English
新闻公告
More
化学进展 2022, Vol. 34 Issue (1): 155-167 DOI: 10.7536/PC201210 前一篇   后一篇

• 综述 •

非计量Zn-Cr尖晶石中离子占位对催化合成气合成异丁醇中的关键作用

田少鹏1, 任花萍1, 陈明淑1, 苗宗成1, 谭猗生2,*()   

  1. 1 西京学院理学院 西安市先进光电子材料与能源转换器件重点实验室 西安 710123
    2 中国科学院山西煤炭化学研究所煤转化国家重点实验室 太原 030001
  • 收稿日期:2020-12-07 修回日期:2021-01-07 出版日期:2022-01-20 发布日期:2021-03-04
  • 通讯作者: 谭猗生
  • 基金资助:
    国家自然科学基金项目(21706218); 国家自然科学基金项目(21908182); 陕西省自然科学研究计划项目(2019JQ-920); 陕西省高校青年创新团队

The Crucial Role of Cation Distribution in Non-Stoichiometric Spinel-Structure Zn-Cr Catalysts for Isobutanol Synthesis from Syngas

Shaopeng Tian1, Huaping Ren1, Mingshu Chen1, Zongcheng Miao1, Yisheng Tan2()   

  1. 1 Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University,Xi'an 710123, China
    2 State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences,Taiyuan 030001, China
  • Received:2020-12-07 Revised:2021-01-07 Online:2022-01-20 Published:2021-03-04
  • Contact: Yisheng Tan
  • Supported by:
    National Natural Science Foundation of China(21706218); National Natural Science Foundation of China(21908182); Natural Science Foundation of Shaanxi Province(2019JQ-920); Youth Innovation Team of Shaanxi Universities

异丁醇是一种基本有机化工原料和燃料添加剂。从煤基或生物质合成气制异丁醇符合我国“贫油富煤”的能源结构,对于保障我国能源安全具有重要的现实意义。Zn-Cr基催化剂合成异丁醇具有寿命长、积碳少,产物分布简单的优点,被广泛应用于合成异丁醇研究。本文总结了近年来合成气合成异丁醇的进展,重点介绍本课题组近几年在异丁醇合成过程中发现的非计量Zn-Cr尖晶石中离子占位对催化合成气合成异丁醇中的关键作用。首先概述了异丁醇的催化剂体系、合成工艺以及生成机理,然后介绍了促进阳离子在尖晶石结构中混乱分布的策略,包括调节Zn/Cr比例、煅烧温度、制备方法以及负载碱金属等,同时介绍了两种常用的定量检测尖晶石结构离子占位的方法。本课题组首次发现异丁醇产率与离子分布混乱程度呈近似直线关系,是因为离子占位强烈影响催化剂的物化性质。最后展望了异丁醇合成过程中的机遇和挑战,期望此文对能源化工、材料科学等相关学科的学者有一定的参考和启示作用。

Isobutanol is an important compound with widespread applications in chemistry and the energy sector. Isobutanol synthesis from coal or biomass syngas is highly suitable to resource conditions in China, which has plenty of coal but little oil. Zn-Cr based catalysts have been widely used to produce isobutanol because of their long lifetimes and simple product distribution. This mini review highlights recent progress in syngas-based isobutanol synthesis and addresses the crucial role of cation distribution in non-stoichiometric spinel-structure Zn-Cr catalysts for this process. The development of catalysts for isobutanol synthesis is first summarized in terms of catalyst category, preparation methods, and generation mechanism. Some strategies for aggravating cation distribution disorder are then introduced, including adjusting the Zn/Cr ratio and/or annealing temperature, preparation methods, loading with a K promoter, and the use of excess ZnO. Two quantitative methods for obtaining information on cation distribution in Zn-Cr-based catalysts are introduced, i.e., Rietveld analysis for powder X-ray diffraction patterns and multiple-edge refinement for Zn K-edge extended X-ray absorption fine structure spectra. Isobutanol production shows a linear relationship to the degree of cation disorder because cation distribution affects the physicochemical properties of spinel-structure Zn-Cr catalysts, such as particle size, alkalinity, CO adsorption ability, and the state of surface oxygen. Finally, further development and the challenges associated with the synthesis of isobutanol are discussed.

Contents

1 Introduction

2 Isobutanol synthesis from syngas

2.1 Catalyst categories for the synthesis of higher alcohols

2.2 Isobutanol-generation mechanism

2.3 Active sites for isobutanol synthesis on Zn-Cr catalysts

3 Non-stoichiometric spinel-structure Zn-Cr catalysts for isobutanol synthesis

3.1 Microstructure of spinel-structure Zn-Cr

3.2 Influence of cation distribution in spinel-structure Zn-Cr

3.3 Relationship between cation distribution disorder and isobutanol production

3.4 Tailoring physicochemical properties via cation distribution

4 Conclusions and outlook

()
Scheme 1 Mechanism of isobutanol formation via syngas[64]
Fig. 1 Structural models of (a): normal Zn-Cr structure and (b): non-stoichiometric Zn-Cr spinel structure with one Zn atom exchanged with one Cr atom[59]
Fig. 2 TEM images of (a) ZC300, (b) ZC450, (c) ZC600, and (d) ZC750 samples; and (e) Zn K-edge EXAFS spectra fit for the ZC450 sample compared with the best fit curve (dotted line)[59]
Fig. 3 The qualitative analysis of spinel-structure Zn-Cr catalysts with different annealing temperatures and Zn/Cr ratios. a) Raman spectra; b) normalized XANES spectra for the Zn K-edge; c) normalized XANES spectra for the Cr K-edge; d) Fourier-transform EXAFS signals for the Zn K-edge[62,63]
Fig. 4 Simulated cation distribution results for ZC-0.5-700 using a) Rietveld analysis of XRD patterns, and b) multiple-edge refinement for Zn K-edge EXAFS spectra[63].
Table 1 Lattice parameters and cation distribution of spinel-structure Zn-Cr estimated using the Rietveld method for XRD patterns and multiple-edge refinement for Zn K-edge EXAFS spectr[62-63]
Fig. 5 The crucial role of the K promoter in isobutanol synthesis from syngas.
Fig. 6 LC-XANES fits for catalysts prepared by different methods[65]
Fig. 7 The role of ZnO in different states for isobutanol synthesis from syngas
Fig. 8 a) The relationship between isobutanol production and the level of cation distribution disorder. b) Catalyst performance and stability results for a Zn-Cr catalyst. Reaction conditions: 400 ℃, 10 MPa, 10 000 h-1. c) Product selectivity. d) Fourier-transform Zn K-edge EXAFS signals for fresh and spent catalysts[63,69]
Fig. 9 a) and b) Zn and Cr 2p XPS spectra of catalysts prepared by different methods. c) O 1s XPS spectra of catalysts with different contents of K. d) H2-TPR curves of catalysts with different Zn/Cr ratios and annealing temperatures[63,65,66]
Fig. 10 a) CO-TPD profiles of catalysts prepared by different methods, b) CO2-TPD curves of the catalysts with different Zn/Cr element ratios and, c) and d) in-situ IR spectra of CO adsorbed on catalysts loading different contents of K upon desorption at 400 ℃[64⇓~66]
[14]
Gao Y, Shi L, Li S, Ren Q. PCCP., 2020,22: 5070.

doi: 10.1039/C9CP06379J     URL    
[15]
Dimitrakopoulou M, Huang X, Kröhnert J, Teschner D, Praetz S, Schlesiger C, Malzer W, Janke C, Schwab E, Rosowski F, Kaiser H, Schunk S, Schlögl R, Trunschke A. Faraday Discuss., 2018,208: 207.

doi: 10.1039/c7fd00215g     pmid: 29809207
[16]
Liu Y F, Göeltl F, Ro I, Ball M R, Sener C N, Aragão I B, Zanchet D, Huber G W, Mavrikakis M, Dumesic J A. ACS Catal., 2017,7(7): 4550.

doi: 10.1021/acscatal.7b01381     URL    
[17]
Taborga Claure M, Chai S H, Dai S, Unocic K A, Alamgir F M, Agrawal P K, Jones C W. J. Catal., 2015,324: 88.

doi: 10.1016/j.jcat.2015.01.015     URL    
[18]
Zhang F F, Li Y Y, Gao S, Fang H H, Liang X L, Yuan Y Z. Catal. Sci. Technol., 2018,8(16): 4219.

doi: 10.1039/C8CY01095A     URL    
[19]
Yong J X, Luan X B, Dai X P, Zhang X, Qiao H Y, Yang Y, Huang X L. Catal. Sci. Technol., 2017,7(18): 4206.

doi: 10.1039/C7CY01295K     URL    
[20]
Zeng F, Xi X Y, Cao H T, Pei Y T, Heeres H J, Palkovits R. Appl. Catal. B: Environ., 2019,246: 232.

doi: 10.1016/j.apcatb.2019.01.063     URL    
[21]
Liu Y J, Deng X, Jia L, Huang W. Phys. Chem. Chem. Phys., 2018,20(27): 18790.

doi: 10.1039/C8CP02296H     URL    
[22]
Walter K M, Serrer M A, Kleist W, Grunwaldt J D. Appl. Catal. A: Gen., 2019,585: 117150.

doi: 10.1016/j.apcata.2019.117150     URL    
[23]
Shi X P, Yu H B, Gao S, Li X Y, Fang H H, Li R J, Li Y Y, Zhang L J, Liang X L, Yuan Y Z. Fuel, 2017,210: 241.

doi: 10.1016/j.fuel.2017.08.064     URL    
[24]
Graves G D. Ind. Eng. Chem., 1931,23(12): 1381.

doi: 10.1021/ie50264a016     URL    
[25]
Natta G, Pasquon I.. Advances in Catalysis. Amsterdam: Elsevier, 1959: 1.
[26]
Nunan J G, Bogdan C E, Klier K, Smith K J, Young C W, Herman R G. ChemInform, 1989,20(26): 195.
[27]
John G, Nunan C, Kamil K, Kevin J S, Chyi-Woei Y, Richard G, Herman. J. Catal., 1989,116: 195.

doi: 10.1016/0021-9517(89)90086-9     URL    
[28]
Smith K J, Anderson R B. J Catal., 1984,85: 428.

doi: 10.1016/0021-9517(84)90232-X     URL    
[29]
Smith K J, Anderson R B. Can. J. Chem. Eng., 1983,61(1): 40.

doi: 10.1002/cjce.v61:1     URL    
[30]
Wu Y Q, Xie H J, Kou Y L, Tsubaki N, Han Y Z, Tan Y S. Korean J. Chem. Eng., 2015,32(3): 406.

doi: 10.1007/s11814-014-0236-7     URL    
[1]
Lin T J, Qi X Z, Wang X X, Xia L, Wang C Q, Yu F, Wang H, Li S G, Zhong L S, Sun Y H. Angew. Chem. Int. Ed., 2019,58(14): 4627.

doi: 10.1002/anie.v58.14     URL    
[2]
Jiang Y W, Long R, Xiong Y J. Chem. Sci., 2019,10(31): 7310.

doi: 10.1039/C9SC02014D     URL    
[3]
Luk H T, Mondelli C, FerrÉ D C, Stewart J A, PÉrez-Ramírez J. Chem. Soc. Rev., 2017,46(5): 1358.

doi: 10.1039/C6CS00324A     URL    
[4]
Xiao K, Bao Z H, Qi X Z, Wang X X, Zhong L S, Fang K G, Lin M G, Sun Y H. Chin. J. Catal., 2013,34(1): 116.

doi: 10.1016/S1872-2067(11)60496-8     URL    
[5]
Keim W, Falter W. Catal. Lett., 1989,3(1): 59.

doi: 10.1007/BF00765055     URL    
[6]
Pei Y P, Liu J X, Zhao Y H, Ding Y J, Liu T, Dong W D, Zhu H J, Su H Y, Yan L, Li J L, Li W X. ACS Catal., 2015,5(6): 3620.

doi: 10.1021/acscatal.5b00791     URL    
[7]
Prieto G, Beijer S, Smith M L, He M, Au Y, Wang Z, Bruce D A, De Jong K P, Spivey J J, De Jongh P E. Angew. Chem. Int. Ed., 2014,53(25): 6397.

doi: 10.1002/anie.v53.25     URL    
[8]
Sun K, Gao X F, Bai Y X, Tan M H, Yang G H, Tan Y S. Catal. Sci. Technol., 2018,8(15): 3936.

doi: 10.1039/C8CY01074A     URL    
[9]
Zhao L, Mu X L, Liu T S, Fang K G. Catal. Sci. Technol., 2018,8(8): 2066.

doi: 10.1039/C7CY02555F     URL    
[10]
Luk H T, Forster T, Mondelli C, Siol S, Curulla-FerrÉ D, Stewart J A, PÉrez-Ramírez J. Catal. Sci. Technol., 2018,8(1): 187.

doi: 10.1039/C7CY01908D     URL    
[11]
Qian W X, Wang H, Xu Y B, Yang X L, Zhai G W, Zhang H T, Ma H F, Sun Q W, Ying W Y. Ind. Eng. Chem. Res., 2019,58(16): 6288.

doi: 10.1021/acs.iecr.9b00355     URL    
[12]
Cao A, Schumann J, Wang T, Zhang L N, Xiao J P, Bothra P, Liu Y, Abild-Pedersen F, Nørskov J K. ACS Catal., 2018,8(11): 10148.

doi: 10.1021/acscatal.8b01596     URL    
[13]
Zhong H X, Wang J M, An K, Fang K G, Liu Y. Catal. Sci. Technol., 2019,9(13): 3454.

doi: 10.1039/C9CY00416E     URL    
[31]
Wu Y Q, Xie H J, Tian S P, Tsubaki N, Han Y Z, Tan Y S. J. Mol. Catal. A: Chem., 2015,396: 254.

doi: 10.1016/j.molcata.2014.10.003     URL    
[32]
Wu Y Q, Gong N N, Zhang M, Zhang W, Zhang T, Zhang J F, Wang L Y, Xie H J, Tan Y S. Catal. Sci. Technol., 2019,9(10): 2592.

doi: 10.1039/C9CY00542K     URL    
[33]
Piero G D, Trifiro F, Vaccari A. J. Chem. Soc., Chem. Commun., 1984,(10): 656.
[34]
Waugh K C. Catal. Lett., 2012,142(10): 1153.

doi: 10.1007/s10562-012-0905-2     URL    
[35]
Forzatti P, Tronconi E, Pasquon I. Catal. Rev., 1991,33(1/2): 109.

doi: 10.1080/01614949108020298     URL    
[36]
Wu Y Q, Wang S C, Xie H J, Gao J W, Tian S P, Han Y Z, Tan Y S. Acta Phys-Chim Sin., 2015,31: 166.

doi: 10.3866/PKU.WHXB201411241     URL    
( 武应全, 王思晨, 解红娟, 高俊文, 田少鹏, 韩怡卓, 谭猗生. 物理化学学报, 2015,31: 166.)
[37]
William S E, Gar B H, Walter M H, David M M. J. Catal., 1997,172: 13.

doi: 10.1006/jcat.1997.1857     URL    
[38]
William S E, Gar B H, Walter M H, David M M. J. Catal., 1997,169: 446.
[39]
Bertoldi M, Fubini B, Giamello E, Busca G, Trifirò F, Vaccari A. J. Chem. Soc., Faraday Trans. 1, 1988,84(5): 1405.
[40]
Gastone D P, Ferruccio T, Angelo V. JCS, Chem Commoun., 1984, 656.
[41]
Giamello E, Fubini B, Bertoldi M, Busca G, Vaccari A. J. Chem. Soc., Faraday Trans. 1, 1989,85(2): 237.
[42]
Tan L, Yang G H, Yoneyama Y, Kou Y L, Tan Y S, Vitidsant T, Tsubaki N. Appl. Catal. A: Gen., 2015,505: 141.

doi: 10.1016/j.apcata.2015.08.002     URL    
[43]
Deshpande P A, Aruna S T, Madras G. Catal. Sci. Technol., 2011,1(9): 1683.

doi: 10.1039/c1cy00265a     URL    
[44]
Roca R A, Sczancoski J C, Nogueira I C, Fabbro M T, Alves H C, Gracia L, Santos L P S, de Sousa C P, AndrÉs J, Luz G E, Longo E, Cavalcante L S. Catal. Sci. Technol., 2015,5(8): 4091.

doi: 10.1039/C5CY00331H     URL    
[45]
Hu C C, Yeh T F, Teng H. Catal. Sci. Technol., 2013,3(7): 1798.

doi: 10.1039/c3cy00008g     URL    
[46]
Pantelis N T, Thomas V B, Aliki C M, Antonios T S, Thomas A, Philip J P. Appl Catal A-Genel., 1998,167: 295.
[47]
Brazdil J F. Catal. Sci. Technol., 2015,5(7): 3452.

doi: 10.1039/C5CY00387C     URL    
[48]
Poreddy R, Engelbrekt C, Riisager A. Catal. Sci. Technol., 2015,5(4): 2467.

doi: 10.1039/C4CY01622J     URL    
[49]
Kan W H, Huq A, Manthiram A. Chem. Commun., 2015,51(52): 10447.

doi: 10.1039/C5CC03070F     URL    
[50]
Basavaraju N, Priolkar K R, Gourier D, Bessière A, Viana B. Phys. Chem. Chem. Phys., 2015,17(16): 10993.

doi: 10.1039/c5cp01097g     pmid: 25825209
[51]
Kitada A, Arevalo-Lopez A M, Attfield J P. Chem. Commun., 2015,51(57): 11359.

doi: 10.1039/C5CC02800K     URL    
[52]
Mancic L, Marinkovic Z, Vulic P, Moral C, Milosevic O. Sensors, 2003,3(10): 415.

doi: 10.3390/s31000415     URL    
[53]
Newton M A, van Beek W. Chem. Soc. Rev., 2010,39(12): 4845.

doi: 10.1039/b919689g     pmid: 20967341
[54]
Wang W W, Du P P, Zou S H, He H Y, Wang R X, Jin Z, Shi S, Huang Y Y, Si R, Song Q S, Jia C J, Yan C H. ACS Catal., 2015,5(4): 2088.

doi: 10.1021/cs5014909     URL    
[55]
Krishnan V, Selvan R K, Augustin C O, Gedanken A, Bertagnolli H. J. Phys. Chem. C, 2007,111(45): 16724.

doi: 10.1021/jp073746t     URL    
[56]
Makovec D, Kodre A, Arčon I, Drofenik M. J. Nanoparticle Res., 2011,13(4): 1781.

doi: 10.1007/s11051-010-9929-y     URL    
[57]
Jeyadevan B, Tohji K, Nakatsuka K. J. Appl. Phys., 1994,76(10): 6325.

doi: 10.1063/1.358255     URL    
[58]
Akhtar M J, Nadeem M, Javaid S, Atif M. J. Phys.: Condens. Matter, 2009,21(40): 405303.
[59]
Chen S M, Wu Y F, Cui P X, Chu W S, Chen X, Wu Z Y. J. Phys. Chem. C, 2013,117(47): 25019.

doi: 10.1021/jp404984y     URL    
[60]
Kongmark C, Martis V, Rubbens A, Pirovano C, Löfberg A, Sankar G, Bordes-Richard E, Vannier R N, van Beek W. Chem. Commun., 2009(32): 4850.
[61]
Marinković Z V, Mančić L, Vulić P, Milošević O. J. Eur Ceram Soc., 2005,25: 2081.

doi: 10.1016/j.jeurceramsoc.2005.03.085     URL    
[62]
Tian S P, Wang S C, Wu Y Q, Gao J W, Bai Y X, Wang P, Xie H J, Han Y Z, Tan Y S. J. Mol. Catal. A: Chem., 2015,404/405: 139.

doi: 10.1016/j.molcata.2015.04.019     URL    
[63]
Tian S P, Wang S C, Wu Y Q, Gao J W, Xie H J, Li X L, Yang G H, Han Y Z, Tan Y S. RSC Adv., 2015,5(108): 89273.

doi: 10.1039/C5RA17289F     URL    
[64]
Tian S P, Wu Y Q, Li K X, Xie H J, Ren H P, Zhao Y Z, Miao Z C, Tan Y S. Energy Technol., 2018,6(9): 1805.

doi: 10.1002/ente.v6.9     URL    
[65]
Tian S P, Tan L, Wu Y Q, Kou Y L, Xie H J, Tsubaki N, Tan Y S. Appl. Catal. A: Gen., 2017,536: 57.

doi: 10.1016/j.apcata.2017.02.016     URL    
[66]
Tian S P, Wang S C, Wu Y Q, Gao J W, Wang P, Xie H J, Yang G H, Han Y Z, Tan Y S. Catal. Sci. Technol., 2016,6(12): 4105.

doi: 10.1039/C5CY02030A     URL    
[67]
Errani E, Trifiro F, Vaccari A, Richter M, Del Piero G. Catal. Lett., 1989,3(1): 65.

doi: 10.1007/BF00765056     URL    
[68]
Calvin S, Carpenter E E, Harris V G, Morrison S A. Appl. Phys. Lett., 2002,81(20): 3828.

doi: 10.1063/1.1520700     URL    
[69]
Tian S P, Wu Y Q, Ren H P, Xie H J, Zhao Y Z, Ma Q, Miao Z C, Tan Y S. Fuel Process. Technol., 2019,193: 53.

doi: 10.1016/j.fuproc.2019.04.018     URL    
[70]
Pokrovski K, Jung K T, Bell A T. Langmuir, 2001,17(14): 4297.

doi: 10.1021/la001723z     URL    
[71]
Riva A, Trifirò F, Vaccari A, Mintchev L, Busca G. J. Chem. Soc., Faraday Trans. 1, 1988,84(5): 1423.
[72]
Sun K, Tan M H, Bai Y X, Gao X F, Wang P, Gong N N, Zhang T, Yang G H, Tan Y S. J. Catal., 2019,378: 1.

doi: 10.1016/j.jcat.2019.08.013     URL    
[73]
Wang L Y, Gao X F, Bai Y X, Tan M H, Sun K, Zhang T, Wu Y Q, Pan J X, Xie H J, Tan Y S. Fuel, 2019,253: 1570.

doi: 10.1016/j.fuel.2019.05.139     URL    
[74]
Wu Y Q, Zhang J F, Zhang T, Sun K, Wang L Y, Xie H J, Tan Y S. Ind. Eng. Chem. Res., 2019,58(22): 9343.

doi: 10.1021/acs.iecr.9b01436     URL    
[75]
Zhang T, Wu Y Q, Gao X F, Xie H J, Yang G H, Tsubaki N, Tan Y S. Fuel, 2019,237: 1021.

doi: 10.1016/j.fuel.2018.09.143    
No related articles found!