English
新闻公告
More
化学进展 2022, Vol. 34 Issue (8): 1748-1759 DOI: 10.7536/PC211007 前一篇   后一篇

• 综述 •

生物基平台化合物催化转化制备糠醇

杨启悦1, 吴巧妹1, 邱佳容1, 曾宪海2, 唐兴2, 张良清1,*()   

  1. 1 福州大学先进制造学院 晋江 362251
    2 厦门大学能源学院 厦门 361102
  • 收稿日期:2021-10-11 修回日期:2021-12-17 出版日期:2022-08-20 发布日期:2022-04-01
  • 通讯作者: 张良清
  • 作者简介:

    作者简介:张良清 2019年毕业于厦门大学能源化工专业,获工学博士学位,2020年就职于福州大学。长期从事绿色化学和绿色精细化工材料等方面研究。2021年在生物质催化转化领域获批国家自然科学基金青年项目;在化学和催化等领域以第一作者发表中科院JCR 1区论文2篇,JCR 2区论文2篇,并授权4项发明专利。参与并完成多项催化转化和分离纯化等领域相关的国家自然科学基金项目、福建省发改委重大产业化投资项目和企业重大合作项目。

  • 基金资助:
    国家自然科学基金项目(22108038); 天津大学-福州大学自主创新基金合作项目(TF2022-10)

Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol

Qiyue Yang1, Qiaomei Wu1, Jiarong Qiu1, Xianhai Zeng2, Xing Tang2, Liangqing Zhang1()   

  1. 1 School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
    2 College of Energy, Xiamen University, Xiamen 361102, China
  • Received:2021-10-11 Revised:2021-12-17 Online:2022-08-20 Published:2022-04-01
  • Contact: Liangqing Zhang
  • Supported by:
    National Natural Science Foundation of China(22108038); Tianjin University-Fuzhou University Independent Innovation Fund Cooperation Project(TF2022-10)

糠醇(FOL)作为一种重要且多用途的有机化工原料,可以有效地转化为各种高价值的化学品,如糠醛树脂、脲醛树脂、酚醛树脂、果酸、增塑剂和火箭燃料等。以糠醛(FAL)、木糖和果糖为原料经催化加氢制备FOL的绿色生产工艺,具有良好的应用前景和研究价值。本文系统总结了近年来国内外以FAL、木糖、果糖为原料制备FOL的研究现状,从催化剂类型、催化效率和催化机理等方面对制备FOL的催化剂进行了总结,并在此基础上对催化加氢制备FOL的发展趋势进行了展望,为开发更为新型、高效、绿色、稳定的催化剂体系提供理论指导和有益借鉴。

Furfuryl alcohol (FOL), as an important and promising organic chemical product, can be effectively converted into various high-value chemicals, such as furfural resin, urea-formaldehyde resin, phenolic resin, fruit acid, plasticizer, rocket fuel, etc. The green FOL production by catalytic hydrogenation using furfural (FAL), xylose, and fructose as raw materials has good application prospects and research values. This article systematically reviews the research status of the FOL production from FAL, xylose, and fructose on the recent advances, and summarizes from the aspects of catalyst types, catalytic efficiency and mechanism for FOL production. On this basis, the development trends of the FOL production by catalytic hydrogenation are prospected, which may provide theoretical guidance and useful reference for developing new efficient green and stable catalytic system.

Contents

1 Introduction

2 Preparation of FOL from different substrates by catalytic conversion

2.1 Preparation of FOL from FAL by catalytic conversion

2.2 Preparation of FOL from xylose by one-pot method

2.3 Preparation of FOL from fructose by one-pot method

3 Conclusion and outlook

()
图1 FAL可能的反应途径
Fig. 1 Possible reaction pathways of FAL
图2 高附加值FOL衍生物
Fig. 2 High value-added FOL derivatives
表1 贵金属催化剂催化FAL制备FOL
Table 1 Preparation of FOL from FAL by noble metal catalysts
表2 非贵金属催化剂催化FAL制备FOL
Table 2 Preparation of FOL from FAL by non-noble metal catalysts
表3 以醇作为氢源催化FAL制备FOL
Table 3 Preparation of FOL using alcohols as a hydrogen donor
图3 木糖一锅法转化为FOL可能的反应路径
Fig. 3 Possible reaction routes of the one-pot transformation of xylose to FOL
表4 木糖制备FOL
Table 4 Preparation of FOL from xylose
[1]
Huang L J, Wu C W, Zou C Y, Yan X Q, Wu W J. J. Northwest For. Univ., 2021, 36(2): 142.
黄丽菁, 吴彩文, 邹春阳, 闫雪晴, 吴文娟. 西北林学院学报, 2021, 36(2): 142.).
[2]
Zhang L Q, Qiu J R, Tang X, Sun Y, Zeng X H, Lin L. Chin. J. Chem., 2021, 39(9): 2467.

doi: 10.1002/cjoc.202100140     URL    
[3]
Feng Y C, Long S S, Tang X, Sun Y, Luque R, Zeng X H, Lin L. Chem. Soc. Rev., 2021, 50(10): 6042.

doi: 10.1039/D0CS01601B     URL    
[4]
Feng Y C, Long S S, Yan G H, Jia W L, Sun Y, Tang X, Zhang Z H, Zeng X H, Lin L. J. Catal., 2021, 397: 148.

doi: 10.1016/j.jcat.2021.03.031     URL    
[5]
Liu X Y, Lan G J, Li Z Q, Qian L H, Liu J, Li Y. Chin. J. Catal., 2021, 42(5): 694.

doi: 10.1016/S1872-2067(20)63699-3     URL    
刘晓艳, 蓝国钧, 李振清, 钱丽华, 刘健, 李瑛. 催化学报, 2021, 42(5): 694.).
[6]
Zhang Z C, Song Y D. Guangdong Agric. Sci., 2021, 48(1): 150.
张子晨, 宋元达. 广东农业科学, 2021, 48(1): 150.).
[7]
Jiang Y T, Song X Q, Sun Y, Zeng X H, Tang X, Lin L. Progress in Chemistry, 2017, 29(10): 1273.
蒋叶涛, 宋晓强, 孙勇, 曾宪海, 唐兴, 林鹿. 化学进展, 2017, 29(10): 1273.).

doi: 10.7536/PC170403    
[8]
Tang X, Hu L, Sun Y, Zeng X H, Lin L. Prog. Chem., 2013, 25(11): 1906.

doi: 10.7536/PC130332    
唐兴, 胡磊, 孙勇, 曾宪海, 林鹿. 化学进展, 2013, 25(11): 1906.).
[9]
Lin L, He B H, Sun R C, Hu R F. Prog. Chem., 2007, 19(7/8): 1206.
林鹿, 何北海, 孙润仓, 胡若飞. 化学进展, 2007, 19(7/8): 1206.).
[10]
Wang Y T, Zhao D Y, Rodríguez-PadrÓn D, Len C. Catalysts, 2019, 9(10): 796.

doi: 10.3390/catal9100796     URL    
[11]
Feng Y C, Yan G H, Wang T, Jia W L, Zeng X H, Sperry J, Sun Y, Tang X, Lei T Z, Lin L. Green Chem., 2019, 21(16): 4319.

doi: 10.1039/C9GC01331H     URL    
[12]
Zhang L Q, Zeng X H, Qiu J R, Du J, Cao X J, Tang X, Sun Y, Li S R, Lei T Z, Liu S J, Lin L. Ind. Crops Prod., 2019, 135: 330.

doi: 10.1016/j.indcrop.2019.04.045     URL    
[13]
Zhang L Q, Zeng X H, Fu N, Tang X, Sun Y, Lin L. Food Res. Int., 2018, 106: 383.

doi: 10.1016/j.foodres.2018.01.004     URL    
[14]
Long S S, Feng Y C, He F L, Zhao J Z, Bai T, Lin H B, Cai W L, Mao C W, Chen Y H, Gan L H, Liu J, Ye M D, Zeng X H, Long M N. Nano Energy, 2021, 85: 105973.
[15]
Wang H Q, Li J C, Ding N, Zeng X H, Tang X, Sun Y, Lei T Z, Lin L. Chem. Eng. J., 2020, 386: 124021.
[16]
Singh P, Kumar R. J. Polym. Environ., 2019, 27(5): 901.
[17]
Kamla N, Delhi . Synthetic Resins Technology Handbook. India: Asia Pacific Business Press, 2005. 588.
[18]
Chai X W, Sun J H, Cai Q H, Zhang C Y, Huang J M, Luo Y. Mod. Cast Iron, 2018, 38(1): 64.
柴兴旺, 孙继华, 蔡庆海, 张春岩, 黄健明, 骆洋. 现代铸铁, 2018, 38(1): 64.).
[19]
Zhang J, Feng S, Zhou X J, Du G B, Wu Z G. Journal of Southwest Forestry University, 2021, 41(1): 174.
张俊, 丰尚, 周晓剑, 杜官本, 吴志刚. 西南林业大学学报, 2021, 41(1): 174. ).
[20]
Qin Y Y, Mei J, Wu J M. China Plast. Ind., 2020, 48(5): 28.
秦英月, 梅杰, 吴景梅. 塑料工业, 2020, 48(5): 28.).
[21]
Wojcik B H. Ind. Eng. Chem., 1948, 40(2): 210.

doi: 10.1021/ie50458a007     URL    
[22]
GÓmez Millán G, Sixta H. Catalysts, 2020, 10(10): 1101.

doi: 10.3390/catal10101101     URL    
[23]
Nagaraja B M, Padmasri A H, Raju B D, Rama Rao K S. J. Mol. Catal. A Chem., 2007, 265(1/2): 90.

doi: 10.1016/j.molcata.2006.09.037     URL    
[24]
Zhang H B, Lei Y, Kropf A J, Zhang G H, Elam J W, Miller J T, Sollberger F, Ribeiro F, Akatay M C, Stach E A, Dumesic J A, Marshall C L. J. Catal., 2014, 317: 284.

doi: 10.1016/j.jcat.2014.07.007     URL    
[25]
Peng L C, Wang M M, Li H, Wang J, Zhang J H, He L. Green Chem., 2020, 22(17): 5656.

doi: 10.1039/D0GC02001J     URL    
[26]
Wang Y Q, Yang X H, Ding G Q, Zheng H Y, Li X Q, Li Y W, Zhu Y L. ChemCatChem, 2019, 11(8): 2118.

doi: 10.1002/cctc.201900157     URL    
[27]
Deng Z Q. China Chem. Trade, 2014, 6(29): 69.
邓争强. 中国化工贸易, 2014, 6(29): 69.).
[28]
Zhao J X. China Food Industry, 2021, (14): 99.
赵军侠. 中国食品工业, 2021, 328 (14): 99.).
[29]
Liu D X, Zemlyanov D, Wu T P, Lobo-Lapidus R J, Dumesic J A, Miller J T, Marshall C L. J. Catal., 2013, 299: 336.

doi: 10.1016/j.jcat.2012.10.026     URL    
[30]
Villaverde M M, Bertero N M, Garetto T F, Marchi A J. Catal. Today, 2013, 213: 87.

doi: 10.1016/j.cattod.2013.02.031     URL    
[31]
Yan K, Wu G S, Lafleur T, Jarvis C. Renew. Sustain. Energy Rev., 2014, 38: 663.

doi: 10.1016/j.rser.2014.07.003     URL    
[32]
Li M S, Hao Y F, Cárdenas-Lizana F, Keane M A. Catal. Commun., 2015, 69: 119.

doi: 10.1016/j.catcom.2015.06.007     URL    
[33]
Yuan Q Q, Zhang D M, van Haandel L, Ye F Y, Xue T, Hensen E J M, Guan Y J. J. Mol. Catal. A Chem., 2015, 406: 58.

doi: 10.1016/j.molcata.2015.05.015     URL    
[34]
Liu L J, Lou H, Chen M. Appl. Catal. A Gen., 2018, 550: 1.

doi: 10.1016/j.apcata.2017.10.003     URL    
[35]
Huang R J, Cui Q Q, Yuan Q Q, Wu H H, Guan Y J, Wu P. ACS Sustain. Chem. Eng., 2018, 6(5): 6957.

doi: 10.1021/acssuschemeng.8b00801     URL    
[36]
Nguyen-Huy C, Kim J S, Yoon S, Yang E, Kwak J H, Lee M S, An K. Fuel, 2018, 226: 607.

doi: 10.1016/j.fuel.2018.04.029     URL    
[37]
Li J, Zahid M, Sun W, Tian X Q, Zhu Y J. Appl. Surf. Sci., 2020, 528: 146983.
[38]
Sun W. Master Dissertation of Heilongjiang University, 2021.
孙旺. 黑龙江大学硕士论文, 2021.).
[39]
Gao X, Tian S Y, Jin Y Y, Wan X Y, Zhou C M, Chen R Z, Dai Y H, Yang Y H. ACS Sustain. Chem. Eng., 2020, 8(33): 12722.
[40]
Tolek W, Khruechao K, Pongthawornsakun B, Mekasuwandumrong O, Cadete Santos Aires F J, Weerachawanasak P, Panpranot J. Catal. Commun., 2021, 149: 106246.
[41]
Wang Z Q, Wang X C, Zhang C, Arai M, Zhou L L, Zhao F Y. Mol. Catal., 2021, 508: 111599.
[42]
Tukacs J M, Bohus M, DibÓ G, Mika L T. RSC Adv., 2017, 7(6): 3331.

doi: 10.1039/C6RA24723G     URL    
[43]
Ramirez-Barria C, Isaacs M, Wilson K, Guerrero-Ruiz A, Rodríguez-Ramos I. Appl. Catal. A Gen., 2018, 563: 177.

doi: 10.1016/j.apcata.2018.07.010     URL    
[44]
Li M S, Collado L, Cárdenas-Lizana F, Keane M A. Catal. Lett., 2018, 148(1): 90.

doi: 10.1007/s10562-017-2228-9     URL    
[45]
Yu H B, Zhao J H, Wu C Z, Yan B, Zhao S L, Yin H F, Zhou S H. Langmuir, 2021, 37(5): 1894.

doi: 10.1021/acs.langmuir.0c03367     URL    
[46]
Hao F, Zheng J S, He S L, Zhang H, Liu P L, Luo H A, Xiong W. Catal. Commun., 2021, 151: 106266.
[47]
Zhang J X, Wu D F. Mater. Chem. Phys., 2021, 260: 124152.
[48]
Guerrero-Torres A, JimÉnez-GÓmez C P, Cecilia J A, Porras-Vázquez J M, García-Sancho C, Quirante-Sánchez J J, Guerrero-Ruíz F, Moreno-Tost R, Maireles-Torres P. Mol. Catal., 2021, 512: 111774.
[49]
Arundhathi R, Reddy P L, Samanta C, Newalkar B L. RSC Adv., 2020, 10(67): 41120.
[50]
Wang X Q, Qiu M, Smith R L, Yang J R, Shen F, Qi X H. ACS Sustain. Chem. Eng., 2020, 8(49): 18157.
[51]
Tian Y, Wang Y Z, Zhang H Y, Xiao L F, Wu W. Catal. Lett., 2022, 152(3): 883.

doi: 10.1007/s10562-021-03680-y     URL    
[52]
Tian Y. Master Dissertation of Heilongjiang University, 2021.
田野. 黑龙江大学硕士论文, 2021. ).
[53]
MacIntosh K L, Beaumont S K. Top. Catal., 2020, 63(15/18): 1446.

doi: 10.1007/s11244-020-01341-9     URL    
[54]
Ali W A, Bharath G, Morajkar P P, Salkar A V, Haija M A, Banat F. J. Phys. D: Appl. Phys., 2021, 54(30): 305502.
[55]
Wu J, Gao G, Li J L, Sun P, Long X D, Li F W. Appl. Catal. B Environ., 2017, 203: 227.

doi: 10.1016/j.apcatb.2016.10.038     URL    
[56]
Li S J, Fan Y F, Wu C H, Zhuang C F, Wang Y, Li X M, Zhao J, Zheng Z F. ACS Appl. Mater. Interfaces, 2021, 13(7): 8507.

doi: 10.1021/acsami.1c01436     URL    
[57]
Khromova S A, Bykova M V, Bulavchenko O A, Ermakov D Y, Saraev A A, Kaichev V V, Venderbosch R H, Yakovlev V A. Top. Catal., 2016, 59(15/16): 1413.

doi: 10.1007/s11244-016-0649-0     URL    
[58]
Sebin M E, Akmaz S, Koc S N. J. Chem. Sci., 2020, 132(1): 1.

doi: 10.1007/s12039-019-1689-3     URL    
[59]
Weerachawanasak P, Krawmanee P, Inkamhaeng W, Cadete Santos Aires F J, Sooknoi T, Panpranot J. Catal. Commun., 2021, 149: 106221.
[60]
Singh G, Singh L, Gahtori J, Gupta R K, Samanta C, Bal R, Bordoloi A. Mol. Catal., 2021, 500(111339): 1.
[61]
Babu G S, Rekha V, Francis S, Lingaiah N. Catal. Lett., 2019, 149(10): 2758.

doi: 10.1007/s10562-019-02815-6     URL    
[62]
Ruiz J, Jimenez-Sanchidrian C. Curr. Org. Chem., 2007, 11(13): 1113.

doi: 10.2174/138527207781662500     URL    
[63]
Wang Y T, Zhao D Y, Liang R, Triantafyllidis K S, Yang W R, Len C. Mol. Catal., 2021, 499: 111199.
[64]
Li J, Liu J L, Zhou H J, Fu Y. ChemSusChem, 2016, 9(11): 1339.

doi: 10.1002/cssc.201600089     URL    
[65]
García-Sancho C, JimÉnez-GÓmez C P, Viar-Antuñano N, Cecilia J A, Moreno-Tost R, MÉrida-Robles J M, Requies J, Maireles-Torres P. Appl. Catal. A Gen., 2021, 609: 117905.
[66]
Kalong M, Hongmanorom P, Ratchahat S, Koo-amornpattana W, Faungnawakij K, Assabumrungrat S, Srifa A, Kawi S. Fuel Process. Technol., 2021, 214: 106721.
[67]
Gao Z, Yang L, Fan G L, Li F. ChemCatChem, 2016, 8(24): 3769.

doi: 10.1002/cctc.201601070     URL    
[68]
Wang Y T, Len C, Prinsen P, Yepez A, Luque R, Triantafyllidis K S, Karakoulia S A. ChemCatChem, 2018, 10: 3459.

doi: 10.1002/cctc.201800530     URL    
[69]
Fan Y F, Zhuang C F, Li S J, Wang Y, Zou X Q, Liu X T, Huang W M, Zhu G S. J. Mater. Chem. A, 2021, 9(2): 1110.

doi: 10.1039/D0TA10838C     URL    
[70]
Wang F, Zhang Z H. ACS Sustain. Chem. Eng., 2017, 5(1): 942.

doi: 10.1021/acssuschemeng.6b02272     URL    
[71]
Jiang S S, Huang J, Wang Y, Lu S Y, Li P, Li C Q, Li F. J. Chem. Technol. Biotechnol., 2021, 96(3): 639.
[72]
Hou P, Ma M W, Zhang P, Cao J J, Liu H, Xu X L, Yue H J, Tian G, Feng S H. New J. Chem., 2021, 45(5): 2715.

doi: 10.1039/D0NJ05638C     URL    
[73]
Li D N, Zhang J, Liu Y, Yuan H R, Chen Y. Chem. Eng. Sci., 2021, 229: 116075.
[74]
Zheng Y N, Zhang R, Zhang L, Gu Q F, Qiao Z A. Angew. Chem. Int. Ed., 2021, 60(9): 4774.

doi: 10.1002/anie.202012416     URL    
[75]
Nakanishi K, Tanaka A, Hashimoto K, Kominami H. Chem. Lett., 2018, 47(2): 254.

doi: 10.1246/cl.171053     URL    
[76]
Lange J P, Van der Heide E, Van Buijtenen J, Price R. ChemSusChem, 2012, 5(1): 150.

doi: 10.1002/cssc.201100648     URL    
[77]
Deng T Y, Xu G Y, Fu Y. Chin. J. Catal., 2020, 41(3): 404.

doi: 10.1016/S1872-2067(19)63505-9     URL    
[78]
Perez R F, Fraga M A. Green Chem., 2014, 16(8): 3942.

doi: 10.1039/C4GC00398E     URL    
[79]
Perez R F, Canhaci S J, Borges L E P, Fraga M A. Catal. Today, 2017, 289: 273.

doi: 10.1016/j.cattod.2016.09.003     URL    
[80]
Perez R F, Soares O S G P, de Farias A M D, R Pereira M F, Fraga M A. Appl. Catal. B Environ., 2018, 232: 101.

doi: 10.1016/j.apcatb.2018.03.042     URL    
[81]
Paulino P N, Perez R F, Figueiredo N G, Fraga M A. Green Chem., 2017, 19(16): 3759.

doi: 10.1039/C7GC01288H     URL    
[82]
Perez R F, Albuquerque E M, Borges L E P, Hardacre C, Fraga M A. Catal. Sci. Technol., 2019, 9(19): 5350.

doi: 10.1039/C9CY01235D     URL    
[83]
Canhaci S J, Perez R F, Borges L E P, Fraga M A. Appl. Catal. B Environ., 2017, 207: 279.

doi: 10.1016/j.apcatb.2017.01.085     URL    
[84]
Tan J J, Gao K, Su Y H, Cui J L, Zhang J, Zhao Y X. J. Mol. Catal. China, 2021, 35(2): 103.
谭静静, 高宽, 苏以豪, 崔静磊, 张静, 赵永祥. 分子催化, 2021, 35(2): 103.).
[85]
Ordomsky V V, Schouten J C, van der Schaaf J, Nijhuis T A. Appl. Catal. A Gen., 2013, 451: 6.

doi: 10.1016/j.apcata.2012.11.013     URL    
[86]
Aldosari O F, Iqbal S, Miedziak P J, Brett G L, Jones D R, Liu X, Edwards J K, Morgan D J, Knight D K, Hutchings G J. Catal. Sci. Technol., 2016, 6(1): 234.

doi: 10.1039/C5CY01650A     URL    
[87]
Cui J L, Tan J J, Cui X J, Zhu Y L, Deng T S, Ding G Q, Li Y W. ChemSusChem, 2016, 9(11): 1259.

doi: 10.1002/cssc.201600116     URL    
[88]
Xu L, Nie R F, Xu H F, Chen X J, Li Y C, Lu X Y. Ind. Eng. Chem. Res., 2020, 59(7): 2754.

doi: 10.1021/acs.iecr.9b05726     URL    
[89]
He Y C, Jiang C X, Chong G G, Di J H, Wu Y F, Wang B Q, Xue X X, Ma C L. Bioresour. Technol., 2017, 245: 841.

doi: 10.1016/j.biortech.2017.08.219     URL    
[90]
He Y C, Jiang C X, Jiang J W, Di J H, Liu F, Ding Y, Qing Q, Ma C L. Bioresour. Technol., 2017, 238: 698.

doi: 10.1016/j.biortech.2017.04.101     URL    
[91]
He Y C, Ding Y, Ma C L, Di J H, Jiang C X, Li A T. Green Chem., 2017, 19(16): 3844.

doi: 10.1039/C7GC01256J     URL    
[92]
Li Q, Hu Y, Tao Y Y, Zhang P Q, Ma C L, Zhou Y J, He Y C. Catal. Lett., 2021, 151(11): 3189.

doi: 10.1007/s10562-021-03570-3     URL    
[93]
Braun M, Antonietti M. Green Chem., 2017, 19(16): 3813.

doi: 10.1039/C7GC01055A     URL    
[94]
Dai J H, Fu X, Zhu L F, Tang J Q, Guo X W, Hu C W. ChemCatChem, 2016, 8(7): 1379.

doi: 10.1002/cctc.201501292     URL    
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[10] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[11] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[12] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[13] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[14] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[15] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.