English
新闻公告
More
化学进展 2022, Vol. 34 Issue (6): 1431-1439 DOI: 10.7536/PC210909 前一篇   后一篇

• 综述与评论 •

二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺

吴亚娟1,*(), 罗静雯1, 黄永吉2   

  1. 1 西南民族大学化学与环境学院 国家民委化学基础重点实验室 成都 610041
    2 中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室 兰州 730000
  • 收稿日期:2021-09-07 修回日期:2021-11-30 出版日期:2022-01-19 发布日期:2022-01-05
  • 通讯作者: 吴亚娟
  • 基金资助:
    国家自然科学基金项目(22002122); 西南民族大学中央高校基本科研业务费专项项目(2020NQN08)

Catalytic Synthesis of N,N-Dimethylformamide from Carbon Dioxide and Dimethylamine

Yajuan Wu1(), Jingwen Luo1, Yongji Huang2   

  1. 1 Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
    2 State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,Lanzhou 730000, China
  • Received:2021-09-07 Revised:2021-11-30 Online:2022-01-19 Published:2022-01-05
  • Contact: Yajuan Wu
  • Supported by:
    National Natural Science Foundation of China(22002122); Fundamental Research Funds for the Central Universities, Southwest Minzu University(2020NQN08)

二氧化碳(CO2)是大气中主要温室气体之一,也是丰富、安全、可再生的碳一资源。将CO2催化转化为高附加值化学品不仅能改善人类长期依赖化石资源的困境,还能有效减少CO2排放,助力实现“碳达峰、碳中和”这一“双碳”目标。N,N-二甲基甲酰胺(DMF)是一种年产百万吨级的平台化合物,是优良的溶剂以及重要的化工中间体。因此,以CO2作为羰源,通过高效催化体系的构建实现CO2与二甲胺反应合成DMF具有重要意义。本文分别从还原剂、催化体系和反应机理等角度综述了这一领域近年来的研究进展。最后,对CO2合成DMF催化过程中所面临的问题和未来的发展方向进行了探讨和展望。

Global warming and the energy crisis are posing increasingly severe risks for the economy, ecosystems and human health. As one kind of dominant greenhouse gas, carbon dioxide (CO2) contributes most to global warming, while it is also considered as an abundant, nontoxic, and renewable C1 source. Thus far, transforming CO2 into high value-added chemicals through modern technologies has attracted significant attention owing to its unique advantages. It can not only alleviate human reliance on fossil resources, but also effectively weaken the greenhouse effect. It is of great help to achieve China’s “dual-carbon” goal of “carbon peak and carbon neutrality”. N,N-Dimethylformamide (DMF), an extremely versatile solvent and important chemical intermediate, can be synthesized by using CO2 and dimethylamine as raw materials over different catalysts. Therefore, the development of efficient catalytic systems is crucial for the transformation of CO2 into high value-added products. This article reviews the current status and progress in the synthesis of DMF with CO2 and dimethylamine with respect to reducing agents, catalytic systems as well as the reaction mechanisms of these different catalytic systems. Furthermore, we conclude the frontiers and future prospects of the catalytic synthesis of DMF from CO2 and dimethylamine, providing readers a snapshot of this field.

Contents

1 Introduction

2 H2 as reducing agent

2.1 Noble catalytic system

2.2 Non-noble catalytic system

3 Other reducing agent

3.1 Hydrosilanes as reducing agent

3.2 Boranes as reducing agent

3.3 Ammonium salts as reducing agent

4 Conclusion and outlook

()
图1 二甲胺与CO2/H2催化合成DMF反应[7]
Fig. 1 Catalytic synthesis of DMF with dimethylamine and CO2/ H 2 [7]
图2 (PPh3)3RhCl催化DMF合成反应机理[9]
Fig. 2 The reaction mechanism of DMF synthesis catalyzed by (PPh3)3RhCl[9]
图3 Ru催化DMF合成反应机理[12]
Fig. 3 Reaction mechanism of Ru-catalyzed synthesis of DMF[12]
图4 Ru pincer催化二甲胺与CO2/H2甲酰化反应[18]
Fig. 4 Ru pincer catalyze formylation of dimethylamine with CO2/ H 2 [18]
图5 Ru-Macho催化DMF合成反应机理[23]
Fig. 5 Mechanism for DMF synthesis catalyzed by Ru-Macho[23]
图6 两步法合成DMF[24]
Fig. 6 Concept of the two-step process for the synthesis of DMF[24]
图7 Co pincer配合物催化CO2/H2、胺甲酰化反应[25]
Fig. 7 Co pincer catalyze formylation of dimethylamine with CO2/ H 2 [25]
图8 Co pincer催化胺与CO2/H2甲酰化反应机理[30]
Fig. 8 Co pincer catalyze formylation of amine with CO2/ H 2 [30]
图9 Ni(Ⅱ)配合物催化二甲胺与CO2/H2合成DMF[31]
Fig. 9 Ni(Ⅱ)-catalyzed DMF synthesis from CO2/ H 2 [31]
图10 PS-PEG负载Ru(Ⅱ)配合物催化二甲胺甲酰化反应[37]
Fig. 10 Formylation of dimethylamine catalyzed by PS-PEG-bound Ru complexes[37]
图11 Ru@PP-POP催化剂合成[38]
Fig. 11 Synthesis of Ru@PP-POP catalysts[38]
图12 NHCs-Ir及POMPs-NHC-Ir结构示意图[47]
Fig. 12 Structure of NHCs-Ir and POMPs-NHC-Ir[47]. Copyright 2021, Wiley-VCH
图13 FeNi3/KCC-1/APTPOSS/TCT/PVA/Cu(Ⅱ) MNPs结构示意图[52]
Fig. 13 Structure of FeNi3/KCC-1/APTPOSS/TCT/PVA/Cu(Ⅱ) MNPs[52]
图14 硅烷作为氢源还原 CO 2 [56,57]
Fig. 14 Reduction of CO2 by silane as hydrogen source[56,57]
图15 Ru催化CO2还原合成酰胺和HCOOH反应机理[67]
Fig. 15 Proposed reaction mechanism for dialkyl formamide and HCOOH generation by CO2 reduction[67]
[1]
He M Y, Sun Y H, Han B X. Angew. Chem. Int. Ed., 2013, 52(37): 9620.

doi: 10.1002/anie.201209384     URL    
[2]
Liu Q, Wu L P, Jackstell R, Beller M. Nat. Commun., 2015, 6: 5933.

doi: 10.1038/ncomms6933     URL    
[3]
Artz J, Müller T E, Thenert K. Chem. Rev., 2018, 118(2): 434.

doi: 10.1021/acs.chemrev.7b00435     URL    
[4]
Muzart J. Tetrahedron, 2009, 65(40): 8313.

doi: 10.1016/j.tet.2009.06.091     URL    
[5]
Weissermel K, Arpe H J. Industrial Organic Chemistry. 3rd ed. Wiley-VCH: Weinheim, 1997.
[6]
Tu T, Shen Y J, Zheng Q S. CN 111205198, 2020.
( 涂涛, 申雅靓, 郑庆舒. CN 111205198, 2020.).
[7]
Haynes P, Slaugh L H, Kohnle J F. Tetrahedron Lett., 1970, 11(5): 365.

doi: 10.1016/0040-4039(70)80086-7     URL    
[8]
Kudo K, Phala H, Sugita N, Takezaki Y. Chem. Lett., 1977, 6(12): 1495.

doi: 10.1246/cl.1977.1495     URL    
[9]
Heng P, Kiyoshi K, Nobuyuki S. Bull. Inst. Chem. Res., Kyoto Univ., 1981, 59(2): 88.
[10]
Schreiner S, Yu J Y, Vaska L. J. Chem. Soc., Chem. Commun., 1988(9): 602.
[11]
Schreiner S, Yu J Y, Vaska L. Inorganica Chimica Acta, 1988, 147(2): 139.

doi: 10.1016/S0020-1693(00)83362-9     URL    
[12]
Ishida H, Tanaka H, Tanaka K, Tanaka T. Chem. Lett., 1987, 16(4): 597.

doi: 10.1246/cl.1987.597     URL    
[13]
Jessop P G, Hsiao Y, Ikariya T, Noyori R. J. Am. Chem. Soc., 1994, 116(19): 8851.

doi: 10.1021/ja00098a072     URL    
[14]
Jessop P G, Hsiao Y, Ikariya T, Noyori R. J. Am. Chem. Soc., 1996, 118(2): 344.

doi: 10.1021/ja953097b     URL    
[15]
Kröcher O, Köppel R A, Baiker A. Chem. Commun., 1997(5): 453.
[16]
Kayaki Y, Suzuki T, Ikariya T. Chem. Lett., 2001, 30(10): 1016.

doi: 10.1246/cl.2001.1016     URL    
[17]
Behr A, Ebbinghaus P, Naendrup F. Chem. Eng. Technol., 2004, 27(5): 495.

doi: 10.1002/ceat.200403221     URL    
[18]
Zhang L, Han Z B, Zhao X Y, Wang Z, Ding K L. Angew. Chem. Int. Ed., 2015, 54(21): 6186.

doi: 10.1002/anie.201500939     pmid: 25850597
[19]
Ding K L, Zhang L, Han Z B, Wang Z, Zhao X Y. CN , 2016.
( 丁奎岭, 张磊, 韩召斌, 王正, 赵晓宇. CN 105985254, 2016.).
[20]
Ding K L, Qiu J, Yan T, Zhang L, Wang Z. CN 109553641, 2017.
( 丁奎岭, 邱佳, 闫涛, 张磊, 王正. CN 109553641, 2017.).
[21]
Kuhlmann R, Schmitz S, Haβmann K, Prüllage A, Behr A. Appl. Catal. A Gen., 2017, 539: 90.

doi: 10.1016/j.apcata.2017.03.037     URL    
[22]
Kuhlmann R, Prüllage A, Künnemann K, Behr A, Vorholt A J. J. CO2 Util., 2017, 22: 184.
[23]
Kuhlmann R, Nowotny M, Künnemann K U, Behr A, Vorholt A J. J. Catal., 2018, 361: 45.

doi: 10.1016/j.jcat.2018.02.006     URL    
[24]
Kuhlmann R, Künnemann K U, Hinderink L, Behr A, Vorholt A J. ACS Sustainable Chem. Eng., 2019, 7(5): 4924.

doi: 10.1021/acssuschemeng.8b05477     URL    
[25]
Minato M, Zhou D Y, Sumiura K I, Hirabayashi R, Yamaguchi Y, Ito T. Chem. Commun., 2001(24): 2654.
[26]
Minato M, Zhou D Y, Sumiura K I, Oshima Y, Mine S, Ito T, Kakeya M, Hoshino K, Asaeda T, Nakada T, Osakada K. Organometallics, 2012, 31(14): 4941.

doi: 10.1021/om200646c     URL    
[27]
Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson P J, Scopelliti R, Laurenczy G, Beller M. Angew. Chem. Int. Ed., 2010, 49(50): 9777.

doi: 10.1002/anie.201004263     URL    
[28]
Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M. J. Am. Chem. Soc., 2012, 134(51): 20701.

doi: 10.1021/ja307924a     URL    
[29]
Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M. Chem. Eur. J., 2012, 18(1): 72.

doi: 10.1002/chem.201101343     URL    
[30]
Daw P, Chakraborty S, Leitus G, Diskin-Posner Y, Ben-David Y, Milstein D. ACS Catal., 2017, 7(4): 2500.

doi: 10.1021/acscatal.7b00116     URL    
[31]
Affan M A, Jessop P G. Inorg. Chem., 2017, 56(12): 7301.

doi: 10.1021/acs.inorgchem.7b01242     URL    
[32]
Affan M A, Schatte G, Jessop P G. Inorg. Chem., 2020, 59(19): 14275.

doi: 10.1021/acs.inorgchem.0c01401     URL    
[33]
Kröcher O, Köppel R A, Baiker A. Chem. Commun., 1996(13): 1497.
[34]
Kröcher O, Köppel R A, Fr?ba M, Baiker A. J. Catal., 1998, 178(1): 284.

doi: 10.1006/jcat.1998.2151     URL    
[35]
Schmid L, Baiker A. Stud. Surf. Sci. Catal., 2000, 557.
[36]
Krocher O, Koppel R A, Baiker A J. Mol. Catal. A: Chem., 1999, 140(2): 185.

doi: 10.1016/S1381-1169(98)00224-6     URL    
[37]
Kayaki Y, Shimokawatoko Y, Ikariya T. Adv. Synth. Catal., 2003, 345(12): 175.

doi: 10.1002/adsc.200390007     URL    
[38]
Gunasekar G H, Padmanaban S, Park K, Jung K D, Yoon S. ChemSusChem, 2020, 13(7): 1735.

doi: 10.1002/cssc.201903364     URL    
[39]
Wang G Q, Jiang M, Ji G J, Sun Z, Li C Y, Yan L, Ding Y J. ACS Sustainable Chem. Eng., 2020, 8(14): 5576.

doi: 10.1021/acssuschemeng.9b07471     URL    
[40]
Zhang K, Zong L B, Jia X F. Adv. Synth. Catal., 2021, 363(5): 1335.

doi: 10.1002/adsc.202001336     URL    
[41]
Cui X J, Zhang Y, Deng Y Q, Shi F. Chem. Commun., 2014, 50(2): 189.

doi: 10.1039/C3CC46427J     URL    
[42]
Zhang Y J, Wang H L, Yuan H K, Shi F. ACS Sustainable Chem. Eng., 2017, 5(7): 5758.

doi: 10.1021/acssuschemeng.7b00363     URL    
[43]
Dai X C, Wang B, Wang A Q, Shi F. Chin. J. Catal., 2019, 40(8): 1141.

doi: 10.1016/S1872-2067(19)63397-8     URL    
[44]
Bi Q Y, Lin J D, Liu Y M, Xie S H, He H Y, Cao Y. Chem. Commun., 2014, 50(65): 9138.

doi: 10.1039/C4CC02973A     URL    
[45]
Kumar S, Kumar P, Deb A, Maiti D, Jain S L. Carbon, 2016, 100: 632.

doi: 10.1016/j.carbon.2016.01.018     URL    
[46]
Zhang Y, Wang J Q, Zhu H B, Tu T. Chem. Asian J., 2018, 13(20): 3018.

doi: 10.1002/asia.201800953     URL    
[47]
Shen Y J, Zheng Q S, Chen Z N, Wen D H, Clark J H, Xu X, Tu T. Angew. Chem. Int. Ed., 2021, 60(8): 4125.

doi: 10.1002/anie.202011260     URL    
[48]
Schaub T, Paciello R, Pazicky M, Fachinetti G, Preti D. US 2013102807, 2013.
[49]
Mu J C, Liu J F, Ran Z Z, Arif M, Gao M, Wang C, Ji S F. Ind. Eng. Chem. Res., 2020, 59(14): 6543.

doi: 10.1021/acs.iecr.0c00242     URL    
[50]
Liu J L, Guo C K, Zhang Z F, Jiang T, Liu H Z, Song J L, Fan H L, Han B X. Chem. Commun., 2010, 46(31): 5770.

doi: 10.1039/c0cc00751j     URL    
[51]
Kumar S, Jain S L. RSC Adv., 2014, 4(109): 64277.

doi: 10.1039/C4RA12151A     URL    
[52]
Rahele Z, Seyed Mahdi S, Mahboobeh Z, Seyed Mohsen S. Catal. Lett., 2018, 148(8): 2487.

doi: 10.1007/s10562-018-2475-4     URL    
[53]
Wu Y J, Wang T, Wang H L, Wang X Z, Dai X C, Shi F. Nat. Commun., 2019, 10: 2599.

doi: 10.1038/s41467-019-10633-y     URL    
[54]
Yang J, Wang L J, Sun A L, Zhiani R. Catal. Lett., 2021, 151(2): 573.

doi: 10.1007/s10562-020-03307-8     URL    
[55]
Das Neves Gomes C, Jacquet O, Villiers C, Thuéry P, Ephritikhine M, Cantat T. Angew. Chem. Int. Ed., 2012, 51(1): 187.

doi: 10.1002/anie.201105516     URL    
[56]
Jacquet O, Das Neves Gomes C, Ephritikhine M, Cantat T. J. Am. Chem. Soc., 2012, 134(6): 2934.

doi: 10.1021/ja211527q     URL    
[57]
Cantat T, Gomes C, Jacquent O. US 2014018567, 2014.
[58]
Motokura K, Takahashi N, Kashiwame D, Yamaguchi S, Miyaji A, Baba T. Catal. Sci. Technol., 2013, 3(9): 2392.

doi: 10.1039/c3cy00375b     URL    
[59]
Fang C, Lu C L, Liu M H, Zhu Y L, Fu Y, Lin B L. ACS Catal., 2016, 6(11): 7876.

doi: 10.1021/acscatal.6b01856     URL    
[60]
Nale D B, Bhanage B M. Synlett, 2016, 27(09): 1413.

doi: 10.1055/s-0035-1561571     URL    
[61]
Saptal V B, Bhanage B M. ChemSusChem, 2016, 9(15): 1980.

doi: 10.1002/cssc.201600467     URL    
[62]
Ghosh S, Ghosh A, Biswas S, Sengupta M, Roy D, Islam S M. ChemistrySelect, 2019, 4(13): 3961.

doi: 10.1002/slct.201900138     URL    
[63]
Wang P B, He Q, Zhang H, Sun Q D, Cheng Y J, Gan T, He X H, Ji H B. Catal. Commun., 2021, 149: 106195.

doi: 10.1016/j.catcom.2020.106195     URL    
[64]
Nale D B, Rath D, Parida K M, Gajengi A, Bhanage B M. Catal. Sci. Technol., 2016, 6(13): 4872.

doi: 10.1039/C5CY02277K     URL    
[65]
Saptal V B, Sasaki T, Bhanage B M. ChemCatChem, 2018, 10(12): 2593.

doi: 10.1002/cctc.201800185     URL    
[66]
Saptal V B, Juneja G, Bhanage B M. New J. Chem., 2018, 42(19): 15847.

doi: 10.1039/C8NJ02816H     URL    
[67]
Kobayashi K, Kikuchi T, Kitagawa S, Tanaka K. Angew. Chem. Int. Ed., 2014, 53(44): 11813.

doi: 10.1002/anie.201406553     pmid: 25199795
[1] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[2] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[3] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[4] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[5] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[6] 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 基于壳聚糖二氧化碳智能材料[J]. 化学进展, 2020, 32(4): 417-422.
[7] 兰兴旺, 白国义. 共价有机框架催化材料:二氧化碳转化与利用[J]. 化学进展, 2020, 32(10): 1482-1493.
[8] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[9] 杨梦茹, 李华静, 罗宁丹, 李锦, 周安宁, 李远刚. 二氧化碳电催化还原产乙烯: 催化剂、反应条件和反应机理[J]. 化学进展, 2019, 31(2/3): 245-257.
[10] 李嘉伟, 任颜卫, 江焕峰. 金属有机框架材料在CO2化学固定中的应用[J]. 化学进展, 2019, 31(10): 1350-1361.
[11] 张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰*. CO2:羧基化反应的C1合成子[J]. 化学进展, 2018, 30(5): 547-563.
[12] 刘孟岩, 王元双, 邓雯, 温珍海. 铜基电催化剂还原CO2[J]. 化学进展, 2018, 30(4): 398-409.
[13] 吴锦钧, 杨震, 焦剑梅, 孙鹏飞, 范曲立, 黄维. 水溶性苝酰亚胺类材料的合成及其生物应用[J]. 化学进展, 2017, 29(2/3): 216-230.
[14] 张圆正, 谢利利, 周怡静, 殷立峰*. 二维Z型光催化材料及其在环境净化和太阳能转化中的应用[J]. 化学进展, 2016, 28(10): 1528-1540.
[15] 刘一凡, 马玉玲, 徐琴琴, 银建中. 支撑型离子液体膜的制备、表征及稳定性评价[J]. 化学进展, 2013, 25(10): 1795-1804.