English
新闻公告
More
化学进展 2020, Vol. 32 Issue (2/3): 162-178 DOI: 10.7536/PC190711 前一篇   后一篇

所属专题: 电化学有机合成

• •

基于多相催化体系构建的醇胺化合成N-烷基胺

王新之1,2, 王红利1, 石峰1,**()   

  1. 1. 中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室 兰州 730000
    2. 中国科学院大学 北京 100049
  • 收稿日期:2019-07-15 出版日期:2020-02-15 发布日期:2019-12-19
  • 通讯作者: 石峰
  • 基金资助:
    国家自然科学基金项目(21633013)

Alcohol Amination for N-Alkyl Amine Synthesis with Heterogeneous Catalysts

Xinzhi Wang1,2, Hongli Wang1, Feng Shi1,**()   

  1. 1. State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-07-15 Online:2020-02-15 Published:2019-12-19
  • Contact: Feng Shi
  • About author:
    ** e-mail:
  • Supported by:
    National Natural Science Foundation of China(21633013)

N-烷基化胺类化合物由于其在染料、药物、农药、表面活性剂、橡胶助剂、功能材料等精细化学工业中的重要作用,它的合成吸引了化学家们广泛的研究兴趣。在众多合成方法中,胺醇烷基化是一种N-烷基胺高效、清洁的合成方法,其中水是唯一副产物。本文系统地介绍了Ni、Cu、Pd、Pt、Co、Mn、Fe、Au、Ru、Ag等多相催化体系应用于醇胺化反应合成N-烷基胺的研究进展,并指出醇胺化多相催化过程中所面临的问题和未来的发展方向。

N-alkyl amines are an important class of molecules in the chemical industry and are extensively applied in the syntheses of dyes, pharmaceuticals, agrochemicals, surfactants, rubber ingredients, and functional materials. Given the importance of N-alkyl amines, the development of efficient synthetic methodologies to synthesize these amines is of broad interest. Among various methods, the catalytic alcohol amination has been viewed as effective and green method for synthesis of N-alkyl amines because alcohol is readily available, and water is generated as the sole by-product. This review describes developments and recent advances in the alcohol amination with different heterogeneous catalyst systems, including nickel, copper, palladium, platinum, cobalt, manganese, iron, gold, ruthenium, silver, and other catalyst systems. The frontiers and future of the topic are also given.

()
图式1 醇胺化反应的借氢机理
Scheme 1 The alcohol amination with borrowing hydrogen mechanism
图式2 Ni催化苯胺和乙醇的N-烷基化反应[25]
Scheme 2 The N-alkylation of aniline and ethanol catalyzed by Ni[25]
图式3 雷尼Ni催化吲哚和仲醇的N-烷基化反应[30]
Scheme 3 The N-alkylation of indole and secondary alcohol catalyzed by Raney Ni[30]
图式4 各种苯胺与各种醇的N-烷基化[31]
Scheme 4 N-alkylation of various aniline with various alcohols[31]
图1 在KOH、苯甲醇和苯胺存在下的Ni前体[31]
Fig.1 Ni precursor in presence of KOH, benzyl alcohol and aniline[31]
图2 (a) 500 ℃下预还原的具有不同Ni负载量的Ni/Al2O3催化剂的XRD图谱;(b)TEM分析的粒度分布;(c)作为平均Ni粒径的函数,使用(○)1-辛醇或(▼)苄醇在144 ℃下通过Ni/θ-Al2O3对苯胺进行N-烷基化的每表面Ni原子的TOF[32]
Fig.2 (a) XRD patterns of Ni/Al2O3 catalysts with different Ni loadings pre-reduced at 500 ℃.(b) Particle size distribution from TEM analysis.(c) TOF per surface Ni atom for N-alkylation of aniline with(○) 1-octanol or(▼) benzyl alcohol by Ni/θ-Al2O3 at 144 ℃ as a function of mean Ni particle size[32]
图式5 Ni/Al2O3催化各种醇与NH3的胺化反应[33]
Scheme 5 Amination of various alcohols with NH3 catalyzed by Ni / A l 2 O 3 [ 33 ]
图式6 NiCuFeO x 催化醇和氨合成伯胺[37]
Scheme 6 The synthesis of primary amine from alcohol and ammonia catalyzed by NiCuFe O x [ 37 ]
图3 (a),(b)使用前和(c),(d)使用后NiCuFeO x 的TEM和HR-TEM图像. 比例尺: (a),(c)50 nm; (b),(d) 2 nm[37]
Fig.3 TEM and HR-TEM images of NiCuFeO x (a),(b) before and (c),(d) after use. Scale bars: (a),(c) 50 nm; (b),(d) 2 nm[37]
图4 NiCuFeO x 的XRD衍射图案[37]
Fig.4 XRD diffraction patterns of NiCuFe O x [ 37 ]
图式7 CuNiAlO x 催化胺和甘油合成N-丙酮基吗啉[38]
Scheme 7 N-acetonyl morpholine synthesis with amine and glycerol catalyzed by CuNiAl O x [ 38 ]
图式8 乙醇胺制备吡嗪[40]
Scheme 8 Preparation of pyrazine by ethanolamine [40]
图式9 脂肪胺与脂肪醇CuCr2O4催化的N-烷基化反应[41]
Scheme 9 The N-alkylation of aliphatic amines with aliphatic alcohols catalyzed by CuCr2 O 4 [ 41 ]
图式10 二甲胺与脂肪醇CuO-Cr2O3-SiO2催化的N-烷基化反应[43]
Scheme 10 The N-alkylation of dimethylamine with aliphatic alcohols catalyzed by CuO-Cr2O3-Si O 2 [ 43 ]
图5 Cu-ZnO-Al2O3催化剂CuLLM线的XPS光谱:(a)500 ℃下还原;(b)还原后暴露于甲醇10 min[50]
Fig.5 XPS spectra of CuLLM lines of Cu-ZnO-Al2O3 catalyst: (a) reduced at 500 ℃;(b) exposed to methanol for 10 min after reduction[50]
图式11 苄基胺和苯胺与苄醇CuAl-HT催化的N-烷基化反应[53]
Scheme 11 The N-alkylation of benzylamine and aniline with benzyl alcohol catalyzed by CuAl-HT[53]
图式12 Cu2Al3O x 催化合成不对称叔胺[54]
Scheme 12 The synthesis of asymmetrical tertiary amines catalyzed by Cu2Al3 O x [ 54 ]
图式13 3%Cu-3%Ni/ZSM-5催化的BDO和MA合成NMPD[62]
Scheme 13 The synthesis of NMPD from BDO and MA catalyzed by 3%Cu-3%Ni/ZSM-5[62]
图6 (a)不同催化剂的XRD图;(b)3%Cu/ZSM-5, 3%Ni/ZSM-5和3%Cu-3%Ni/ZSM-5的H2-TPR曲线[62]
Fig.6 (a)XRD patterns of different catalysts;(b) H2-TPR curves of 3%Cu/ZSM-5, 3%Ni/ZSM-5 and 3%Cu-3%Ni/ZSM-5[62]
图式14 甲醇光催化对氯苯胺的N-烷基化反应[63]
Scheme 14 The photocatalyzed N-alkylation of p-Cl-aniline with methanol [63]
图式15 铜粉催化胺和醇的N-烷基化反应[64]
Scheme 15 The N-alkylation of amine and alcohol catalyzed by copper powder[64]
图式16 苄醇与正己胺的N-烷基化[65]
Scheme 16 N-alkylation of benzyl alcohol with n-hexylamine[65]
图式17 Pd/AlO(OH)催化脂肪胺与苄醇的N-烷基化反应[66]
Scheme 17 N-alkylation of aliphatic amines with benzyl alcohols catalyzed by Pd/AlO(OH) [66]
图7 Pd/MgO的TEM图[67]
Fig.7 TEM image of Pd/MgO[67]
图式18 Pd/MgO催化的1,2-二胺和乙二醇的一锅法合成哌嗪[67]
Scheme 18 One-pot synthesis of piperazine from 1,2-diamine and ethylene glycol catalyzed by Pd/MgO[67]
图式19 2-甲氧基苯甲醇与苯胺的N-烷基化反应[68]
Scheme 19 N-alkylation of 2-methoxybenzyl alcohol with aniline[68]
图8 钯催化胺与醇的N-烷基化反应机理[68]
Fig.8 Mechanism of palladium catalyzed N-alkylation of amines with alcohols[68]
图9 Pd x /TiO2催化剂的典型TEM图像和Pd颗粒在各催化剂上的尺寸分布[69]
Fig.9 Typical TEM image of Pd x /TiO2 catalysts and the size distributions of Pd particles on the respective catalysts[69]
图式20 4-氯-N,N-二甲基苯胺的合成[70]
Scheme 20 Synthesis of 4-chloro-N,N-dimethylaniline [70]
图式21 PdZn/Al2O3催化正辛醇和仲胺进行N-烷基化[74]
Scheme 21 N-alkylation of n-octanol and secondary amine using PdZn/Al2O3 catalyst[74]
图式22 1-辛醇与氨的烷基化[75]
Scheme 22 N-alkylation of 1-octanol with ammonia[75]
图式23 对甲苯胺和苯甲醇的N-烷基化[76]
Scheme 23 N-alkylation of p-touidine and benzyl alcohol [76]
图10 (a)Pd@MIL-100(Fe)、MIL-100(Fe)和计算的MIL-100(Fe)的XRD图谱;(b)Pd 3d区域中Pd@MIL-100(Fe)的XPS光谱; Pd@MIL-100(Fe)的(c)TEM和(d)HRTEM图像; Pd/MIL-100(Fe)的(e)TEM和(f)HRTEM图像[76]
Fig.10 (a) XRD patterns of Pd@MIL-100(Fe), MIL-100(Fe), and calculated MIL-100(Fe);(b) XPS spectrum of Pd@MIL-100(Fe) in Pd 3d region;(c) TEM and (d) HRTEM images of Pd@MIL-100(Fe);(e) TEM and (f) HRTEM images of Pd/MIL-100(Fe)[76]
图11 Pd1Au1@MIL-100(Fe)的(a)TEM和(b)HRTEM图像;(c)和(d)Pd1Au1@MIL-100(Fe)的STEM-EDS映射;(e)和(f)Pd1Au1 @MIL-100(Fe)中PdAu纳米团簇的线扫描曲线[77]
Fig.11 (a) TEM and (b) HRTEM images of Pd1Au1@MIL-100(Fe);(c) and (d) STEM-EDS mapping of Pd1Au1@MIL-100(Fe); (e) and (f) line-scanning profile across a PdAu nanocluster in Pd1Au1@MIL-100(Fe)[77]
图式24 哌啶和甲醇合成叔胺[78,79]
Scheme 24 Synthesis of tertiary amines from piperidine and methanol [78,79]
图式25 二醇和苯胺的反应合成二胺[81,82]
Scheme 25 Synthesis of diamines from the reactions of diols and aniline[81,82]
图式26 THFDM的氨基环化合成OABCO[83]
Scheme 26 OABCO synthesis via aminocyclization of THFDM [83]
图式27 丁二胺与苯甲醇的N-烷基化[84]
Scheme 27 N-alkylation of butanediamine and benzyl alcohol[84]
图式28 1-苯乙基-1-胺与苯甲醇的N-烷基化[85]
Scheme 28 N-alkylation of 1-phenylethan-1-amines and benzyl alcohol[85]
图式29 MnO2催化的二丁胺与苯甲醇的N-烷基化[87]
Scheme 29 N-alkylation of dibutylamine and benzyl alcohol catalyzed by Mn O 2 [ 87 ]
图式30 MnO2催化的磺胺与苯甲醇的N-烷基化[89]
Scheme 30 N-alkylation of sulfonamide and benzyl alcohol catalyzed by Mn O 2 [ 89 ]
图式31 Fe3O4催化的苯甲醇与芳香杂环胺的N-烷基化[90]
Scheme 31 N-alkylation of benzyl alcohol and aromatic heterocyclic amine catalyzed by Fe3 O 4 [ 90 ]
图式32 Au催化苯甲醇与苯胺的N-烷基化反应[94]
Scheme 32 Au-catalyzed N-alkylation of benzyl alcohol with aniline[94]
图12 2 wt%Au/Al-MIL53的(a)HAADF-STEM图像和(b)尺寸分布[94]
Fig.12 (a) HAADF-STEM images and(b) the size distributions of 2 wt% Au/Al-MIL53[94]
图式33 Au/ZrO2催化苯胺与桃金娘烯醇的N-烷基化反应[96]
Scheme 33 N-alkylation of aniline with myrtenol catalyzed by Au/Zr O 2 [ 96 ]
图式34 Au/TiO2-VS催化胺与醇的N-烷基化反应[101]
Scheme 34 N-alkylation of amines with alcohols catalyzed by Au/TiO2-VS[101]
图13 代表性的TEM图像和尺寸分布(a)0.5 wt%Au/TiO2-VS; (b)3次使用后0.5 wt%Au/TiO2-VS[101]
Fig.13 Representative TEM image and size distribution of (a) 0.5 wt% Au/TiO2-VS; (b) 0.5 wt% Au/TiO2-VS after three runs[101]
图式35 金催化的胺与醇类的烷基化[102]
Scheme 35 Gold-catalysed alkylation of amine by alcohol[102]
图式36 Au/TiO2催化苯胺与伯醇的N-烷基化反应[104]
Scheme 36 N-alkylation of aniline with primary alcohols catalyzed by Au/Ti O 2 [ 104 ]
图式37 协同Cu-Au光催化的N-烷基化反应[105]
Scheme 37 N-Alkylation of synergistic Cu-Au photocatalysis[105]
图14 在带有花边的碳Cu网格(比例尺:10 nm; ○CuNPs和□AuNPs)上反应20 h后,混合光催化剂体系的代表性BFTEM图像[105]
Fig.14 Representative BFTEM image of the mixed photocatalyst system after reaction for 20 h on a lacey carbon Cu grid(scale bar: 10 nm; ○Cu NPs and□Au NPs)[105]
图式38 Au/NiO催化异丙胺与苯甲醇的N-烷基化反应[106]
Scheme 38 N-Alkylation of isopropylamine with benzyl alcohol catalyzed by Au/NiO[106]
图式39 TTA-Au-NG催化芳香胺与芳香醇的N-烷基化反应[107]
Scheme 39 N-alkylation of aromatic amine with aromatic alcohol catalyzed by TTA-Au-NG[107]
图15 (a,b)NG的SEM图像和(c,d)TTA-Au-NG的TEM图像[107]
Fig.15 SEM images of (a,b) NG and TEM images of(c,d) TTA-Au-NG[107]
图式40 磺酰胺与醇的N-烷基化[108]
Scheme 40 The N-alkylation of sulfonamides with alcohols[108]
图16 使用5次之前(a)和之后(b)的Ru/Fe3O4的TEM图像[108]
Fig.16 TEM pictures of Ru/Fe3O4 (a) before and (b) after 5 runs[108]
图式41 杂芳族胺和苄醇的N-烷基化[109]
Scheme 41 N-alkylation of heteroaromatic amines and benzyl alcohol[109]
图式42 Ru(OH)3-Fe3O4催化的N-单烷基化[111]
Scheme 42 N-monoalkylation catalyzed by Ru(OH)3-Fe3 O 4 [ 111 ]
图式43 Ag/Al2O3催化的苯甲醇与苯胺的N-烷基化[115]
Scheme 43 N-alkylation of benzyl alcohol and aniline catalyzed by Ag/Al2 O 3 [ 115 ]
图17 (a)Ag K边缘EXAFS的傅里叶变换用于Ag箔和Cu0.95Ag0.05/Al2O3(Cu + Ag=10 wt%);(b)Ag K边缘XANES光谱;(c)逆傅里叶Cu0.95Ag0.05/Al2O3(Cu + Ag=10wt%)的k3加权Ag K边缘EXAFS光谱(实线)的变换和(·)曲线拟合得到的最佳拟合分析[49]
Fig.17 (a) Fourier transforms of Ag K-edge EXAFS for Ag foil and Cu0.95Ag0.05/Al2O3(Cu + Ag=10 wt%);(b) Ag K-edge XANES spectra;(c) The inverse Fourier transform of k3-weighted Ag K-edge EXAFS spectrum of(solid line) Cu0.95Ag0.05/Al2O3(Cu+Ag=10 wt%) and (·) its best fit derived from curve-fitting analysis[49]
图18 (a)Ag-Mo-22催化剂的SEM和TEM图像和选区电子衍射图;(b)制备的催化剂的XRD衍射图[118]
Fig.18 (a) SEM and TEM images and selected-area electron diffraction patterns of Ag-Mo-22 catalyst;(b) XRD diffraction patterns of prepared catalysts[118]
图式44 Ag6Mo10O33催化的苯甲醇与磺酰胺的N-烷基化[118]
Scheme 44 N-alkylation of benzyl alcohol and sulfonamide catalyzed by Ag6Mo10 O 33 [ 118 ]
图式45 硅胶催化的苯胺与乙醇的N-烷基化[122]
Scheme 45 N-alkylation of aniline and ethanol catalyzed by silica gel[122]
图式46 碳催化的胺与醇的N-烷基化[124]
Scheme 46 Carbon-catalyzed N-alkylation of amines with alcohols[124]
图19 FT-IR光谱 C-0至C-5(a~f),0.18 wt%Ni/C-1(g),0.07 wt%Pd/C-1(h)和用氧和醇处理的C-1的FT-IR光谱(a’:C-1; b’:C-1-O和C-1/KOH在150 ℃下用氧气处理24 h; c’:C-1-OR和C-1-O/KOH是用异丙醇在150 ℃处理24 h; d’:C-1-U和C-1在苯胺和苯甲醇的偶联反应中重复使用5次[124]
Fig.19 FT-IR spectra. FT-IR spectra of C-0 to C-5(a~f), 0.18 wt% Ni/C-1(g), 0.07 wt% Pd/C-1(h) and C-1 treated with oxygen and alcohol(a’: C-1; b’: C-1-O and C-1/KOH were treated with oxygen at 150 ℃ for 24 h; c’: C-1-O-R and C-1-O/KOH were treated with isopropanol at 150 ℃ for 24 h; d’:C-1-U and C-1 were reused for five runs in the coupling reaction of aniline and benzyl alcohol)[124]
图20 碳材料的SEM图像:(a)C-0;(b)C-1[124]
Fig.20 SEM images of the carbon materials.(a) C-0,(b) C-1[124]
图式47 碳催化的(E)-1,3-二苯基-2-烯丙基-1-醇与4-甲基苯磺酰胺的N-烷基化[125]
Scheme 47 Carbon-catalyzed N-alkylation of(E)-1,3-diphenylprop-2-en-1-ol with 4-methyl benzenesul-fonamide[125]
[1]
Lawrence S A . Amines: Synthesis, Properties and Applications. Cambridge: Cambridge University Press, 2004. 1.
[2]
Von H A . Eur. J. Org. Chem., 1851,78(3):253.
[3]
Magano J, Dunetz J R . Chem. Rev., 2011,111(3):2177. https://www.ncbi.nlm.nih.gov/pubmed/21391570

doi: 10.1021/cr100346g     URL     pmid: 21391570
[4]
Jiang D S, Fu H, Jiang Y Y, Zhao Y F . J. Org. Chem., 2007,72(2):672. https://www.ncbi.nlm.nih.gov/pubmed/17221996

doi: 10.1021/jo062060e     URL     pmid: 17221996
[5]
Alex K, Tillack A, Schwarz N, Beller M . ChemSusChem, 2008,1(4):333. https://www.ncbi.nlm.nih.gov/pubmed/18605099

doi: 10.1002/cssc.200700160     URL     pmid: 18605099
[6]
Crozet D, Urrutigoïty M, Kalck P . ChemCatChem, 2011,3(7):1102. accf61c0-1392-4981-b7d2-2a1f0385a0e1 http://dx.doi.org/10.1002/cctc.201000411

doi: 10.1002/cctc.201000411     URL    
[7]
Steinhuebel D, Sun Y K, Matsumura K, Sayo N, Saito T . J. Am. Chem. Soc., 2009,131(32):11316. https://www.ncbi.nlm.nih.gov/pubmed/19637921

doi: 10.1021/ja905143m     URL     pmid: 19637921
[8]
Nef J U . Eur. J. Org. Chem., 1901,318(2/3):137.
[9]
Hamid M H S A, Slatford P A, Williams J M J . Adv. Synth. Catal., 2007,349(10):1555.
[10]
Hamid M, Haniti S A, Allen C L, Lamb G W, Maxwell A C, Maytum H C, Watson A J A, Williams J M J . J. Am. Chem. Soc., 2009,131(5):1766. https://www.ncbi.nlm.nih.gov/pubmed/19191700

doi: 10.1021/ja807323a     URL     pmid: 19191700
[11]
Mutti F G, Knaus T, Scrutton N S, Breuer M, Turner N J . Science, 2015,349(6255):1525. https://www.ncbi.nlm.nih.gov/pubmed/26404833

doi: 10.1126/science.aac9283     URL     pmid: 26404833
[12]
Obora Y . ACS Catal., 2014,4(11):3972.
[13]
Nixon T D, Whittlesey M K, Williams J M J. Dalton Trans., 2009,40(23):753.
[14]
Irrgang T, Kempe R . Chem. Rev., 2019,119(4):2524. https://www.ncbi.nlm.nih.gov/pubmed/30457320

doi: 10.1021/acs.chemrev.8b00306     URL     pmid: 30457320
[15]
Corma A, Navas J, Sabater M J. Chem. Rev., 2018,118(4):1410.
[16]
Dai X C Dai X C, Shi F . Org. Biomol. Chem., 2019,17(8):2044. https://www.ncbi.nlm.nih.gov/pubmed/30656316

doi: 10.1039/c8ob03091j     URL     pmid: 30656316
[17]
Sundararaju B, Achard M, Bruneau C . Chem. Soc. Rev., 2012,41(12):4467. https://www.ncbi.nlm.nih.gov/pubmed/22576362

doi: 10.1039/c2cs35024f     URL     pmid: 22576362
[18]
Emer E, Sinisi R, Capdevila M G, Petruzziello D, De Vincentiis F, Cozzi P G . Eur. J. Org. Chem., 2011,2011(4):647.
[19]
Biannic B, Aponick A . Eur. J. Org. Chem., 2011,2011(33):6605.
[20]
Bähn S, Imm S, Neubert L, Zhang M, Neumann H, Beller M . ChemCatChem, 2011,3(12):1853.
[21]
Wu H, Wu J C, Du Z Y . Chin. J. Org. Chem., 2017,37(5):1127.
[22]
Shimizu K I . Catal. Sci. Technol., 2015,5(3):1412.
[23]
Pelckmans M, Renders T, Van V S, Sels B F . Green Chem., 2017,19(22):5303.
[24]
白国义( Bai G Y), 陈立功 (Chen L G) . 化学进展( Progress in Chemistry), 2005,17(2):293.
[25]
Adkins H, Cramer H I . J. Am. Chem. Soc., 1930,52:4349.
[26]
Winans C F, Adkins H . J. Am. Chem. Soc., 1932,54(1):306.
[27]
Pratt E F, Frazza E J . J. Am. Chem. Soc., 1954,76(23):6174.
[28]
Rice R G, Kohn E J . J. Am. Chem. Soc., 1955,77(15):4052.
[29]
Rice R G, Kohn E J, Daasch L W . J. Org. Chem., 1958,23(9):1352.
[30]
De Angelis F, Grasso M, Nicoletti R . Synthesis, 1977,1977(5):335.
[31]
Afanasenko A, Elangovan S, Stuart M C. A, Bonura G, Frusteri F, Barta K . Catal. Sci. Technol., 2018,8(21):5498.
[32]
Shimizu K I, Imaiida N, Kon K, Siddiki S, Satsuma A . ACS Catal., 2013,3(5):998.
[33]
Shimizu K I, Kon K, Onodera W, Yamazaki H, Kondo J N . ACS Catal., 2013,3(1):112.
[34]
Dumon A S, Wang T, Ibanez J, Tomer A, Yan Z, Wischert R, Sautet P, Pera-Titus M, Michel C . Catal. Sci. Technol., 2018,8(2):611. http://xlink.rsc.org/?DOI=C7CY02208E

doi: 10.1039/C7CY02208E     URL    
[35]
Garcia R J L, Parra A, Aleman J, Yuste F, Mastranzo V M . Chem. Commun., 2009,4:404.
[36]
Sun J, Jin X D, Zhang F W, Hu W Q, Liu J T, Li R . Catal. Commun., 2012,24:30.
[37]
Cui X J, Dai X C, Deng Y Q, Shi F . Chem. Eur. J., 2013,19(11):3665. https://www.ncbi.nlm.nih.gov/pubmed/23417959

doi: 10.1002/chem.201203417     URL     pmid: 23417959
[38]
Dai X C, Rabeah J, Yuan H K, Brückner A, Cui X J, Shi F . ChemSusChem, 2016,9(22):3133. https://www.ncbi.nlm.nih.gov/pubmed/27781411

doi: 10.1002/cssc.201600972     URL     pmid: 27781411
[39]
Wu Y J, Yuan H K, Shi F . ACS Sustain. Chem. Eng., 2018,6(1):1061. https://pubs.acs.org/doi/10.1021/acssuschemeng.7b03373

doi: 10.1021/acssuschemeng.7b03373     URL    
[40]
Aston J G, Peterson T E, Holowchak J . J. Am. Chem. Soc., 1934,56(1):153.
[41]
Schwoegler E J, Adkins H . J. Am. Chem. Soc., 1939,61(12):3499.
[42]
Schneider H J, Adkins H, McElvain S M . J. Am. Chem. Soc., 1952,74(17):4287.
[43]
Baiker A, Richarz W . Tetrahedron Lett., 1977,18(22):1937.
[44]
Baiker A, Richarz W . Synth. Commun., 1978,8(1):27.
[45]
Runeberg J, Baiker A, Kijenski J . Appl. Catal., 1985,17(2):309.
[46]
Hammerschmidt W, Baiker A, Wokaun A, Fluhr W . Appl. Catal., 1986,20(1/2):305.
[47]
Kijeński J, Niedzielski P J, Baiker A . Appl. Catal., 1989,53(1):107.
[48]
Card R J, Schmitt J L . J. Org. Chem., 1981,46(4):754.
[49]
Shimizu K I, Shimura K, Nishimura M, Satsuma A . RSC Adv., 2011,1(7):1310.
[50]
Göbölös S, Hegedüs M, Kolosova I, Maciejewski M, Margitfalvi J L . Appl. Catal. A: Gen., 1998,169(2):201.
[51]
Yamakawa T, Tsuchiya I, Mitsuzuka D, Ogawa T . Catal. Commun., 2004,5(6):291. https://www.ncbi.nlm.nih.gov/pubmed/14565056

doi: 10.2298/mpns0306291m     URL     pmid: 14565056
[52]
He J L, Yamaguchi K, Mizuno N . Chem. Lett., 2010,39(11):1182. http://www.journal.csj.jp/doi/10.1246/cl.2010.1182

doi: 10.1246/cl.2010.1182     URL    
[53]
Likhar P R, Arundhathi R, Kantam M L, Prathima P S . Eur. J. Org. Chem., 2009,2009(31):5383.
[54]
Pang S F, Deng Y Q, Shi F . Chem. Commun., 2015,51(46):9471. https://www.ncbi.nlm.nih.gov/pubmed/25959718

doi: 10.1039/c5cc02205c     URL     pmid: 25959718
[55]
Abe H, Yokota Y, Okabe K . Appl. Catal., 1989,52(3):171.
[56]
Kimura H, Taniguchi H . Catal. Lett., 1996,40(1/2):123.
[57]
Kimura H, Taniguchi H . Appl. Catal. A: Gen., 2005,287(2):191.
[58]
Imabeppu M, Kiyoga K, Okamura S, Shoho H, Kimura H . Catal. Commun., 2009,10(6):753.
[59]
Kimura H, Tsutsumi S I, Tsukada K . Appl. Catal. A: Gen., 2005,292:281.
[60]
Chen X Z, Luo H, Qian C, He C H . React. Kinet. Mech. Catal., 2011,104(1):163.
[61]
Nagaraju M B R R, Khagga M . Der Pharma Chemica., 2011,3(4):180.
[62]
Long Y, Wang P X, Fei Y Q, Zhou D W, Liu S M, Deng Y Q . Green Chem., 2019,21(1):141.
[63]
Zhang L N, Zhang Y, Deng Y Q, Shi F . Catal. Sci. Technol., 2015,5(6):3226.
[64]
Wu Y J, Huang Y J, Dai X C, Shi F . ChemSusChem, 2018,6(1):1061.
[65]
Murahashi S I, Shimamura T, Moritani I . J. Chem. Soc. Chem. Commun., 1974, ( 22):931.
[66]
Kwon M S, Kim S, Park Su, Bosco W, Chidrala R K, Park J . J. Org. Chem., 2009,74(7):2877. https://www.ncbi.nlm.nih.gov/pubmed/19265414

doi: 10.1021/jo8026609     URL     pmid: 19265414
[67]
Corma A, Ródenas T, Sabater M J . Chem. Eur. J., 2010,16(1):254. https://www.ncbi.nlm.nih.gov/pubmed/19904774

doi: 10.1002/chem.200901501     URL     pmid: 19904774
[68]
Zhang Y, Qi X J, Cui X J, Shi F, Deng Y Q . Tetrahedron Lett., 2011,52(12):1334.
[69]
Shiraishi Y, Fujiwara K, Sugano Y, Ichikawa S, Hirai T . ACS Catal., 2013,3(3):312.
[70]
Zhang L N, Zhang Y, Deng Y Q, Shi F . RSC Adv., 2015,5(19):14514.
[71]
Xu C P, Xiao Z H, Zhuo B Q, Wang Y H, Huang P Q . Chem. Commun., 2010,46(41):7834. https://www.ncbi.nlm.nih.gov/pubmed/20830335

doi: 10.1039/c0cc01487g     URL     pmid: 20830335
[72]
Liu X, Hermange P, Ruiz J, Astruc D . ChemCatChem, 2016,8(6):1043.
[73]
Ousmane M, Perrussel G, Yan Z, Clacens J M, De C F, Pera-Titus M . J. Catal., 2014,309:439.
[74]
Furukawa S, Suzuki R, Komatsu T . ACS Catal., 2016,6(9):5946. https://pubs.acs.org/doi/10.1021/acscatal.6b01677

doi: 10.1021/acscatal.6b01677     URL    
[75]
Fang L, Yan Z, Vits K, Southward B, Pera-Titus M . Catal. Sci. Technol., 2019,9(5):1215.
[76]
Wang D K, Li Z H . J. Catal., 2016,342:151.
[77]
Wang D K, Pan Y T, Xu L Z, Li Z H . J. Catal., 2018,361:248.
[78]
Nishimoto S, Ohtani B, Yoshikawa T, Kagiya T . J. Am. Chem. Soc., 1983,105(24):7180.
[79]
Ohtani B, Osaki H, Nishimoto S, Kagiya T . J. Am. Chem. Soc., 1986,108(2):308.
[80]
He W, Wang L D, Sun C L, Wu K K, He S B, Chen J P, Wu P, Yu Z K . Chem. Eur. J., 2011,17(47):13308. https://www.ncbi.nlm.nih.gov/pubmed/21997929

doi: 10.1002/chem.201101725     URL     pmid: 21997929
[81]
Wang L D, He W, Wu K K, He S B, Sun C L, Yu Z K . Tetrahedron Lett., 2011,52(52):7103.
[82]
Wu K K, He W, Sun C L, Yu Z K . Tetrahedron, 2016,72(51):8516.
[83]
Cui X J, Yuan H K, Li J P, De C F, Pera-Titus M, Deng Y Q, Shi F . Catal. Commun., 2015,58:195.
[84]
Fischer A, Maciejewski M, Buergi T, Mallat T, Baiker A . J. Catal., 1999,183(2):373. https://www.ncbi.nlm.nih.gov/pubmed/29300639

doi: 10.1086/BBLv183n2p373     URL     pmid: 29300639
[85]
Chung H, Chung Y K . J. Org. Chem., 2018,83(15):8533. https://www.ncbi.nlm.nih.gov/pubmed/30016101

doi: 10.1021/acs.joc.8b01109     URL     pmid: 30016101
[86]
Ibanez J, Kusema B T, Paul S, Pera-Titus M . Catal. Sci. Technol., 2018,8(22):5858.
[87]
Blackburn L, Taylor R J K . Org. Lett., 2001,3(11):1637. https://www.ncbi.nlm.nih.gov/pubmed/11405674

doi: 10.1021/ol015819b     URL     pmid: 11405674
[88]
Kanno H, Taylor R J K . Tetrahedron Lett., 2002,43(41):7337.
[89]
Yu X C, Liu C Z, Jiang L, Xu Q . Org. Lett., 2011,13(23):6184. https://www.ncbi.nlm.nih.gov/pubmed/22040008

doi: 10.1021/ol202582c     URL     pmid: 22040008
[90]
Martinez R, Ramon D J, Yus M . Org. Biomol. Chem., 2009,7(10):2176. https://www.ncbi.nlm.nih.gov/pubmed/19421457

doi: 10.1039/b901929d     URL     pmid: 19421457
[91]
Gonzalez-Arellano C, Yoshida K, Luque R, Gai P L . Green Chem., 2010,12(7):1281.
[92]
Li L J, Zhu A L, Zhang Y Q, Fan X C, Zhang G S . RSC Adv., 2014,4(9):4286.
[93]
Ghanimati M, Senejani M A, Isfahani T M, Bodaghifard M A . Appl. Organomet. Chem., 2018,32:e4591.
[94]
Ishida T, Kawakita N, Akita T, Haruta M . Gold Bulletin, 2009,42(4):267.
[95]
Ishida T, Takamura R, Takei T, Akita T, Haruta M . Appl. Catal. A: Gen., 2012,413/414:261.
[96]
Demidova Y S, Simakova I L, Estrada M, Beloshapkin S, Suslov E V, Korchagina D V, Volcho K P, Salakhutdinov N F, Simakov A V, Murzin D Y . Appl. Catal. A: Gen., 2013,464/465:348.
[97]
Demidova Y, Simakova I L, Wärnå J, Simakov A, Murzin D Y . Chem. Eng. J., 2014,238:164.
[98]
Demidova Y S, Suslov E V, Simakova I L, Mozhajcev E S, Korchagina D V, Volcho K P, Salakhutdinov N F, Simakov A, Murzin D Y . J. Mol. Catal. A: Chem., 2017,426:60.
[99]
Demidova Y S, Suslov E V, Simakova I L, Volcho K P, Smolentseva E, Salakhutdinov N F, Simakov A, Murzin D Y . Mol. Catal., 2017,433:414.
[100]
Simakova I L, Demidova Y S, Estrada M, Beloshapkin S, Suslov E V, Volcho K P, Salakhutdinov N F, Murzin D Yu, Simakov A . Catal. Today, 2017,279:63.
[101]
He L, Lou X B, Ni J, Liu Y M, Cao Y, He H Y, Fan K N . Chem. Eur. J., 2010,16(47):13965. https://www.ncbi.nlm.nih.gov/pubmed/21104710

doi: 10.1002/chem.201001848     URL     pmid: 21104710
[102]
Zotova N, Roberts F J, Kelsall G H, Jessiman A S, Hellgardt K, Hii K K . Green Chem., 2012,14(1):226.
[103]
Corma A, Navas J, Sabater M J . Chem. Eur. J., 2012,18(44):14150. https://www.ncbi.nlm.nih.gov/pubmed/22996294

doi: 10.1002/chem.201201837     URL     pmid: 22996294
[104]
Stibal D, Sa J, van B J A . Catal. Sci. Technol., 2013,3(1):94. http://xlink.rsc.org/?DOI=C2CY20511D

doi: 10.1039/C2CY20511D     URL    
[105]
Wang L M, Morioka Y, Jenkinson K, Wheatley A E H, Saito S, Naka H . Sci. Rep., 2018,8(1):6391. https://www.ncbi.nlm.nih.gov/pubmed/29686429

doi: 10.1038/s41598-018-24889-9     URL     pmid: 29686429
[106]
Chan T C E, Chinchilla L E, Trujillo F J S, Dimitratos N, Botton G A, Prati L, Villa A . Materials, 2017,10(12):1435.
[107]
Ye D D, Huang R H, Zhu H Y, Zou L H, Wang D W . Org. Chem. Front., 2019,6(1):62.
[108]
Shi F, Tse M K, Zhou S L, Pohl M M, Radnik J, Hübner S, Jähnisch K, Brückner A, Beller M . J. Am. Chem. Soc., 2009,131(5):1775. https://www.ncbi.nlm.nih.gov/pubmed/19191701

doi: 10.1021/ja807681v     URL     pmid: 19191701
[109]
Kim J W, Yamaguchi K, Mizuno N . J. Catal., 2009,263(1):205.
[110]
Yamaguchi K, He J, Oishi T, Mizuno N . Chemistry, 2010,16(24):7199. https://www.ncbi.nlm.nih.gov/pubmed/20468035

doi: 10.1002/chem.201000149     URL     pmid: 20468035
[111]
Cano R, Ramon D J, Yus M . J. Org. Chem. 2011,76(14):5547. https://www.ncbi.nlm.nih.gov/pubmed/21615080

doi: 10.1021/jo200559h     URL     pmid: 21615080
[112]
Du F, Jin X, Yan W J, Zhao M, Thapa P S, Chaudhari R V . Catal. Today, 2017,302:227. https://linkinghub.elsevier.com/retrieve/pii/S0920586117301761

doi: 10.1016/j.cattod.2017.03.028     URL    
[113]
Niemeier J, Engel R V, Rose M . Green Chem., 2017,19(12):2839.
[114]
Ruiz D, Aho A, Saloranta T, Eränen K, Wärnå J, Leino R, Murzin D Y . Chem. Eng. J., 2017,307:739. https://linkinghub.elsevier.com/retrieve/pii/S1385894716311573

doi: 10.1016/j.cej.2016.08.083     URL    
[115]
Shimizu K I, Nishimura M, Satsuma A . ChemCatChem, 2009,1(4):497.
[116]
Liu H H, Chuah G K, Jaenicke S . J. Catal., 2012,292:130.
[117]
Paul P, Bhanja P, Salam N, Mandi U, Bhaumik A, Alam S M, Islam S M . J. Colloid Interface Sci., 2017,493:206. https://www.ncbi.nlm.nih.gov/pubmed/28092819

doi: 10.1016/j.jcis.2016.12.072     URL     pmid: 28092819
[118]
Cui X J, Zhang Y, Shi F, Deng Y Q . Chem. Eur. J., 2011,17(3):1021. https://www.ncbi.nlm.nih.gov/pubmed/21226120

doi: 10.1002/chem.201001915     URL     pmid: 21226120
[119]
Tsarev V N, Morioka Y, Caner J, Wang Q, Ushimaru R, Kudo A, Naka H, Saito S . Org. Lett., 2015,17(10):2530. https://www.ncbi.nlm.nih.gov/pubmed/25915546

doi: 10.1021/acs.orglett.5b01063     URL     pmid: 25915546
[120]
Mandi U, Kundu S K, Salam N, Bhaumik A, Islam S M . J. Colloid Interface Sci., 2016,467:291. https://www.ncbi.nlm.nih.gov/pubmed/26809107

doi: 10.1016/j.jcis.2016.01.017     URL     pmid: 26809107
[121]
Bayat A, Shakourian-Fard M, Nouri P, Hashemi M M . Appl. Organomet. Chem., 2017,31(10):1
[122]
Brown A B, Reid E E . J. Am. Chem. Soc., 1924,46(8):1836.
[123]
Reddy M M, Kumar M A, Swamy P, Naresh M, Srujana K, Satyanarayana L, Venugopal A, Narender N . Green Chem., 2013,15(12):3474.
[124]
Yang H M, Cui X J, Dai X C, Deng Y Q, Shi F . Nat. Commun., 2015,6:6478. https://www.ncbi.nlm.nih.gov/pubmed/25832812

doi: 10.1038/ncomms7478     URL     pmid: 25832812
[125]
Gómez-Martínez M, Baeza A, Alonso D A . ChemCatChem, 2017,9(6):1032.
[1] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[2] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[3] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[4] 吴亚娟, 罗静雯, 黄永吉. 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022, 34(6): 1431-1439.
[5] 孙思敏, 许家喜. 磺酰氯与不饱和化合物的反应[J]. 化学进展, 2022, 34(6): 1275-1289.
[6] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[7] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.
[8] 田少鹏, 任花萍, 陈明淑, 苗宗成, 谭猗生. 非计量Zn-Cr尖晶石中离子占位对催化合成气合成异丁醇中的关键作用[J]. 化学进展, 2022, 34(1): 155-167.
[9] 曹新华, 韩晴晴, 高爱萍, 王桂霞. 气态酸和有机胺响应的超分子凝胶[J]. 化学进展, 2021, 33(9): 1538-1549.
[10] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.
[11] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[12] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[13] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
[14] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[15] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.