English
新闻公告
More
化学进展 2022, Vol. 34 Issue (8): 1815-1830 DOI: 10.7536/PC210927 前一篇   后一篇

• 综述 •

基于邻苯二胺氧化反应的生物分子比色/荧光探针

李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明*(), 刘晋彪*()   

  1. 江西理工大学材料冶金化学学部 江西省功能分子材料化学重点实验室 赣州 341000
  • 收稿日期:2021-09-23 修回日期:2022-01-04 出版日期:2022-08-20 发布日期:2022-04-01
  • 通讯作者: 刘昆明, 刘晋彪
  • 作者简介:

    作者简介:刘昆明 2015年于北京师范大学获理学博士学位,现为江西理工大学材料冶金化学学部讲师。研究领域包括:荧光探针、稀土荧光配合物、稀土催化剂等功能有机小分子材料的设计、合成及应用。

    刘晋彪 2013年于中山大学获理学博士学位,现为江西理工大学材料冶金化学学部副教授。研究领域包括:有机合成方法学、荧光传感器的设计及制备。

  • 基金资助:
    国家自然科学基金(21762018); 国家自然科学基金(21961014); 江西省教育厅科技项目(GJJ160668); 江西省自然科学基金(20202BABL213007); 江西省自然科学基金(20212BAB203013); 江西省功能分子材料化学重点实验室(20212BCD42018); 大学生创新创业训练计划(202110407006)

Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules

Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu(), Jinbiao Liu()   

  1. Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry,Ganzhou 341000, China
  • Received:2021-09-23 Revised:2022-01-04 Online:2022-08-20 Published:2022-04-01
  • Contact: Kunming Liu, Jinbiao Liu
  • Supported by:
    Natural Science Foundation of China(21762018); Natural Science Foundation of China(21961014); Science and Technology Project Founded by the Education Department of Jiangxi Province(GJJ160668); Jiangxi Provincial Natural Science Foundation(20202BABL213007); Jiangxi Provincial Natural Science Foundation(20212BAB203013); Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry(20212BCD42018); National Training Programs of Innovation and Entrepreneurship for Undergraduates(202110407006)

邻苯二胺(OPD)易被多种氧化剂氧化生成黄色荧光物质2, 3-二氨基吩嗪(OPDox),这一独特响应机制为反应型比色/荧光探针的设计提供了思路。基于OPD氧化反应的比色/荧光探针已被广泛应用于金属离子和有机小分子的检测中。近年来,由于该类探针灵敏度高、响应速度快、抗干扰能力强,在对细胞和组织内生物分子的识别方面备受青睐。本文综述了近年来(2014~2021年)基于OPD氧化反应的比色/荧光探针对生物硫醇、活性氧、尿酸、酶、抗原等重要生物分子检测的研究进展,并对此类探针的应用问题和发展前景进行了评述。

O-phenylenediamine (OPD) can be easily oxidized by a variety of oxidants to form yellow fluorescent substance 2, 3-diaminophenazine (OPDox), and the unique responding mechanism provides a principle in the design of reaction-based colorimetric/fluorescent probes. Up to now, colorimetric and fluorescent probes based on the OPD oxidative reactions have been widely applied in the detection of metal ions and organic molecules. In recent years, these probes have attracted much attention in the recognition of bio-molecules in cells and tissues due to their high sensitivity, fast response speed and strong anti-interference ability. This review summarizes the development of colorimetric and fluorescent probes based on the OPD oxidative reactions in the detection of important bio-molecules such as biothiols, reactive oxygen species, uric acid, enzyme, antigen and so on. We further make an in-depth perspectives on the application and development prospect of the probes.

Contents

1 Introduction

2 Detection of small bio-molecules

2.1 Biological thiols

2.2 Reactive oxygen species

2.3 Purine and its metabolites

2.4 Other small bio-molecules

3 Detection of biomacromolecules

3.1 Enzyme

3.2 Antigens

3.3 Bacteria and viruses

3.4 Other biomacromolecules

4 Conclusion and outlook

()
图1 基于OPD氧化反应的荧光探针对生物硫醇的识别机理[19]
Fig. 1 The detection mechanism of biothiols by fluorescence probe based on the oxidation of OPD[19]
图2 基于Ag+-OPD自催化氧化反应的谷胱甘肽比色探针[21]
Fig. 2 Colorimetric probe of GSH based on the Ag+-OPD autocatalytic oxidation[21]
图3 比色/荧光双通道探针对GSH的检测机理[22]
Fig. 3 The detection mechanism of GSH by colorimetric/fluorometric duel-readout probe[22]
图4 基于OPD氧化反应的谷胱甘肽比率荧光探针[25]
Fig. 4 Ratiometric fluorescence probe of GSH based-on OPD oxidative reaction[25]
图5 基于OPD氧化反应的H2O2比率荧光探针[29]
Fig. 5 Ratiometric fluorescence probe of H2O2 based on OPD oxidative reaction[29]
图6 基于OPD氧化反应的hROS比率荧光探针的检测机理与细胞成像[32]
Fig. 6 Detection mechanism and cell imaging of ratiometric fluorescence probe of hROS based on the OPD oxidative reaction[32]
图7 基于Fe, N-CDs催化OPD氧化反应的黄嘌呤比率荧光/比色探针[34]
Fig. 7 Ratiometric fluorescence/colorimetric probe of xanthine based on the Fe, N-CDs catalyzed OPD oxidative reaction[34]
图8 基于串联催化氧化反应的比率探针对尿酸的检测机理[36]
Fig. 8 Detection mechanism of Uric acid by ratiometric probe based on the cascade catalytic oxidation[36]
图9 基于OPD氧化反应的比率荧光探针对胆固醇的检测机理[41]
Fig. 9 Detection mechanism of cholesterol by ratiometric fluorescence probe based on the OPD oxidative reaction[41]
图10 基于OPD氧化反应的焦磷酸根比色探针及不同浓度PPI下试纸检测照片[45]
Fig. 10 Colorimetric probe of PPI based on the OPD oxidative reaction and the photo images of test-paper under different concentrations of PPI[45]
图11 基于OPD氧化反应的组氨酸荧光探针检测机理[48]
Fig. 11 Detection mechanism of His by fluorescence probe based on OPD oxidative reaction[48]
图12 基于OPD氧化反应的三磷酸腺苷比率型荧光/比色探针[55]
Fig. 12 Detection mechanism of ATP by ratiometric fluorescence probe based on OPD oxidative reaction[55]
图13 基于内滤效应的碱性磷酸酶荧光探针检测机理[63]
Fig. 13 Detection mechanism of ALP fluorescence probe based on IFE[63]
图14 基于OPD氧化反应的三元发射荧光探针对ALP的检测机理[64]
Fig. 14 Detection mechanism of ALP by the multi-emitting fluorescence probe based on the OPD oxidative reaction[64]
图15 基于AuNCs-OPD体系的ALP比率荧光探针[65]
Fig.15 Ratiometric fluorescence probe of ALP based on AuNCs-OPD system[65]
图16 基于Cu2+对OPD氧化反应的焦磷酸酶双通道探针[66]
Fig. 16 Dual-readout assay of PPase based on the Cu2+-triggered oxidation of OPD[66]
图17 基于OPD-CDs体系的比率荧光探针对AChE和BChE选择性检测机理[71]
Fig. 17 Discriminative detection mechanism of AChE and BChE by ratiometric fluorescence probe based on the OPD-CDs system[71]
图18 基于OPD氧化反应的免疫荧光传感器对PSA的检测机理[80]
Fig. 18 Detection mechanism of PSA by fluorescent immunosensor based on the OPD oxidative reaction[80]
图19 基于OPD氧化反应的免疫荧光探针对HIV-1病毒抗原P24的检测机理[83]
Fig. 19 Detection mechanism of HIV-1 virus antigen P24 by fluorescent immunosensor based on the OPD oxidative reaction[83]
图20 基于OPD氧化反应的免疫荧光传感器对H1N1病毒的检测机理[93]
Fig. 20 Detection mechanism of H1N1 virus by fluorescent immunosensor based on the OPD oxidative reaction[93]
图21 基于OPD氧化反应的比色探针对李斯特菌的检测原理[95]
Fig. 21 Detection mechanism of Listeria monocytogenes by colorimetric probe based on the OPD oxidative reaction[95]
图22 基于OPD氧化反应的荧光探针对大肠杆菌O157:H7的检测机理[97]
Fig. 22 Detection mechanism of Escherichia coli O157: H7 by fluorescence probe based on the OPD oxidative reaction[97]
图23 基于OPD氧化反应的荧光探针对DNA的检测机理[100]
Fig. 23 Detection mechanism of DNA by fluorescence probe based on the OPD oxidative reaction[100]
图24 基于OPD氧化反应的比色/荧光探针对NMP 22的检测机理[102]
Fig. 24 Detection mechanism of NMP22 by colorimetric/fluorescence probe based on the OPD oxidative reaction[102]
表1 各类OPD探针性能总结
Table 1 Summary of the performance of OPD-based sensors discussed in this review
Analyte Entry Sensor category Linear range LOD ref
Cys, HCy, GSH 1 Single-intensity-based fluorescence sensor 0.5 ~ 30.0 μM, 1.0 ~ 45.0 μM, 0.5 ~ 40.0 μM 110 nM, 200 nM, 150 nM 19
GSH 2 Colorimetric sensor 2 nM ~ 1 μM 1.7 nM 21
3 Colorimetic/fluorometric dual signal sensor 20 ~ 80 μM/ 0.5 ~ 10 μM 0.94 μM/62 nM 22
4 Ratiometric fluorescence sensor 1 ~ 100 μM 270 nM 25
H2O2 5 Ratiometric fluorescence sensor 0 ~ 1 mM 50 nM 29
6 Ratiometric fluorescence sensor 0 ~ 1 mM 4.66 μM 30
·OH, ClO-, ONOO- 7 Ratiometric fluorescence sensor 0.11 μM, 0.50 μM, 0.69 μM 32
Xanthine 8 Colorimetic/fluorometric dual signal sensor 0 ~ 40 μM/ 0 ~ 70 μM 0.023 μM/0.02 μM 34
UA 9 Colorimetic/fluorometric dual signal sensor 0.01~0.8 mM 8.4 μM/0.75 μM 36
10 Colorimetic/fluorometric dual signal sensor 1.2 ~ 100 μM/1.2 ~ 75 μM 200 nM/125 nM 37
11 Colorimetic/fluorometric dual signal sensor 5 ~ 100 μM 0.7 μM/0.5 μM 38
Cholesterol 12 Ratiometric fluorescence sensor 0.01 ~ 500 μM 3.6 nM 41
PPI 13 Colorimetric sensor 0 ~ 0.2 μM 4.29 nM 45
His 14 Single-intensity-based fluorescence sensor 0.5 ~ 30 μM 0.33 μM 48
ATP 15 Ratiometric fluorescence sensor 1 ~ 100 μM 0.43 μM 55
ALP 16 Single-intensity-based fluorescence sensor 0.1 ~ 8.0 mU/mL 0.05 mU/mL 63
17 Multi-emitting fluorescence sensor 0.1 ~ 100 mU/mL 0.06 mU/mL 64
18 Ratiometric fluorescence sensor 0 ~ 3 U/L 0.0035 U/L 65
PPase 19 Colorimetic/fluorometric dual signal sensor 0.2 ~ 50 mU/mL 0.2 mU/mL 66
AChE, BChE 20 Ratiometric fluorescence sensor 0.2 ~ 14 U/L, 0.1 ~ 5 U/L 0.1 U/L, 0.04 U/L 71
LSD 21 Colorimetic/fluorometric dual signal sensor 0.6 ~ 150 nM 0.5 nM/0.3 nM 75
PSA 22 Single-intensity-based fluorescence sensor 0.5 pg/mL ~ 50 ng/mL 0.1 pg/mL 80
HIV antigen P24 23 Single-intensity-based fluorescence sensor 1.4 ~ 90 pg/mL 0.5 pg/mL 82
Ov 24 Single-intensity-based fluorescence sensor 34.18 ~ 273.44 ng/mL 36.97 ng/mL 87
H1N1 virus 25 Single-intensity-based fluorescence sensor 10-12 ~ 10-8 g/mL 10-13 g/mL 93
Listeria monocytogenes 26 Colorimetric sensor 10 ~ 106 cfu/mL 10 cfu/mL 95
O157:H7 27 Single-intensity-based fluorescence sensor 103 ~ 106 cfu/mL 4.2×102 cfu/mL 97
DNA 28 Ratiometric fluorescence sensor 0.1 pM ~ 20 nM 30 fM 100
NMP 22 29 Colorimetic/fluorometric dual signal sensor 1 ~ 500 pg/mL 0.31 pg/mL 102
[1]
Holzinger M, Le Goff, Cosnier S. Front. Chem., 2014, 2: 63.

doi: 10.3389/fchem.2014.00063     pmid: 25221775
[2]
Kowada T, Maeda H, Kikuchi K, Chem. Soc. Rev., 2015, 44: 4953.

doi: 10.1039/C5CS00030K     URL    
[3]
Labib M, Sargent E H, Kelley S O. Chem. Rev., 2016, 116: 9001.

doi: 10.1021/acs.chemrev.6b00220     URL    
[4]
Li X, Yang J M, Xie J Q, Jiang B Y, Yuan R, Xiang Y. Biosens. Bioelectron., 2018, 102: 296.

doi: S0956-5663(17)30732-7     pmid: 29156404
[5]
Kang B, Park S V, Soh H T, Oh S S. ACS Sensors, 2019, 4: 2802.

doi: 10.1021/acssensors.9b01503     URL    
[6]
Li M J, Zheng Y N, Liang W B, Yuan R, Chai Y Q. ACS Appl. Mater. Inter., 2017, 9: 42111.
[7]
Zhang C, Rissman R A, Feng J. J. Alzheimers Dis. 2015, 44: 375.

doi: 10.3233/JAD-141890     URL    
[8]
Chen J M, Huang Y J, Kannan P, Zhang L, Lin Z Y, Zhang J W, Chen T, Guo L H. Anal. Chem., 2016, 88: 2149.

doi: 10.1021/acs.analchem.5b03735     URL    
[9]
Pak Y L, Swamy K M K, Yoon J Y. Sensors, 2015, 15: 24374.
[10]
Minta A, Kao J Y, Tsien R Y. J. Biol. Chem., 1989, 264: 8171.

doi: 10.1016/S0021-9258(18)83165-9     URL    
[11]
Wang Y, Zhang L, Han X Y, Zhang L W, Wang X Y, Chen L X. Chem. Eng. J., 2021, 406: 127166.
[12]
Jiao S, Wang X C, Sun Y H, Zhang L J, Sun W H, Sun Y, Wang X H, Ma P Y, Song D Q. Sens. Actuators B: Chem., 2018, 262: 188.

doi: 10.1016/j.snb.2018.01.186     URL    
[13]
Weng H, Yan B. Sens. Actuators B: Chem., 2016, 228: 702.

doi: 10.1016/j.snb.2016.01.101     URL    
[14]
Dong B L, Kong X Q, Lin W Y. ACS Chem. Biol. 2018, 13: 1714.

doi: 10.1021/acschembio.7b00901     URL    
[15]
Ye Q X, Ren S F, Huang H, Duan G G, Liu K M, Liu J B. ACS Omega, 2020, 5: 20698.
[16]
Townsend D M, Tew K D, Tapiero H. Biomed. Pharmacoth., 2003, 57: 145.

doi: 10.1016/S0753-3322(03)00043-X     URL    
[17]
(a) Zhao J J, Zhang K, Ji J, Liu B H. Talanta, 2016, 152: 196

doi: 10.1016/j.talanta.2016.02.008     URL    
(b) Herzenberg L A,. De Rosa S C, Dubs J G, Roederer M, Anderson M T, Ela S W, Deresinski S C, Herzenberg L A,. Proc. Natl. Acad. Sci USA., 1997, 94: 1967.

doi: 10.1073/pnas.94.5.1967     URL    
[18]
Dang Y C, Feng Y Z, Cheng D G. Progress in Chemistry, 2021, 33: 868.
党耶城, 冯杨振, 陈杜刚. 化学进展, 2021, 33: 868.).

doi: 10.7536/PC200658    
[19]
Li R, Lei C H, Zhao X E, Gao Y, Gao H, Zhu S Y, Wang H. Spectrochim. Acta, Part A., 2018, 188: 20.

doi: 10.1016/j.saa.2017.06.056     URL    
[20]
(a) Han B Y, Yuan J P, Wang E K. Anal. Chem., 2009, 81: 5569

doi: 10.1021/ac900769h     URL    
(b) Hu Y H, Wu Y M, Chen T T, Chu X, Yu R Q. Anal. Methods, 2013, 5: 3577.

doi: 10.1039/c3ay40088c     URL    
[21]
Li F, Liu J C, Hu Y T, Deng N, He J B. Talanta, 2018, 186: 330.

doi: 10.1016/j.talanta.2018.04.078     URL    
[22]
Ma Z Y, Wu T T, Li P P, Liu M L, Huang S, Li H T, Zhang Y Y, Yao S Z. Microchim. Acta., 2019, 186: 498.

doi: 10.1007/s00604-019-3613-4     URL    
[23]
Jin H J, Jin Q, Liang Z H, liu Y Q, Qu X J, Sun Q J. Anal. Chem., 2019, 91: 8958.

doi: 10.1021/acs.analchem.9b00924     URL    
[24]
Lv P Y, Xu Y Y, Liu Z, Li G P, Ye B X. Microchem. J., 2020, 152: 104255.
[25]
Cao Y, Liu J J, Zou L N, Ye B X, Li G P. Anal. Chim. Acta., 2021, 1145: 46.

doi: 10.1016/j.aca.2020.12.019     URL    
[26]
(a) Fan D Q, Shuang C S, Gu W L, Wang E K, Dong S J. ACS Appl. Mater. Inter., 2017, 9: 25870
(b) Tang X, Zeng X Y, Liu H M, Yang L L, Zhou H B, Cai H H. Mikrochim. Acta., 2019, 186: 572.

doi: 10.1007/s00604-019-3660-x     URL    
[27]
Zhang R L, Zhao J, Han G M, Liu Z J, Liu C, Zhang C, Liu B H, Jiang C L, Liu R Y, Zhao T T, Han M Y, Zhang Z P. J. Am. Chem. Soc., 2016, 138: 3769.

doi: 10.1021/jacs.5b12848     URL    
[28]
Li H D, Yao L C, Fan J L, Du J J, Wang J Y, Peng X J. Biosens. Bioelectron., 2017, 94: 536.

doi: 10.1016/j.bios.2017.03.039     URL    
[29]
Deng W F, Peng Y, Yang H, Tan Y M, Ma M, Xie Q J, Chen S W. ACS Appl. Mater. Inter., 2019, 11: 29072.
[30]
Maity S, Bain D, Chakraborty S, Kolay S, Patra A. ACS Sustain. Chem. Eng., 2020, 8: 18335.
[31]
Hu L Z, Deng L, Alsaiari S, Zhang D Y, Khashab N M. Anal. Chem., 2014, 86: 4989.

doi: 10.1021/ac500528m     URL    
[32]
Fang H F, Yu H, Lu Q, Fang X, Zhang Q L, Zhang J T, Zhu L L, Ma Q B. Anal. Chem., 2020, 92: 12825.
[33]
Wang Y, Deng M, Deng B G, Ye L M, Fei X F. J. Clin. Lab. Anal., 2019, 33: 22868.
[34]
Wang L Z, Liu Y, Yang Z P, Wang Y Y, Rao H B, Yue G Z, Wu C M, Lu C F, Wang X X. Dyes Pigm., 2020, 180: 108486.
[35]
Chen X J, Wang Y Z, Zhang Y Y, Chen Z H, Liu Yang, Li Z L, Li J H. Anal. Chem.; 2014, 86: 4278.

doi: 10.1021/ac404070m     URL    
[36]
Wu C Y, Zhu L J, Lu Q J, Li H T, Zhang Y Y, Yao S Z. Microchim. Acta., 2019, 186: 754.

doi: 10.1007/s00604-019-3862-2     URL    
[37]
Liu M W, He Y, Zhou J, Ge Y L, Zhou J G, Song G W. Anal. Chim. Acta., 2020, 1103: 134.

doi: 10.1016/j.aca.2019.12.069     URL    
[38]
Yuan C L, Qin X, Xu Y J, Shi R, Cheng S Q, Wang Y L. Spectrochim. Acta, Part A., 2021, 254: 119678.
[39]
Lin T R, Zhong L S, Chen H, Li Z H, Song Z P, Guo L Q, Fu F F. Microchim. Acta., 2017, 184: 1233.

doi: 10.1007/s00604-017-2147-x     URL    
[40]
Huang Y, Tan J, Cui L J, Zhou Z D, Zhang Z H, Zheng R, Xue Y W, Zhang M X, Li S S, Zhu N X, Liang J T, Li G Y, Zhou S F, Zhao Y X. Biosens. Bioelectron.; 2018, 102: 560.

doi: S0956-5663(17)30766-2     pmid: 29220804
[41]
Huang S, Yang, E L, Yao J D, Chu X, Liu Y, Zhang Y, Xiao Q. ACS Omega, 2019, 4: 9333.

doi: 10.1021/acsomega.9b00874     pmid: 31460022
[42]
Kim S K, Lee D H, Hong J, Yoon J. Acc. Chem. Res., 2009, 42: 23.

doi: 10.1021/ar800003f     URL    
[43]
Doherty M, Belcher C, Regan M, Jones A, Ledingham J. Ann. Rheum. Dis., 1996, 55: 432.

doi: 10.1136/ard.55.7.432     URL    
[44]
Xu S Q, He M, Yu H Ping, Cai X K, Tan X L, Lu B, Shu B H. Anal. Biochem., 2001, 299: 188.

pmid: 11730342
[45]
Chen C Y, Tan Y Z, Hsieh P H, Wang C M, Shibata H, Maejima K, Wang T Y, Hiruta Y, Cittero D, Liao W S. ACS Sens., 2020, 5: 1314.

doi: 10.1021/acssensors.9b02486     URL    
[46]
Kusakari Y, Nishikawa S, Ishiguro S I, Tamai M. Curr. Eye Res., 1997, 16: 600.

pmid: 9192170
[47]
Watanabe M, Suliman M E, Qureshi A R, Garcia-lopez E, BRNY P, Heimbrger O, Stenvinkel P, Lindholm B. Am. J. Clin. Nutr., 2008, 87: 1860.

pmid: 18541578
[48]
Xu Y, Wu X Q, Shen J S, Zhang H W. RSC Adv., 2015, 5: 92114.
[49]
Wadud S, Orrashid M M, Onodera R. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2002, 767: 369.

doi: 10.1016/S1570-0232(01)00607-9     URL    
[50]
Amini M K, Shahrokhian S, Tangestaninejad S. Anal.Chem., 1999, 71: 2502.
[51]
He Y, Wang X, Zhu J J, Zhong S H, Song G W. Analyst, 2012, 137: 4005.

doi: 10.1039/c2an35712g     URL    
[52]
Lee S, Yuen K K Y, Jolliffe K A, Yoon J. Chem. Soc. Rev., 2015, 44: 1749.

doi: 10.1039/C4CS00353E     URL    
[53]
Agteresch H J, Dagnelie P C, Van Den Berg J W, Wilson J H. Drugs., 1999, 58: 211.

pmid: 10473017
[54]
Gordon J L. Biochem. J., 1986, 233: 309.

pmid: 3006665
[55]
Wu Z H, Chen R C, Pan S, Liu H, Hu X L. Microchem. J., 2021, 164: 105976.
[56]
Xu X, Nan D Y, Yang H, Pan S, Liu H, Hu X L. Sens. Actuators B: Chem., 2020, 304: 127324.
[57]
Tedsana W, Tuntulani T, Ngeontae W. Anal. Chim. Acta., 2013, 783: 65.

doi: 10.1016/j.aca.2013.04.037     URL    
[58]
Caracciolo G, Palchetti S, Digiacomo L, Chiozzi R Z, Capriotti A L, Amenitsch H, Tentori P M, Palmieri V, Papi m, Cardarelli F, Pozzi D, Lagan A. ACS Appl. Mater. Inter., 2018, 10: 22951.
[59]
(a) Mathwig K, Albrecht T, Goluch E D, Rassaei L. Anal. Chem., 2015, 87: 5470

doi: 10.1021/acs.analchem.5b01167     pmid: 25927158
(b) Ray P C. Chem. Rev., 2010, 110: 5332.

doi: 10.1021/cr900335q     URL     pmid: 25927158
[60]
Fass D, Thorpe C. Chem. Rev., 2018, 118: 1169.

doi: 10.1021/acs.chemrev.7b00123     URL    
[61]
Zhao J H, Wang S, Lu S S, Liu G Y, Sun J, Yang X R. Anal. Chem., 2019, 91: 7828.

doi: 10.1021/acs.analchem.9b01553     URL    
[62]
Chen C X, Zhao D, Wang B, Ni P J, Jiang Y Y, Zhang C H, Yang F, Lu Y Z, Sun J. Anal. Chem., 2020, 92: 4639.

doi: 10.1021/acs.analchem.0c00224     URL    
[63]
Ni P J, Liu S Y, Jiang Y Y, Chen C X, Wang B, Zhang C H, Chen B, Lu Y Z. ACS Appl. Bio. Mater., 2020, 3: 6394.

doi: 10.1021/acsabm.0c00832     URL    
[64]
Yang Q, Li C Y, Li J H, Arabi M, Wang X Y, Peng H L, Xiong H, Choo J, Chen L X. J. Mater. Chem. C, 2020, 8: 5554.

doi: 10.1039/C9TC07072A     URL    
[65]
Wang M K, Wang S, Xie X M, Su X G. ACS Appl. Nano Mater., 2020, 3: 6034.

doi: 10.1021/acsanm.0c01243     URL    
[66]
Sun J, Wang B, Zhao X, Li Z J, Yang X R. Anal. Chem., 2016, 88: 1355.

doi: 10.1021/acs.analchem.5b03848     URL    
[67]
(a) Deng J J, Yu P, Yang L F, Mao L Q. Anal. Chem., 2013, 85: 2516

doi: 10.1021/ac303698p     URL    
(b) Zhang L L, Li M, Qin Y F, Chu Z D, Zhao S L. Analyst, 2014, 139: 6298.

doi: 10.1039/C4AN01415D     URL    
[68]
Mikalsen A, Andersen R A, Alexander J. Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1986, 83: 447.
[69]
Soreq H, Seidman S. Nat. Rev. Neurosci., 2001, 2: 294.

pmid: 11283752
[70]
Santarpia L, Grandone I, Contaldo F, Pasanisi F. J. Cachexia Sarcopeni., 2013, 4: 31.
[71]
Xu X M, Cen Y, Xu G H, Wei F D, Shi M L, Hu Q. Biosens. Bioelectron., 2019, 131: 232.

doi: 10.1016/j.bios.2019.02.031     URL    
[72]
Ellman G L, Courtney K D, Andres V, Featherstone R M. Biochem. Pharmacol., 1961, 7: 88.

doi: 10.1016/0006-2952(61)90145-9     URL    
[73]
Shi Y J, Fei L, Matson C, Mulligan P, Whetstine J R, Cole P A, Casero R A, Shi Yang. Cell, 2004, 119: 941.

doi: 10.1016/j.cell.2004.12.012     URL    
[74]
Pedersen M T, Helin K. Trends Cell Biol., 2010, 20: 662.

doi: 10.1016/j.tcb.2010.08.011     URL    
[75]
Deng L, Liu Q Q, Lei C Y, Zhang Y Y, Huang Y, Nie Z, Yao S Z. Anal. Chem., 2020, 92: 9421.

doi: 10.1021/acs.analchem.0c01927     pmid: 32489092
[76]
Li Y X, Li Y J, Huang L H, Bin Q, Lin Z Y, Yang H H, Cai Z W, Chen G N. J. Mater. Chem. B, 2013, 1: 1256.

doi: 10.1039/c2tb00398h     URL    
[77]
Biomarkers Definitions Working Group. Clin. Pharmacol. Ther., 2001, 69: 89.

doi: 10.1067/mcp.2001.113989     URL    
[78]
(a) Viger-Gravel J, Paruzzo F M, Cazaux C, Jabbour R, Leleu A, Canini F, Florian P, Ronzon F, Gajan D, Lesage A. Chem. Eur. J., 2020, 26: 8976

doi: 10.1002/chem.202001141     URL    
(b) Baha Ö, Sinem E, Murat U. Biosens. Bioelectron., 2021, 191: 113454.
[79]
Gubala V, Harris L F, Ricco A J, Tan M X, Williams D E. Anal. Chem., 2012, 84: 487.

doi: 10.1021/ac2030199     URL    
[80]
Zhu Y D, Peng J, Jiang L P, Zhu J J. Analyst, 2014, 139: 649.

doi: 10.1039/C3AN01987J     URL    
[81]
Pinching A J, Jeffries D J, Harris J R W, Swirsky D, Weber J N. Nature, 1990, 347: 324.
[82]
Hopkins M, Hau S, Tiernan C, Papadimitropoulos A, Chawla A, Beloukas A, Gerettiet A M. J. Clin. Virol., 2015, 69: 56.

doi: 10.1016/j.jcv.2015.05.020     pmid: 26209380
[83]
Zhang Y, Yang H, Yu J P, Wei H P. Anal. Bioanal. Chem., 2016, 408: 6115.

doi: 10.1007/s00216-016-9722-6     pmid: 27351993
[84]
Tang S X, Hewlett I. J. Infect. Dis., 2010, 201: 59.
[85]
Khuntikeo N, Titapun A, Loilome W, Yongvanit P, Thinkhamrop B, Chamadol B, Boonmars T, Nethanomsak T, Andrews R H, Petney T N, Sithithaworn P. Front. Med., 2018, 5: 1.
[86]
Taron W, Jamnongkan W, Techasen A, Phetcharaburanin J, Namwat N, Sithithaworn P, Khuntikeo N, Mukdasai S, Sayasone S, Loilome W, Ngeontae W. Talanta, 2020, 209: 120592.
[87]
Taron W, Jamnongkan W, Phetcharaburanin J, Klanrit P, Namwat N, Techasen A, Sithithaworn P, Khuntikeo N, Boonmarsb T, Loilome W, Ngeontae W. Spectrochim. Acta, Part A, 2021, 254: 119633.
[88]
(a) Slupsky C M, Cheypesh A, Chao D V, Fu H, Rankin K N, Marrie T J, Lacy P J. Proteome Res., 2009, 8: 3029

doi: 10.1021/pr900103y     URL     pmid: 21561070
(b) Ferguson B S, Buchsbaum S F, Wu T T, Hsieh K W, Xiao Y, Sun R, Soh H T. J. Am. Chem. Soc., 2011, 133: 9129.

doi: 10.1021/ja203981w     pmid: 21561070
[89]
Xu Y G, Liu Z M, Zhang B Q, Qu M, Mo C S, Luo J, Li S L. Food Control., 2016, 64: 54.

doi: 10.1016/j.foodcont.2015.12.022     URL    
[90]
Yamada K, Choi W, Cho B K, Jun S. Biosens. Bioelectron., 2016, 77: 137.

doi: 10.1016/j.bios.2015.09.030     pmid: 26402591
[91]
Su J, Zhang H J, Jiang B Y, Zheng H Z, Chai Y Q, Yuan R, Xiang Y. Biosens. Bioelectron., 2011, 29: 184.

doi: 10.1016/j.bios.2011.08.015     URL    
[92]
(a) Chikkaveeraiah B V, Bhirde A A, Morgan N Y, Eden H S, Chen X Y. ACS Nano., 2012, 6: 6546

doi: 10.1021/nn3023969     pmid: 31726821
(b) Wen W, Yan X, Zhu C Z, Du D, Lin Y H. Anal. Chem., 2017, 89: 138

doi: 10.1021/acs.analchem.6b04281     URL     pmid: 31726821
(c) Jones A, Dhanapala L, Kankanamage R N T, Kumar C V, Rusling J F. Anal. Chem., 2020, 92: 345.

doi: 10.1021/acs.analchem.9b05080     pmid: 31726821
[93]
Li Y X, Hong M, Qiu B, Lin Z Y, Chen Y T, Cai Z W, Chen G N. Biosens. Bioelectron., 2014, 54: 358.

doi: 10.1016/j.bios.2013.10.045     URL    
[94]
(a) Cole M B, Jones M V, Holyoak C. J. Appl. Bacteriol. 1990, 69: 63

doi: 10.1111/j.1365-2672.1990.tb02912.x     URL     pmid: 23418904
(b) Sharma H, Mutharasan R. Anal. Chem., 2013, 85: 3222.

doi: 10.1021/ac303561c     pmid: 23418904
[95]
Liu Y S, Wang J, Song X L, Xu K, Chen H S, Zhao C, Li J. Microchim. Acta. 2018, 185: 360.

doi: 10.1007/s00604-018-2896-1     URL    
[96]
Muniesa M, Jofre J, Aljaro C, Anicet R. Environ. Sci. Technol., 2006, 40: 7141.

pmid: 17180960
[97]
Zhang B Y, Zou H J, Qi Y F, Zhang X M, Sheng R T, Zhang Y, Sun R M, Chen L X, Lv R J. Microchem. J., 2021, 164: 106013.
[98]
(a) Meyfour A, Pooyan P, Pahlavan S, Rezaei-Tavirani M, Gourabi H, Baharvand H, Salekdehet G H. J. Proteome Res., 2017, 16: 4259

doi: 10.1021/acs.jproteome.7b00446     pmid: 26143930
(b) Jayaram S, Gupta M K, Shivakumar B M, Ghatge M, Sharma A, Vangala R K, Sirdeshmukh R. J. Proteome Res., 2015, 14: 3432.

doi: 10.1021/acs.jproteome.5b00488     pmid: 26143930
[99]
Qian Z S, Shan X Y, Chai L J, Chen J R, Feng H. Biosens. Bioelectron., 2015, 68: 225.

doi: 10.1016/j.bios.2014.12.057     URL    
[100]
Wang G L, Xin F, Wu X M, Hu X L. Biosens. Bioelectron., 2016, 81: 214.

doi: 10.1016/j.bios.2016.02.038     URL    
[101]
Han T Q, Li X J, Li Y Y, Cao W, Wu D, Du B, Wei Q. Sens. Actuators B: Chem., 2014, 205: 176.

doi: 10.1016/j.snb.2014.08.070     URL    
[102]
Zhuge W Y, Tan X F, Zhang R Y, Li H, Zheng, G X. Chin. Chem. Lett., 2019, 30: 1307.

doi: 10.1016/j.cclet.2019.02.026     URL    
[103]
Liu Y Y, Guo Y, Luo X G, Liu G Y, Sun Q. Progress in Chemistry, 2021, 33: 199.
刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 化学进展, 2021, 33: 199.).

doi: 10.7536/PC200765    
[1] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[2] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[3] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[4] 傅力, 张怀伟, 叶玮婷, 叶辰, 林正得. 固态电分析化学及其植物研究[J]. 化学进展, 2021, 33(8): 1440-1449.
[5] 任春平, 聂雯, 冷俊强, 刘振波. 反应型次氯酸荧光探针[J]. 化学进展, 2021, 33(6): 942-957.
[6] 杨笑宇, 贾珊珊, 张娟, 亓英华, 胡雪雯, 沈宝洁, 钟鸿英. 质谱光电离/解离技术和生物分子结构鉴定[J]. 化学进展, 2021, 33(12): 2316-2333.
[7] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[8] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[9] 谢嘉恩, 罗雨珩, 张黔玲, 张平玉. 金属配合物在双光子荧光探针中的应用研究[J]. 化学进展, 2021, 33(1): 111-123.
[10] 张丹维, 王辉, 黎占亭. 芳香大分子和超分子螺旋管构筑及其功能[J]. 化学进展, 2020, 32(11): 1665-1679.
[11] 袁跃华, 朱永军, 胡伟, 秦君, 田茂忠, 冯锋. 基于小分子的铜离子与汞离子双识别荧光探针[J]. 化学进展, 2019, 31(4): 550-560.
[12] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[13] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[14] 唐雨平, 何艳梅, 冯宇, 范青华. 基于大环主体化合物的不对称超分子催化[J]. 化学进展, 2018, 30(5): 476-490.
[15] 罗钧, 郑炎松. 手性杯芳烃及其超分子手性[J]. 化学进展, 2018, 30(5): 601-615.