English
新闻公告
More
化学进展 2016, Vol. 28 Issue (5): 657-664 DOI: 10.7536/PC151106 前一篇   后一篇

• 综述与评论 •

静电纺丝法制备新型吸附分离材料

孟德芃, 吴俊涛*   

  1. 北京航空航天大学化学与环境学院 仿生智能界面科学与技术教育部重点实验室 北京 100191
  • 收稿日期:2015-11-01 修回日期:2015-12-01 出版日期:2016-05-15 发布日期:2016-03-25
  • 通讯作者: 吴俊涛 E-mail:wjt@buaa.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51373007,51003004)、北京市自然科学基金资助项目(No.2142019)、国家重点基础研究发展计划(973)项目(No.2010CB934700)及中央高校基本科研业务费专项资金和教育部留学回国人员科研启动基金资助。

Adsorption and Separation Materials Produced by Electrospinning

Meng Depeng, Wu Juntao*   

  1. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China
  • Received:2015-11-01 Revised:2015-12-01 Online:2016-05-15 Published:2016-03-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51373007, 51003004), the Beijing Natural Science Foundation (No.2142019), the National Basic Research Program of China (No.2010CB934700), the Fundamental Research Funds for the Central Universities, and the SRF for ROCS, SEM.
随着现代经济、工业的发展,许多环境问题出现在了人类面前,对于新型吸附分离材料的需求也变得十分迫切。静电纺丝法是一种简单有效制备连续纳米长丝的技术,有着十分广阔的应用前景。由于静电纺丝法制备的纤维膜具有较大的比表面积、易于调控的微观结构及化学性质,静电纺丝法能够用于制备新型的吸附分离材料。本文对电纺纤维膜的制备与改性,以及电纺纤维膜在空气过滤、油水分离、重金属离子去除等领域的应用进行了介绍,同时对其未来的发展进行了展望。
With the development of modern economy and industry, the environment problems are becoming increasingly serious. So the requirements of the novel adsorption/separation materials have become urgent. Electrospinning (ES) is a facile and effective technique to prepare continuous nanofibers and has a wide application prospect. Because the electrospun nanofibrous mat possesses the features of large surface area, controllable microstructure and chemical property, the ES technology is considered as a potential method to prepare novel adsorption/separation materials. This article has summarized the recent researches on fabricating and modifying the electrospun fibrous mat and illustrated its applications in air filtration, oil-water separation and heavy metal ion adsorption. The research prospects and directions of this rapidly developing field are also briefly proposed.

Contents
1 Introduction
2 Preparation and modification of electrospun mats
2.1 Microstructure control of electrospun mat
2.2 Preparation of multi-component electrospun fibers
2.3 Surface modification of electrospun mats
3 Applications of electrospun mats as adsorption/separation materials
3.1 Air filtration
3.2 Oil-water separation
3.3 Heavy metal ion adsorption
4 Conclusion and outlook

中图分类号: 

()
[1] Bell M L, Davis D L, Fletcher T. Environ. Health Perspect, 2004, 112: 6.
[2] Song C, Pei T, Yao L. Int. J. Environ. Res. Public Health, 2015, 12: 1099.
[3] Gong G, Zhou C, Wu J, Jin X, Jiang L. ACS Nano, 2015, 9: 3721.
[4] Liu C, Hsu P C, Lee H W, Ye M, Zheng G, Liu N, Li W, Cui Y. Nat. Commun, 2015, 6: 6205.
[5] Echols B S, Smith A J, Gardinali P R, Rand G M. Chemosphere, 2015, 120: 131.
[6] Pan G, Qiu S, Liu X, Hu X. Marine Policy, 2015, 62: 18.
[7] Meena A K, Mishra G, Kumar S, Rajagopal C, Nagar P. Indian Journal of Scientific & Industrial Research, 2004, 63: 410.
[8] Xie J, Lin Y, Li C J, Wu D Y, Kong H N. Powder Technology, 2015, 269: 351.
[9] Say??l? H, Güzel F, Önal Y. Journal of Cleaner Production, 2015, 93: 84.
[10] Lei Y, Zheng L, Jiang X, Wu W, Han Y. Adv. Mater. Res., 2015, 1092: 1068.
[11] Yang Y J, Zhang S C, Zhao X L, Yu J Y, Ding B. Separation and Purification Technology, 2015, 152: 14.
[12] Lee M W, An S, Latthe S S, Lee C, Hong S, Yoon S S. ACS Appl. Mater. Interfaces, 2013, 5: 10597.
[13] Mo J P, Xu N K, Xiao C F, Han X T, Liu Y. J. Mater. Science, 2014, 49: 4816.
[14] Li D, Xia Y. Adv. Mater., 2004, 16: 1151.
[15] Greiner A, Wendorff J H. Angew. Chem. Int. Ed., 2007, 46: 5670.
[16] Lu X, Wang C, Wei Y. Small, 2009, 5: 2349.
[17] Patanaik A, Jacobs V, Anandjiwala R D. Journal of Membrane Science, 2010, 352: 136.
[18] Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff J H. Adv. Mater., 2001, 13: 70.
[19] Di J C, Chen H Y, Wang X F, Zhao Y, Jiang L, Yu J H, Xu R R. Chem. Mater., 2008, 20: 3543.
[20] Hou H Q, Reneker D H. Adv. Mater., 2004, 16: 69.
[21] Li D, Xia Y N. Nano Lett., 2004, 4: 933.
[22] Zhang H, Lee J Y, Ahmed A, Hussain I, Cooper A I. Angew. Chem. Int. Ed., 2008, 47: 4573.
[23] Liu Y, Park M, Ding B, Kim J, El-Newehy M, Al-Deyab S S, Kim H Y. Fibers and Polymers, 2015, 16: 629.
[24] Koo S H, Leeb S G, Bong H, Kwark Y J, Cho K, Lim H S, Cho J H. Polymer, 2014, 55: 2661.
[25] Wu J J, Lee H W, You J H, Kau Y C, Liu S J. J. Colloid Interface Sci., 2014, 420: 145.
[26] Wei Z, Zhao H, Zhang J H, Deng L D, Wu S Y, He J Y, Dong A J. RSC Advances, 2014, 4: 51381.
[27] Tang X, Si Y, Ge J, Ding B, Liu L, Zheng G, Luo W, Yu J. Nanoscale, 2013, 5: 11657.
[28] Huang M L, Si Y, Tang X M, Zhu Z G, Ding B, Liu L F, Zheng G, Luo W J, Yu J Y. J Mater. Chem. A, 2013, 1: 14071.
[29] Shang Y, Si Y, Raza A, Yang L, Mao X, Ding B, Yu J. Nanoscale, 2012, 4: 7847.
[30] Gibson P, Schreuder-Gibson H, Rivin D. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187: 469.
[31] Chang Q B, Zhou J E, Wang Y Q, Liang J, Zhang X Z, Cerneaux S, Wang X, Zhu Z W, Dong Y C. J. Membrane Science, 2014, 456: 128.
[32] Wan H, Wang N, Yang J, Si Y, Chen K, Ding B, Sun G, El-Newehy M, Al-Deyab S S, Yu J. J. Colloid Interface Sci., 2014, 417: 18.
[33] Wang N, Raza A, Si Y, Yu J, Sun G, Ding B. J. Colloid Interface Sci., 2013, 398: 240.
[34] Oh H J, Pant H R, Kang Y S, Jeon K S, Pant B, Kim C S, Kim H Y. Polymer International, 2012, 61: 1675.
[35] Xu Z, Gu Q, Hu H, Li F. Environ. Technol., 2008, 29: 13.
[36] Heikkila P, Taipale A, Lehtimaki M, Harlin A. Polymer Engineering and Science, 2008, 48: 1168.
[37] Matulevicius J, Kliucininkas L, Martuzevicius D, Krugly E, Tichonovas M, Baltrusaitis J. J. Nanomaterials, 2014, 2014: 14.
[38] Xue Z X, Cao Y Z, Liu N, Feng L, Jiang L. J. Mater. Chem. A, 2014, 2: 2445.
[39] Liao K, Ye X Y, Chen P C, Xu Z K. J. Appl. Polymer Science, 2014, 131: 39897.
[40] Li H Y, Wu W F, Bubakir M M, Chen H B, Zhong X F, Liu Z X, Ding Y M, Yang W M. J. Appl. Polymer Science, 2014, 131: 40080.
[41] Zhao J, Xiao C, Xu N. Environ. Sci. Pollut. Res. Int., 2013, 20: 4137.
[42] Xiao C F T, Xiaomin, Si Y, Ge J, Ding B, Liu L, Zheng G, Luo W, Yu J. Nanoscale, 2013, 5: 11657.
[43] Lin J, Tian F, Shang Y, Wang F, Ding B, Yu J, Guo Z. Nanoscale, 2013, 5: 2745.
[44] You H, Yang Y, Li X, Zhang K, Wang X F, Zhu M F, Hsiao B S. Journal of Membrane Science, 2012, 394: 241.
[45] Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L. ACS Appl. Mater. Interfaces, 2012, 4: 3207.
[46] Wang L F, Yang S Y, Wang J, Wang C F, Chen L. Mater. Lett., 2011, 65: 869.
[47] Lim H S, Baek J H, Park K, Shin H S, Kim J, Cho J H. Adv. Mater., 2010, 22: 2138.
[48] Wang X, Chen X, Yoon K, Fang D, Hsiao B S, Chu B. Environ. Sci. Technol., 2005, 39: 7684.
[49] Liu H, Cao C Y, Wei F F, Huang P P, Sun Y B, Jiang L, Song W G. J Mater. Chem. A, 2014, 2: 3557.
[50] Yang H W, Lan Y, Zhu W, Li W N, Xu D, Cui J C, Shen D Z, Li G T. J. Mater. Chem., 2012, 22: 16994.
[51] Wu C L, Wang H Y, Wei Z, Li C, Luo Z D. Appl. Surface Science, 2015, 346: 207.
[52] Tabatabaeefar A, Keshtkar A R, Moosavian M A. J. Radioanal. Nucl. Chem., 2015, 305: 653.
[53] Hallaji H, Keshtkar A R, Moosavian M A. Journal of the Taiwan Institute of Chemical Engineers, 2015, 46: 109.
[54] Sharma D K, Shen J Y, Li F T. RSC Advances, 2014, 4: 39110.
[55] Sharma D K, Li F T, Wu Y N. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457: 236.
[56] Rad L R, Momeni A, Ghazani B F, Irani M, Mahmoudi M, Noghreh B. Chemical Engineering Journal, 2014, 256: 119.
[57] Huang Y, Hu D, Wen S, Shen M, Zhu M, Shi X. New J. Chem., 2014, 38: 1533.
[58] Bai M Y, Tsai J C. Fibers and Polymers, 2014, 15: 2265.
[59] Aliabadi M, Irani M, Ismaeili J, Najafzadeh S. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45: 518.
[60] Wu Y N, Zhang B R, Li F T, Zhu W, Xu D, Hannam P, Li G T. J. Mater. Chem., 2012, 22: 5089.
[61] Abdouss M, Shoushtari A M, Simakani A M, Akbari S, Haji A. Desalination and Water Treatment, 2014, 52: 7133.
[62] Yari S, Abbasizadeh S, Mousavi S E, Moghaddam M S, Moghaddam A Z. Process Safety and Environmental Protection, 2015, 94: 159.
[63] Kim J M, Kim C, Yoo S, Kim J H, Kim J H, Lim J M, Park S, Lee S Y. J. Mater. Chem. A, 2015, 3: 10687.
[1] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[2] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[3] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[4] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[5] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
[6] 朱蕾, 王嘉楠, 刘建伟, 王玲, 延卫. 静电纺丝一维纳米材料在气敏传感器的应用[J]. 化学进展, 2020, 32(2/3): 344-360.
[7] 马亮, 时学娟, 张笑笑, 李莉莉. 可控核/壳结构聚合物电纺纤维的制备与应用[J]. 化学进展, 2019, 31(9): 1213-1220.
[8] 左继浩, 陈嘉慧, 文秀芳, 徐守萍, 皮丕辉. 用于分离油水乳液的先进材料[J]. 化学进展, 2019, 31(10): 1440-1458.
[9] 张俊, 韩磊, 曾渊, 田亮, 张海军. 选择性油水分离材料[J]. 化学进展, 2019, 31(1): 134-143.
[10] 袁静, 廖芳芳, 郭雅妮, 梁丽芸. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1): 144-155.
[11] 郑勰, 周一凡, 陈思远, 刘晓云, 查刘生. 刺激响应性电纺纳米纤维[J]. 化学进展, 2018, 30(7): 958-975.
[12] 李勃天, 温幸, 唐黎明. 一维聚合物-无机纳米复合材料的制备[J]. 化学进展, 2018, 30(4): 338-348.
[13] 曾新娟, 王丽, 皮丕辉, 程江, 文秀芳, 钱宇. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30(1): 73-86.
[14] 李俊同, 霍延平, 刘梦娟, 曾华强. 可用于溢油处理的相选择性有机胶凝剂[J]. 化学进展, 2017, 29(6): 617-627.
[15] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.