M, Li Y, Yang C, Wang Z, Qian X. J. Mater. Chem. A, 2013, 1: 3101.
[18] Liao Y, Li X G, Heok E M V, Kaner R B. J. Mater. Chem. A, 2013,1: 15390.
[19] Wang Z, Yu H, Xia J, Zhang F, Li F, Xia Y, Li Y. Desalination, 2012, 299: 50.
[20] Wu T, Zhou B, Zhu T, Shi J, Xu Z, Hu C, Wang J. RSC Adv., 2015,5: 7880.
[21] Zhang J, Xu Z, Shan M, Zhou B, Li Y, Li B, Niu Z, Qian X. J. Membr. Sci., 2013, 448: 81.
[22] Zhu L J, Zhu L P, Jiang J H, Yi Z, Zhao Y F, Zhu B K, Xu Y Y. J. Membr. Sci., 2014, 451: 157.
[23] Zhi S H, Xu J, Deng R, Wan L S, Xu Z K. Polymer, 2014, 55: 1333.
[24] Liang H Q, Wu Q Y, Wan L S, Huang X J, Xu Z K. J. Membr. Sci., 2014, 465: 56.
[25] Chen W, Su Y, Zhang L, Shi Q, Peng J, Jiang Z. J. Membr. Sci., 2010, 348: 75.
[26] Li X, Fang X, Pang R, Li J, Sun X, Shen J, Han W, Wang L. J. Membr. Sci., 2014, 467: 226.
[27] Zhang F, Zhang W, Yu Y, Deng B, Li J, Jin J. J. Membr. Sci., 2013, 432: 25.
[28] Chen H, Lin Q, Xu Q, Yang Y, Shao Z, Wang Y. J. Membr. Sci., 2014, 458: 217.
[29] Xu Q, Yang J, Dai J, Yang Y, Chen X, Wang Y. J. Membr. Sci., 2013, 448: 215.
[30] Xu Q, Yang Y, Yang J, Wang X, Wang Z, Wang Y. J. Membr. Sci., 2013, 443: 62.
[31] Wang Q, Wang X, Wang Z, Huang J, Wang Y. J. Membr. Sci., 2013, 442: 57.
[32] Xu Q, Yang Y, Wang X, Wang Z, Jin W, Huang J, Wang Y. J. Membr. Sci., 2012, 415/416: 435.
[33] Mauter M S, Wang Y, Okemgbo K C, Osuji C O, Giannelis E P, Elimelech M. ACS Appl. Mater. Interfaces, 2011, 3: 2861.
[34] Liang S, Kang Y, Tiraferri A, Giannelis E P, Huang X, Elimelech M. ACS Appl. Mater. Interfaces, 2013, 5: 6694.
[35] You S J, Semblante G U, Lu S C, Damodar R A, Wei T C. J. Hazard. Mater., 2012, 237/238: 10.
[36] Chen P C, Wan L S, Xu Z K. J. Mater. Chem., 2012, 22: 22727.
[37] Yang H C, Pi J K, Liao K J, Huang H, Wu Q Y, Huang X J, Xu Z K. ACS Appl. Mater. Interfaces, 2014, 6: 12566.
[38] Chen X N, Wan L S, Wu Q Y, Zhi S H, Xu Z K. J. Membr. Sci., 2013, 441: 112.
[39] Zhi S H, Wan L S, Xu Z K. J. Membr. Sci., 2014, 454: 144.
[40] Hou J, Dong G, Ye Y, Chen V. J. Membr. Sci., 2014, 469: 19.
[41] Meng S, Mansouri J, Ye Y, Chen V. J. Membr. Sci., 2014, 450: 48.
[42] Shao L, Wang Z X, Zhang Y L, Jiang Z X, Liu Y Y. J. Membr. Sci., 2014, 461: 10.
[43] Méricq J P, Mendret J, Brosillon S, Faur C. Chem. Eng. Sci., 2015, 123: 283.
[44] Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D. Angew. Chem. Int. Ed., 2004, 116: 2046.
[45] Ge J, Ye Y D, Yao H B, Zhu X, Wang X, Wu L, Wang J L, Ding H, Yong N, He L H, Yu S H. Angew. Chem. Int. Ed., 2014, 53: 3612.
[46] Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L. Adv. Mater., 2013, 25: 2071.
[47] Zhang F, Zhang W B, Shi Z, Wang D, Jin J, Jiang L. Adv. Mater., 2013, 25: 4192.
[48] Yang H C, Liao K J, Huang H, Wu Q Y, Wan L S, Xu Z K. J. Mater. Chem. A, 2014, 2: 10225.
[49] Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L. Adv. Mater., 2011, 23: 4270.
[50] Zhang Y, Shang L, Tu Z, Zhang Y. Sep. Purif. Technol. 2008, 63: 207.
[51] Zhang Y, Xu Y, Zhang S, Zhang Y, Xu Z. Desalination, 2012, 299: 63.
[52] Zhang Y, Liu F, Lu Y, Zhao L, Song L. Desalination, 2013, 324: 118.
[53] Yi X S, Yu S L, Shi W X, Sun N, Jin L M, Wang S, Zhang B, Ma C, Sun L P. Desalination, 2011, 281: 179.
[54] Yuliwati E, Ismail A F, Desalination, 2011, 273: 226.
[55] Wang Z X, Lau C H, Zhang N Q, Bai Y P, Shao L. J. Mater. Chem. A, 2015, 3: 2650.
[56] Meng T, Xie R, Ju X J, Cheng C J, Wang S, Li P F, Liang B, Chu L Y. J. Membr. Sci., 2013, 427: 63.
[57] Chen P C, Xu Z K. Sci. Rep., 2013, 3.
[58] Li X, Wang M, Wang C, Cheng C, Wang X. ACS Appl. Mater. Interfaces, 2014, 6: 15272
[59] Lüdtke K, Peinemann K V, Kasche V, Behling R D. J. Membr. Sci., 1998, 151: 3.
[60] Alaoui O T, Nguyen Q T, Mbareck C, Rhlalou T. Appl. Catal. A Gen., 2009, 358: 13.
[61] Damodar R A, You S J, Chou H H. J. Hazard. Mater., 2009, 172: 1321.
[62] Leong S, Razmjou A, Wang K, Hapgood K, Zhang X. J. Membr. Sci., 2014, 472: 167.
[63] Wang J, Liu P, Fu X, Li Z, Han W, Wang X. Langmuir, 2009, 25: 1218.
[64] Chin S S, Chiang K, Fane A G. J. Membr. Sci., 2006, 275: 202.
[65] Ma S, Meng J, Li J, Zhang Y, Ni L. J. Membr. Sci., 2014, 453: 221.
[66] Vatanpour V, Madaeni S S, Moradian R, Zinadini S, Astinchap B. Sep. Purif. Technol., 2012, 90: 69.
[67] Safarpour M, Khataee A, Vatanpour V. Sep. Purif. Technol., 2012, 90: 69.
[68] Xu C, Xu Y, Zhu J. ACS Appl. Mater. Interfaces, 2014, 6: 16117.
[69] Xi F, Wu J, Lin X. J. Chromatogr. A, 2006, 1125: 38.
[70] Rotzetter A C C, Kellenberger C R, Schumacher C M, Mora C, Grass R N, Loepfe M, Luechinger N A, Stark W J. Adv. Mater., 2013, 25: 6057.
[71] Dou X, Mohan D, Pittman Jr C U, Yang S. Chem. Eng. J., 2012, 198/199: 236.
[72] Liu H, Sun X, Yin C, Hu C. J. Hazard. Mater., 2008, 151: 616.
[73] He J, Matsuura T, Chen J P. J. Membr. Sci., 2014, 452: 433.
[74] Kang S M, Ryou M H, Choi J W, Lee H. Chem. Mater., 2012, 24: 3481.
[75] Rodrigues R C, Ortiz C, Berenguer Murcia A, Torres R, Fernandez Lafuente R. Chem. Soc. Rev., 2013, 42: 6290.
[76] Cantone S, Ferrario V, Corici L, Ebert C, Fattor D, Spizzo P, Gardossi L. Chem. Soc. Rev., 2013, 42: 6262.
[77] Magner E. Chem. Soc. Rev., 2013, 42: 6213.
[78] Hou J, Dong G, Ye Y, Chen V. J. Membr. Sci., 2014, 452: 229.
[79] Wang S, Chen W, He S, Zhao Q, Li X, Sun J, Jiang X. Nanoscale, 2014, 6: 6468.
[80] Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318: 426.
[81] Yang H C, Luo J, Lv Y, Shen P, Xu Z K. J. Membr. Sci., 2015, 483: 42.
[82] 张慧(Zhang H), 周雅静(Zhou Y J), 宋肖锴(Song X K). 化学进展(Prog. Chem.), 2015, 27: 212.
[1] 杨世迎, 刘俊琴, 李乾风, 李阳. 机械球磨改性零价铝的作用机制[J]. 化学进展, 2021, 33(10): 1741-1755.
[2] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[3] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[4] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[5] 查东东, 郭斌, 李本刚, 银鹏, 李盘欣. 热塑性淀粉耐水性的化学与物理作用机制[J]. 化学进展, 2019, 31(1): 156-166.
[6] 谢晓晓, 马晓明*, 茹祥莉, 常毅, 郭玉明, 杨林*. 基于细胞仿生矿化合成纳米材料及其应用[J]. 化学进展, 2018, 30(10): 1511-1523.
[7] 刘天辉, 常刚, 曹瑞军, 孟令杰. 超顺磁性Fe3O4纳米粒子在磁共振造影中的应用[J]. 化学进展, 2015, 27(5): 601-613.
[8] 刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性中的应用[J]. 化学进展, 2015, 27(2/3): 212-219.
[9] 王生杰, 蔡庆伟, 杜明轩, 曹美文, 徐海. 二氧化硅的仿生矿化[J]. 化学进展, 2015, 27(2/3): 229-241.
[10] 张勇杰, 李化毅, 董金勇, 胡友良. 聚烯烃共价键接枝纳米材料及其聚烯烃纳米复合材料[J]. 化学进展, 2015, 27(1): 47-58.
[11] 于谦, 陈红. PNIPAAm改性表面对蛋白质吸附的调控及其应用[J]. 化学进展, 2014, 26(08): 1275-1284.
[12] 刘涛, 孙丽宁, 刘政, 仇衍楠, 施利毅. 稀土上转换发光纳米材料的应用[J]. 化学进展, 2012, 24(0203): 304-317.
[13] 黄平, 柴仕淦, 袁建军, 路国红, 杨婷婷, 程时远. SiO2/聚合物核壳型杂化粒子及其空心结构的制备[J]. 化学进展, 2012, 24(01): 31-38.
[14] 王兆翔, 陈立泉, 黄学杰. 锂离子电池正极材料的结构设计与改性[J]. 化学进展, 2011, 23(0203): 284-301.
[15] 史莹 耿家青 杨冬. 凝胶介质中仿生矿化过程的研究*[J]. 化学进展, 2010, 22(11): 2224-2231.
阅读次数
全文


摘要