English
新闻公告
More
化学进展 2022, Vol. 34 Issue (9): 2024-2034 DOI: 10.7536/PC211117 前一篇   后一篇

• 综述 •

基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用

赖燕琴1, 谢振达1,*(), 付曼琳2, 陈暄1, 周戚1, 胡金锋1,3,*()   

  1. 1 台州学院药学院 台州 318000
    2 浙江工业大学生物工程学院 杭州 310014
    3 复旦大学药学院 上海 201203
  • 收稿日期:2021-11-24 修回日期:2022-01-17 出版日期:2022-09-20 发布日期:2022-04-01
  • 作者简介:

    谢振达 讲师;2019年于浙江工业大学获得博士学位。目前的主要研究方向为以1,8-萘酰亚胺为荧光基团的新型荧光探针构建及其生物成像研究。以第一作者或参与者身份在Sens. Actuators B:Chem.Talanta等国内外期刊发表数篇SCI论文,并获国家发明专利授权多项。

    胡金锋 二级教授/博士生导师;1996年于兰州大学获博士学位。相继在中国医学科学院药物研究所、德国HKI天然产物研究所、美国密西西比大学、Scripps研究所、美国红杉科学公司、华东师范大学和复旦大学等单位学习和工作。主持国家级和省部级科研项目近20项,发表SCI论文180余篇。主要从事天然化合物新颖结构发现及其生物功能多样性研究、基于天然产物的化学生物学和新型天然药物先导化合物等方面的科学研究。

  • 基金资助:
    台州市科技项目(2003gy14); 台州学院科研项目(2019PY021); 国家大学生创新创业训练计划项目资助(202010350033)

Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes

Yanqin Lai1, Zhenda Xie1(), Manlin Fu2, Xuan Chen1, Qi Zhou1, Jin-Feng Hu1,3()   

  1. 1 School of Pharmaceutical Sciences, Taizhou University,Taizhou 318000, China
    2 College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
    3 School of Pharmacy, Fudan University, Shanghai 201203, China
  • Received:2021-11-24 Revised:2022-01-17 Online:2022-09-20 Published:2022-04-01
  • Contact: *xiezd2019@tzc.edu.cn (Zhenda Xie);jfhu@tzc.edu.cn (Jin-Feng Hu)
  • Supported by:
    Taizhou Science and Technology Project(2003gy14); Project of Taizhou University(2019PY021); National College Students Innovation and Entrepreneurship Training Program(202010350033)

生命受细胞内复杂的代谢过程控制。科学界正在进行的努力之一是研究和理解这些动态生化反应以及生物分子在维持生命中的作用。荧光探针具有操作简单、成本低、灵敏度高、可在活体中多通道和实时可视化等优点,已被广泛用于分析物在生理和病理过程中的可视化研究。然而,多数荧光探针只可响应单分析物,不适于复杂生物体系中多分析物的分析检测。近5年来,以1,8-萘酰亚胺为荧光报告基团的多分析物荧光探针在生物或环境领域得到了快速的发展。依据探针荧光发光机制,本文将其分为单发光机制(PET、ICT和FRET)、双发光机制(PET-ICT、PET-FRET和ICT-FRET等双机制协同作用)等方式,综述了国内外基于1,8-萘酰亚胺的多分析物荧光探针在设计策略、识别过程、光学性质和细胞成像等方面的新进展,并对此类荧光探针的发展趋势和挑战进行了展望。

Life are governed by cellular complex metabolic processes. One of the on-going endeavours in the scientific community is to study and understand these dynamic biochemical reactions and the roles of biomolecules in sustaining life. Fluorescent probes have been widely used in the visualization of analytes in physiological and pathological processes, due to their advantages such as easy operation, low cost, high sensitivity, capability of multi-channel and real-time visualization in vivo. However, most fluorescent probes can only respond to single analyte, which is not suitable to mornitor multiple analytes in complex biological system. In recent five years, significantly more multi-analyte fluorescent probes based on 1,8-naphthimide fluorophore have been designed in biological or environmental field. Categorized by the fluorescent mechanisms, such as single fluorescent mechanism (e.g. photoinduced electron transfer (PET), intramolecular charge transfer (ICT) and fluorescence resonance energy transfer (FRET)), dual fluorescent mechanisms (e.g. PET-ICT, PET-FRET, and ICT-FRET) and so on, this review highlights the recent progress in designing strategies, corresponding recognition process, optical property and cell imaging of 1,8-naphthalimide-based multi-analyte fluorescent probes. Finally, the development trend and possible challenges of such fluorescent probes are prospected.

Contents

1 Introduction

2 Multi-analyte fluorescent probes based on single fluorescent mechanism

2.1 Multi-analyte fluorescent probes based on PET

2.2 Multi-analyte fluorescent probes based on ICT

2.3 Multi-analyte fluorescent probes based on FRET

3 Multi-analyte fluorescent probes based on dual fluorescent mechanisms

3.1 Multi-analyte fluorescent probes based on PET and ICT

3.2 Multi-analyte fluorescent probes based on PET and FRET

3.3 Multi-analyte fluorescent probes based on ICT and FRET

3.4 Multi-analyte fluorescent probes based on ICT and TICT

4 Other multi-analyte fluorescent probes

5 Conclusion and outlook

()
图式1 荧光探针1的化学结构和检测机理[32]
Scheme 1 Chemical structure and reaction mechanism of probe 1[32]
图式2 荧光探针2的化学结构和检测机理[35]
Scheme 2 Chemical structure and reaction mechanism of probe 2[35]
图式3 荧光探针3的化学结构和检测机理[37]
Scheme 3 Chemical structure and reaction mechanism of probe 3[37]
图式4 荧光探针4的化学结构和检测机理[38]
Scheme 4 Chemical structure and reaction mechanism of probe 4[38]
图式5 荧光探针5的化学结构和检测机理[39]
Scheme 5 Chemical structure and reaction mechanism of probe 5[39]
图式6 荧光探针6的化学结构和检测机理[40]
Scheme 6 Chemical structure and reaction mechanism of probe 6[40]
图式7 荧光探针7的化学结构和检测机理[42]
Scheme 7 Chemical structure and reaction mechanism of probe 7[42]
图式8 荧光探针8的化学结构和检测机理[44]
Scheme 8 Chemical structure and reaction mechanism of probe 8[44]
图式9 荧光探针9~11的化学结构和检测机理[47⇓~49]
Scheme 9 Chemical structures and reaction mechanisms of probes 9~11[47⇓~49]
图式10 荧光探针12的化学结构和检测机理[28]
Scheme 10 Chemical structure and reaction mechanism of probe 12[28]
图式11 荧光探针13的化学结构和检测机理[29]
Scheme 11 Chemical structure and reaction mechanism of probe 13[29]
图式12 荧光探针14的化学结构和检测机理[51]
Scheme 12 Chemical structure and reaction mechanism of probe 14[51]
图式13 荧光探针15的化学结构和检测机理[54]
Scheme 13 Chemical structure and reaction mechanism of probe 15[54]
图式14 荧光探针16的化学结构和检测机理[56]
Scheme 14 Chemical structure and reaction mechanism of probe 16[56]
图式15 荧光探针17的化学结构和检测机理[57]
Scheme 15 Chemical structure and reaction mechanism of probe 17[57]
图式16 荧光探针18的化学结构和检测机理[60]
Scheme 16 Chemical structure and reaction mechanism of probe 18[60]
图式17 荧光探针19的化学结构和检测机理[61]
Scheme 17 Chemical structure and reaction mechanism of probe 19[61]
图式18 荧光探针20的化学结构和检测机理[65]
Scheme 18 Chemical structure and reaction mechanism of probe 20[65]
图式19 荧光探针21的化学结构和检测机理[30]
Scheme 19 Chemical structure and reaction mechanism of probe 21[30]
图式20 荧光探针22的化学结构和检测机理[66]
Scheme 20 Chemical structure and reaction mechanism of probe 22[66]
图式21 荧光探针23的化学结构和检测机理[68]
Scheme 21 Chemical structure and reaction mechanism of probe 23[68]
图式22 荧光探针24的化学结构和检测机理[71]
Scheme 22 Chemical structure and reaction mechanism of probe 24[71]
[1]
Liu H W, Chen L L, Xu C Y, Li Z, Zhang H Y, Zhang X B, Tan W H. Chem. Soc. Rev., 2018, 47(18): 7140.

doi: 10.1039/C7CS00862G     URL    
[2]
Jiang C Y, Huang H J, Kang X Y, Yang L, Xi Z, Sun H Y, Pluth M D, Yi L. Chem. Soc. Rev., 2021, 50(13): 7436.

doi: 10.1039/D0CS01096K     URL    
[3]
Jiao X Y, Li Y, Niu J Y, Xie X L, Wang X, Tang B. Anal. Chem., 2018, 90(1): 533.

doi: 10.1021/acs.analchem.7b04234     URL    
[4]
Liu X, Li N, Li M, Chen H, Zhang N N, Wang Y L, Zheng K B. Coord. Chem. Rev., 2020, 404: 213109.

doi: 10.1016/j.ccr.2019.213109     URL    
[5]
Ren C P, Nie W, Leng J Q, Liu Z B. Prog. Chem., 2021, 33(6): 942.
( 任春平, 聂雯, 冷俊强, 刘振波. 化学进展, 2021, 33(6): 942. ).

doi: 10.7536/PC200869    
[6]
Wang X C, Wang Y S, Han Q X, Sun X L. Prog. Chem., 2021, 33(9): 1496.
( 王学川, 王岩松, 韩庆鑫, 孙晓龙. 化学进展, 2021, 33(9): 1496. ).

doi: 10.7536/PC201116    
[7]
Wang S, Ren W X, Hou J T, Won M, An J, Chen X Y, Shu J, Kim J S. Chem. Soc. Rev., 2021, 50(16): 8887.

doi: 10.1039/D1CS00083G     URL    
[8]
Zhou Y Q, Wang X, Zhang W, Tang B, Li P. Front. Chem. Sci. Eng., 2022, 16(1): 4.

doi: 10.1007/s11705-021-2041-2     URL    
[9]
Kolanowski J L, Liu F, New E J. Chem. Soc. Rev., 2018, 47(1): 195.

doi: 10.1039/c7cs00528h     pmid: 29119192
[10]
Chen S H, Pang C M, Chen X Y, Yan Z H, Huang S M, Li X D, Zhong Y T, Wang Z Y. Chin. J. Org. Chem., 2019, 39: 1846.

doi: 10.6023/cjoc201901033     URL    
( 陈思鸿, 庞楚明, 陈孝云, 严智浩, 黄诗敏, 李香弟, 钟雅婷, 汪朝阳, 有机化学, 2019, 39: 1846).

doi: 10.6023/cjoc201901033    
[11]
Yu H B, Xiao Y, Jin L J. J. Am. Chem. Soc., 2012, 134(42): 17486.

doi: 10.1021/ja308967u     URL    
[12]
Ma Q Q, Zhuo W F, Zhai Z D, Gong G S, Zhang T, Xiao H B, Zhou Z Y, Liu Y Y. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 261: 120031.

doi: 10.1016/j.saa.2021.120031     URL    
[13]
Ma Q J, Wang C Y, Mao G J, Tian M J, Sun J G, Feng S X. New J. Chem., 2020, 44(42): 18389.

doi: 10.1039/D0NJ04045B     URL    
[14]
Hou X F, Li Z S, Li Y Q, Zhou Q H, Liu C H, Fan D, Wang J J, Xu R J, Xu Z H. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 246: 119030.

doi: 10.1016/j.saa.2020.119030     URL    
[15]
Xie Z D, Ge J Y, Zhang H T, Bai T W, He S Y, Ling J, Sun H Y, Zhu Q. Sens. Actuat. B Chem., 2017, 241: 1050.

doi: 10.1016/j.snb.2016.10.039     URL    
[16]
Wang X Y, Qi S L, Du J S, Li Q, Zhu L B, Xue L Q, Zhao Q, Yang Q B, Li Y X, Cong X L. Chin. J. Org. Chem., 2021, 41: 719.

doi: 10.6023/cjoc202008005     URL    
( 王欣宇, 戚少龙, 杜建时, 李强, 祝录宝, 薛龙启, 赵晴, 杨清彪, 李耀先, 丛宪玲. 有机化学, 2021, 41: 719.).

doi: 10.6023/cjoc202008005    
[17]
Zhu L Q, Fu M L, Yin B, Wang L, Chen Y J, Zhu Q. Dyes Pigments, 2020, 172: 107859.

doi: 10.1016/j.dyepig.2019.107859     URL    
[18]
Zhu Z F, Ding H C, Wang Y S, Fan C B, Tu Y Y, Liu G, Pu S Z. Tetrahedron, 2020, 76(26): 131291.

doi: 10.1016/j.tet.2020.131291     URL    
[19]
Dong B L, Song X Z, Wang C, Kong X Q, Tang Y H, Lin W Y. Anal. Chem., 2016, 88(7): 4085.

doi: 10.1021/acs.analchem.6b00422     URL    
[20]
Shen W, Ge J Y, He S Y, Zhang R Y, Zhao C Y, Fan Y, Yu S A, Liu B, Zhu Q. Chem. Asian J., 2017, 12(13): 1532.

doi: 10.1002/asia.201700340     URL    
[21]
Geraghty C, Wynne C, Elmes R B P. Coord. Chem. Rev., 2021, 437: 213713.

doi: 10.1016/j.ccr.2020.213713     URL    
[22]
Chen Y J, Wang K, Fu M L, Zhou H H, Shen W, Hu Y, Zhu Q. Dyes Pigments, 2021, 195: 109717.

doi: 10.1016/j.dyepig.2021.109717     URL    
[23]
Dong H Q, Wei T B, Ma X Q, Yang Q Y, Zhang Y F, Sun Y J, Shi B B, Yao H, Zhang Y M, Lin Q. J. Mater. Chem. C, 2020, 8(39): 13501.

doi: 10.1039/D0TC03681A     URL    
[24]
Zhou L, Xie L J, Liu C H, Xiao Y. Chin. Chem. Lett., 2019, 30(10): 1799.

doi: 10.1016/j.cclet.2019.07.051     URL    
[25]
Zhu H C, Liu C Y, Su M J, Rong X D, Zhang Y, Wang X, Wang K, Li X W, Yu Y M, Zhang X, Zhu B C. Coord. Chem. Rev., 2021, 448: 214153.

doi: 10.1016/j.ccr.2021.214153     URL    
[26]
Yu H T, Guo Y, Zhu W C, Havener K, Zheng X J. Coord. Chem. Rev., 2021, 444: 214019.

doi: 10.1016/j.ccr.2021.214019     URL    
[27]
Oshchepkov A S, Oshchepkov M S, Oshchepkova M V, Al-Hamry A, Kanoun O, Kataev E A. Adv. Optical Mater., 2021, 9(6): 2001913.

doi: 10.1002/adom.202001913     URL    
[28]
Xie Z D, Yin B, Shen J J, Hong D Q, Zhu L Q, Ge J Y, Zhu Q. Org. Biomol. Chem., 2018, 16(25): 4628.

doi: 10.1039/C8OB00989A     URL    
[29]
Xie Z D, Zhou Y Y, Fu M L, Ni L C, Tong Y P, Yu Y, Li N, Yang Z Y, Zhu Q, Wang J X. Talanta, 2021, 231: 122365.

doi: 10.1016/j.talanta.2021.122365     URL    
[30]
Shen W, Wang P, Xie Z D, Zhou H H, Hu Y, Fu M L, Zhu Q. Talanta, 2021, 234: 122621.

doi: 10.1016/j.talanta.2021.122621     URL    
[31]
Hwang J J, Lee S J, Kim T Y, Cho J H, Koh J Y. J. Neurosci., 2008, 28(12): 3114.

doi: 10.1523/JNEUROSCI.0199-08.2008     pmid: 18354014
[32]
Lee H J, Cho C W, Seo H, Singha S, Jun Y W, Lee K H, Jung Y, Kim K T, Park S, Bae S C, Ahn K H. Chem. Commun., 2016, 52(1): 124.

doi: 10.1039/C5CC06976A     URL    
[33]
Dickinson B C, Peltier J, Stone D, Schaffer D V, Chang C J. Nat. Chem. Biol., 2011, 7(2): 106.

doi: 10.1038/nchembio.497     pmid: 21186346
[34]
Lou Z R, Li P, Pan Q, Han K L. Chem. Commun., 2013, 49(24): 2445.

doi: 10.1039/c3cc39269d     URL    
[35]
Lv X, Yuan X, Wang Y, Guo W. New J. Chem., 2018, 42(18): 15105.

doi: 10.1039/C8NJ03208D     URL    
[36]
Borak J, Diller W F. J. Occup. Environ. Med., 2001, 43(2): 110.

doi: 10.1097/00043764-200102000-00008     pmid: 11227628
[37]
Wang S L, Li C, Song Q H. Anal. Chem., 2019, 91(9): 5690.

doi: 10.1021/acs.analchem.8b05777     URL    
[38]
Wu L Q, Qi S L, Liu Y, Wang X Y, Zhu L B, Yang Q B, Du J S, Xu H, Li Y X. Anal. Bioanal. Chem., 2021, 413(4): 1137.

doi: 10.1007/s00216-020-03077-7     URL    
[39]
Zhang B B, Yang X P, Zhang R, Liu Y, Ren X L, Xian M, Ye Y, Zhao Y F. Anal. Chem., 2017, 89(19): 10384.

doi: 10.1021/acs.analchem.7b02361     URL    
[40]
Jiao C P, Liu Y Y, Lu W J, Zhang P P, Ma X, Wang Y F. RSC Adv., 2019, 9(54): 31196.

doi: 10.1039/C9RA06174F     URL    
[41]
Yang K S, Kohler R H, Landon M, Giedt R, Weissleder R. Sci. Rep., 2015, 5: 10129.

doi: 10.1038/srep10129     URL    
[42]
Zhang H, Wang K, Xuan X P, Lv Q Z, Nie Y M, Guo H M. Chem. Commun., 2016, 52(37): 6308.

doi: 10.1039/C6CC02290A     URL    
[43]
Tang Y H, Kong X Q, Xu A, Dong B L, Lin W Y. Angew. Chem. Int. Ed., 2016, 55(10): 3356.

doi: 10.1002/anie.201510373     URL    
[44]
Xie X L, Tang F Y, Shangguan X Y, Che S Y, Niu J Y, Xiao Y S, Wang X, Tang B. Chem. Commun., 2017, 53(48): 6520.

doi: 10.1039/C7CC03050A     URL    
[45]
Ma Y Y, Tang Y H, Zhao Y P, Lin W Y. Anal. Chem., 2019, 91(16): 10723.

doi: 10.1021/acs.analchem.9b02119     URL    
[46]
Staab C A, Ålander J, Brandt M, Lengqvist J, Morgenstern R, Grafström R C, Höög J O. Biochem. J., 2008, 413(3): 493.

doi: 10.1042/BJ20071666     URL    
[47]
Ma Y Y, Gao W J, Zhu L L, Zhao Y P, Lin W Y. Chem. Commun., 2019, 55(75): 11263.

doi: 10.1039/C9CC04411F     URL    
[48]
Gao W J, Ma Y Y, Lin W Y. New J. Chem., 2020, 44(32): 13654.

doi: 10.1039/D0NJ03071F     URL    
[49]
Tan L B, Ding H Y, Chanmungkalakul S, Peng L P, Yuan G Q, Yang Q M, Liu X G, Zhou L Y. Sens. Actuat. B Chem., 2021, 345: 130331.

doi: 10.1016/j.snb.2021.130331     URL    
[50]
Forneris F, Binda C, Vanoni M A, Battaglioli E, Mattevi A. J. Biol. Chem., 2005, 280(50): 41360.

doi: 10.1074/jbc.M509549200     URL    
[51]
Li J Z, Sun Y H, Wang C Y, Guo Z Q, Shen Y J, Zhu W H. Anal. Chem., 2019, 91(18): 11946.

doi: 10.1021/acs.analchem.9b02749     URL    
[52]
Chen W J, Ma X X, Chen H J, Liu S H, Yin J. Coord. Chem. Rev., 2021, 427: 213584.

doi: 10.1016/j.ccr.2020.213584     URL    
[53]
Qin W J, Xu C C, Zhao Y F, Yu C M, Shen S, Li L, Huang W. Chin. Chem. Lett., 2018, 29(10): 1451.

doi: 10.1016/j.cclet.2018.04.007     URL    
[54]
He Z S, Chou Y J, Zhou H X, Zhang H, Cheng T Y, Liu G H. Org. Biomol. Chem., 2018, 16(17): 3266.

doi: 10.1039/C8OB00670A     URL    
[55]
Kurz T, Terman A, Gustafsson B, Brunk U T. Biochim. Biophys. Acta BBA Gen. Subj., 2008, 1780(11): 1291.
[56]
Mu S, Zhang J L, Gao H, Wang Y Y, Rizvi S F A, Ding N N, Liu X Y, Wu L, Zhang H X. J. Hazard. Mater., 2022, 422: 126898.

doi: 10.1016/j.jhazmat.2021.126898     URL    
[57]
Zhang C Y, Zhang Q Z, Zhang K, Li L Y, Pluth M D, Yi L, Xi Z. Chem. Sci., 2019, 10(7): 1945.

doi: 10.1039/C8SC03781G     URL    
[58]
Kong X Q, Li M, Dong B L, Yin Y G, Song W H, Lin W Y. Anal. Chem., 2019, 91(24): 15591.

doi: 10.1021/acs.analchem.9b03639     URL    
[59]
Zhao X J, Yuan G Q, Ding H Y, Zhou L Y, Lin Q L. J. Hazard. Mater., 2020, 381: 120918.

doi: 10.1016/j.jhazmat.2019.120918     URL    
[60]
Velusamy N, Thirumalaivasan N, Bobba K N, Podder A, Wu S P, Bhuniya S. J. Photochem. Photobiol. B Biol., 2019, 191: 99.

doi: 10.1016/j.jphotobiol.2018.12.016     URL    
[61]
Du Y C, Wang B W, Jin D, Li M R, Li Y, Yan X L, Zhou X Q, Chen L G. Anal. Chimica Acta, 2020, 1103: 174.

doi: 10.1016/j.aca.2019.12.059     URL    
[62]
Li J J, Ban L F, Tang L J. Chin. J. Org. Chem., 2021(1): 241.
( 李娇娇, 班立夫, 汤立军. 有机化学, 2021(1): 241.).
[63]
Li S J, Wang P P, Feng W Q, Xiang Y H, Dou K, Liu Z H. Chem. Commun., 2020, 56(7): 1050.

doi: 10.1039/C9CC08267K     URL    
[64]
Yan F Y, Sun X D, Jiang Y X, Wang R J, Zhang Y Y, Cui Y L. Dyes Pigments, 2020, 182: 108531.

doi: 10.1016/j.dyepig.2020.108531     URL    
[65]
Guo B P, Jing J, Nie L X, Xin F Y, Gao C C, Yang W, Zhang X L. J. Mater. Chem. B, 2018, 6(4): 580.

doi: 10.1039/C7TB02615C     URL    
[66]
Fang Y, Shi W, Hu Y M, Li X H, Ma H M. Chem. Commun., 2018, 54(43): 5454.

doi: 10.1039/C8CC02209G     URL    
[67]
Brookes P S. Free. Radic. Biol. Med., 2005, 38(1): 12.

doi: 10.1016/j.freeradbiomed.2004.10.016     URL    
[68]
Wu Z, Liu M M, Liu Z C, Tian Y. J. Am. Chem. Soc., 2020, 142(16): 7532.

doi: 10.1021/jacs.0c00771     URL    
[69]
Xuan W M, Sheng C Q, Cao Y T, He W H, Wang W. Angew. Chem. Int. Ed., 2012, 51(10): 2282.

doi: 10.1002/anie.201107025     URL    
[70]
Yin G X, Yu T, Gan Y B, Zhou L, Liu M L, Zhang Y Y, Li H T, Yin P, Yao S Z. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 241: 118602.

doi: 10.1016/j.saa.2020.118602     URL    
[71]
Li K B, Qu W B, Shen Q X, Zhang S Q, Shi W, Dong L, Han D M. Dyes Pigments, 2020, 173: 107918.

doi: 10.1016/j.dyepig.2019.107918     URL    
[1] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[2] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[3] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[4] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[5] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[6] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[7] 任春平, 聂雯, 冷俊强, 刘振波. 反应型次氯酸荧光探针[J]. 化学进展, 2021, 33(6): 942-957.
[8] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[9] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.
[10] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
[11] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[12] 徐云雪, 刘仁发, 徐坤, 戴志飞. 手术导航用荧光探针[J]. 化学进展, 2021, 33(1): 52-65.
[13] 张继东, 刘阿晨, 陈娇, 袁光辉, 金华峰. 基于生物素的荧光有机小分子及其应用[J]. 化学进展, 2020, 32(5): 594-603.
[14] 王阳, 黄楚森, 贾能勤. 监测细胞微环境及活性分子的有机小分子荧光探针[J]. 化学进展, 2020, 32(2/3): 204-218.
[15] 周倩, 李娜, 李坤, 余孝其. DNA中醛基嘧啶的化学检测[J]. 化学进展, 2020, 32(11): 1634-1650.