English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1538-1549 DOI: 10.7536/PC200844 前一篇   后一篇

• 综述 •

气态酸和有机胺响应的超分子凝胶

曹新华1,*(), 韩晴晴1, 高爱萍1, 王桂霞2   

  1. 1 信阳师范学院化学化工学院/信阳市绿色催化与合成重点实验室 信阳 464000
    2 洛阳师范学院化学化工学院 河南省功能导向多孔材料重点实验室 洛阳 471934
  • 收稿日期:2020-08-20 修回日期:2020-10-22 出版日期:2021-09-20 发布日期:2020-12-28
  • 通讯作者: 曹新华
  • 基金资助:
    国家自然科学基金项目(U1704164); 河南省高等学校青年骨干教师培养计划项目(2018GGJS127)

Supramolecular Gel with Response Towards Gaseous Acid and Organic Amine

Xinhua Cao1(), Qingqing Han1, Aiping Gao1, Guixia Wang2   

  1. 1 College of Chemistry and Chemical Engineering/Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang 464000, China
    2 College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
  • Received:2020-08-20 Revised:2020-10-22 Online:2021-09-20 Published:2020-12-28
  • Contact: Xinhua Cao
  • Supported by:
    National Natural Science Foundation of China(U1704164); Training Project for Youth Backbone Teachers in College and Universities of Henan Province(2018GGJS127)

超分子凝胶是由有机分子在非共价键作用力驱动下自组装形成的一种具有液态和固态双重性质的软物质。超分子凝胶能对多种外界刺激做出响应,广泛应用于催化和传感等领域。与传统的小分子探针相比,超分子凝胶传感器显示出了多种检测模式和多信号输出的优点,如超分子凝胶材料的内部三维网络结构和较大的接触面积有利于分析物的快速渗透,并且其凝胶状态的变化可以作为检测过程中的输出信号。此外,干凝胶薄膜材料还具有三维网络结构,在检测气体分析物方面表现出优异的检测性能。本文重点介绍了超分子凝胶在气态酸和有机胺检测中的应用以及相关超分子凝胶的设计和检测机理,为构建用于气态酸和有机胺检测的新型超分子凝胶提供了参考。最后总结了超分子凝胶在气态酸和有机胺检测中存在的问题及应用前景。

Supramolecular gels as important soft materials are formed by self-assembly of organic molecules under the driving force of non-covalent interactions, which can gel organic solvents or water. These materials possess both liquid and solid properties. This kind of materials with the advantages of stimulus response behavior and easy modification is widely used in many fields such as chemistry, biology, medicine and energy. Compared with the traditional small-molecule probes, supramolecular gels have many advantages for their application as chemical sensors. For example, the internal three-dimensional network structure of supramolecular gel material and its large contact area facilitate the rapid infiltration of analytes, and the change of gel state can be used as the output signal in the detection process. In addition, the xerogel film material also has a three-dimensional network structure, which also shows excellent detection performance in the detection of gaseous analytes. This work focuses on the application of supramolecular gels in the detection of gaseous acids and organic amines, as well as the designs and detection mechanisms of supramolecular gels, so as to provide reference for the construction of new supramolecular gels for the detection of gaseous acids and organic amines. Finally, the problems and prospects in the application of supramolecular gels are summarized and prospected.

Contents

1 Introduction

2 Mechanism of supramolecular gel response to gaseous acids and organic amines

3 Application of supramolecular gels for detection of gaseous acids and organic amines

3.1 Gaseous acid-responsive supramolecular gel

3.2 Organic amine-responsive supramolecular gel

3.3 Gaseous acid and organic amine-dual-responsive supramolecular gel

4 Conclusion and outlook

()
表1 具有响应气态酸和有机胺的分子结构
Table 1 Chemical structures of molecules with response towards gaseous acids and organic amines
图1 Lu等报道的菲并咪唑衍生物凝胶因子1~3[34]
Fig.1 Chemical structures of gelators 1~3 based on phenanthroimidazole derivative reported by Lu[34]
图2 Lu等报道的咔唑衍生物凝胶因子4,5[35]
Fig.2 Chemical structures of gelators 4,5 based on carbazole derivative reported by Lu[35]
图3 由Lu等报道的氰基苯乙烯功能化凝胶因子6,7[36]
Fig.3 Chemical structures of gelators 6,7 with cyanostilbene group reported by Lu[36]
图4 Lu等报道的含有苯并六元杂化的β-亚胺酮及其二氟化硼络合物凝胶因子8A~15A和8B~15B[37]
Fig.4 Chemical structures of gelators 8A~15A and 8B~15B based on β-iminoenolate and their difluoroboron complexes reported by Lu[37]
图5 Xue等报道的含有苯并口恶唑氰基苯乙烯衍生物凝胶因子16[38]
Fig.5 Chemical structure of gelator 16 based on cyanostilbene derivative containing benzoxazole reported by Xue[38]
图6 Bhattacharya等报道的双组分凝胶体系结构[39]
Fig.6 Chemical structure of gelator 17 and NDI reported by Bhattacharya[39]
图7 Xue等报道的双组分凝胶因子18[40]
Fig.7 Chemical structure of two-component gelator 18 reported by Xue[40]
图8 Yi等报道的萘酰亚胺基凝胶因子19及其对脂肪胺和芳香胺的区分[41]
Fig.8 Chemical structure of 19 reported by Yi and explanation of ultrasound-accelerated gelation for visual and reversible sensing of amines[41]
图9 Lu等报道的D-A-D型β-二酮二氟硼配合物凝胶因子20~22[42]
Fig.9 Chemical structures of D-A-D type difluoroboron β-diketonate complexes 20~22 reported by Lu[42]
图10 Xue等报道的低聚(p-苯乙烯)凝胶因子23[43]
Fig.10 Chemical structure of 23 based on oligo(p-phenylenevinylene) derivative reported by Xue[43]
图11 本课题组报道的萘酰亚胺凝胶因子24,25[44]
Fig.11 Chemical structures of 24 and 25 based on bis-naphthalimides derivative reported by our group[44]
图12 本课题组报道的4-位异丙氧基硼酸酯改性的萘酰亚胺凝胶因子26,27[45]
Fig.12 Chemical structures of 26 and 27 based on naphthalimides derivative modified with isopropoxyboronic acid ester reported by our group[45]
图13 Yu等报道的三联吡啶凝胶因子28[46]
Fig.13 Chemical structure of 28 based on terpyridine derivative reported by Yu[46]
图14 本课题组报道的3-羟基萘酰亚胺类凝胶因子29~31[47]
Fig.14 Chemical structures of 29~31 based on 3-hydroxy-1,8-naphthalimide derivative reported by our group[47]
图15 Mahapatra等报道的凝胶因子32a, 32b和铱配合物[49]
Fig.15 Chemical structures of gelators 32a, 32b and Iridium complex reported by Mahapatra[49]
图16 Maji等报道的多功能凝胶因子33[50]
Fig.16 Chemical structure of gelator 33 with multi-function reported by Maji[50]
图17 Xue等报道的苯并口恶唑类凝胶因子34[51]
Fig.17 Chemical structure of 34 from benzoxazole derivative reported by Xue[51]
图18 Xue等报道的氰基乙烯吖啶衍生物凝胶因子35,36[52]
Fig.18 Chemical structures of 35 and 36 based on cyano-substituted vinylacridine derivatives reported by Xue[52]
图19 本课题组报道的噻吩衍生物类凝胶因子37和铱配合物Ir[53]
Fig.19 Chemical structure of 37 based on thiophene derivative and iridium complex reported by our group[53]
图20 本课题组报道的喹啉衍生物凝胶因子38[54]
Fig.20 Chemical structure of 38 based on quinoline derivative reported by our group[54]
图21 本课题组报道的氰基苯乙烯类凝胶因子39[55]
Fig.21 Chemical structure of 39 based on cyanostilbene derivative reported by our group[55]
图22 本课题组报道的四氮唑修饰的萘酰亚胺衍生物凝胶因子40及其检测过程[56]
Fig.22 Chemical structure of 40 based on naphthalimide derivative with a tetrazole group reported by our group and its detection process[56]
图23 本课题组报道的偶氮苯衍生物凝胶因子41[57]
Fig.23 Chemical structure of 41 based on azobenzene derivative reported by our group[57]
图24 Yu等报道的胆甾基萘酰亚胺衍生物凝胶因子42[58]
Fig.24 Chemical structure of 42 based on naphthalimide derivative with two cholesterol groups reported by Yu[58]
[1]
Prathap A, Sureshan K M. Langmuir, 2019, 35(18): 6005.

doi: 10.1021/acs.langmuir.9b00506     URL    
[2]
Lan Y, Corradini M G, Weiss R G, Raghavan S R, Rogers M A. Chem. Soc. Rev., 2015, 44(17): 6035.

doi: 10.1039/c5cs00136f     pmid: 25941907
[3]
Das D, Kar T, Das P K. Soft Matter, 2012, 8(8): 2348.

doi: 10.1039/C1SM06639K     URL    
[4]
Praveen V K, Vedhanarayanan B, Mal A, Mishra R K, Ajayaghosh A. Acc. Chem. Res., 2020, 53(2): 496.

doi: 10.1021/acs.accounts.9b00580     URL    
[5]
Shimizu T, Ding W X, Kameta N. Chem. Rev., 2020, 120(4): 2347.

doi: 10.1021/acs.chemrev.9b00509     URL    
[6]
Wang P, Yang Q F, Zhao C, Prog. Chem., 2017, 29(7): 750.
(王平, 杨巧凤, 赵传. 化学进展. 2017, 29(7): 750.).

doi: 10.7536/PC170334    
[7]
Yan X H, Zhu P L, Li J B. Chem. Soc. Rev., 2010, 39(6): 1877.

doi: 10.1039/b915765b     URL    
[8]
Lin D W, Xing Q G, Wang Y F, Qi I, Su R X, He Z M. Prog. Chem., 2019, 31(12): 1623.
(林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 化学进展, 2019, 31(12): 1623.).

doi: 10.7536/PC190446    
[9]
Okesola B O, Smith D K. Chem. Soc. Rev., 2016, 45(15): 4226.

doi: 10.1039/C6CS00124F     URL    
[10]
Babu S S, Praveen V K, Ajayaghosh A. Chem. Rev., 2014, 114(4): 1973.

doi: 10.1021/cr400195e     URL    
[11]
Mayr J, Saldías C, Díaz Díaz D. Chem. Soc. Rev., 2018, 47(4): 1484.

doi: 10.1039/C7CS00515F     URL    
[12]
Li J Y, Mooney D J. Nat. Rev. Mater., 2016, 1(12): 1.
[13]
Hapiot F, Menuel S, Monflier E. ACS Catal., 2013, 3(5): 1006.

doi: 10.1021/cs400118c     URL    
[14]
Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen P W N M. Chem. Soc. Rev., 2014, 43(5): 1660.

doi: 10.1039/C3CS60027K     URL    
[15]
Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen P W N M. Chem. Soc. Rev., 2014, 43(5): 1734.

doi: 10.1039/C3CS60037H     URL    
[16]
Wu F X, Maier J, Yu Y. Chem. Soc. Rev., 2020, 49(5): 1569.

doi: 10.1039/C7CS00863E     URL    
[17]
Zhong C, Deng Y D, Hu W B, Qiao J L, Zhang L, Zhang J J. Chem. Soc. Rev., 2015, 44(21): 7484.

doi: 10.1039/C5CS00303B     URL    
[18]
Ma R J, Chou S Y, Xie Y, Pei Q B. Chem. Soc. Rev., 2019, 48(6): 1741.

doi: 10.1039/C8CS00834E     URL    
[19]
Wei Z, Yang J H, Zhou J X, Xu F, Zrínyi M, Dussault P H, Osada Y, Chen Y M. Chem. Soc. Rev., 2014, 43(23): 8114.

doi: 10.1039/C4CS00219A     URL    
[20]
Yu X D, Chen L M, Zhang M M, Yi T. Chem. Soc. Rev., 2014, 43(15): 5346.

doi: 10.1039/C4CS00066H     URL    
[21]
Wang S T, Liu K S, Yao X, Jiang L. Chem. Rev., 2015, 115(16): 8230.

doi: 10.1021/cr400083y     URL    
[22]
Kuang M X, Wang J X, Jiang L. Chem. Soc. Rev., 2016, 45(24): 6833.

doi: 10.1039/C6CS00562D     URL    
[23]
Liu M H, Zhang L, Wang T. Chem. Rev., 2015, 115(15): 7304.

doi: 10.1021/cr500671p     URL    
[24]
Jin Q X, Li J, Li X G, Zhang L, Fang S M, Liu M H. Prog. Chem., 2014, 26(6): 919.
(靳清贤, 李晶, 靳清贤, 李孝刚, 张莉, 方少明, 刘鸣华. 化学进展, 2014, 26(6): 919.).
[25]
Busschaert N, Caltagirone C, van Rossom W, Gale P A. Chem. Rev., 2015, 115(15): 8038.

doi: 10.1021/acs.chemrev.5b00099     pmid: 25996028
[26]
Ren Y S, Xie S, Svensson Grape E, Inge A K, Ramström O. J. Am. Chem. Soc., 2018, 140(42): 13640.

doi: 10.1021/jacs.8b09843     URL    
[27]
Liu J Y, Yuan F, Ma X Y, Auphedeous D I Y, Zhao C L, Liu C T, Shen C Y, Feng C L. Angew. Chem. Int. Ed., 2018, 57(22): 6475.

doi: 10.1002/anie.v57.22     URL    
[28]
Tu Y F, Peng F, Adawy A, Men Y J, Abdelmohsen L K E A, Wilson D A. Chem. Rev., 2016, 116(4): 2023.

doi: 10.1021/acs.chemrev.5b00344     URL    
[29]
Liu G F, Zhang D, Feng C L. Angew. Chem. Int. Ed., 2014, 53(30): 7789.

doi: 10.1002/anie.201403249     URL    
[30]
Miao R, Peng J X, Fang Y. Langmuir, 2017, 33(40): 10419.

doi: 10.1021/acs.langmuir.6b04655     URL    
[31]
Huang R R, Liu K, Liu H J, Wang G, Liu T H, Miao R, Peng H N, Fang Y. Anal. Chem., 2018, 90(23): 14088.

doi: 10.1021/acs.analchem.8b04897     URL    
[32]
Chang X M, Zhou Z X, Shang C D, Wang G, Wang Z L, Qi Y Y, Li Z Y, Wang H, Cao L P, Li X P, Fang Y, Stang P J. J. Am. Chem. Soc., 2019, 141(4): 1757.

doi: 10.1021/jacs.8b12749     URL    
[33]
Che Y K, Yang X M, Loser S, Zang L. Nano Lett., 2008, 8(8): 2219.

doi: 10.1021/nl080761g     URL    
[34]
Peng J, Sun J B, Gong P, Xue P C, Zhang Z Q, Zhang G H, Lu R. Chem. Asian J., 2015, 10(8): 1717.

doi: 10.1002/asia.v10.8     URL    
[35]
Sun J B, Xue P C, Sun J B, Gong P, Wang P P, Lu R. J. Mater. Chem. C, 2015, 3(34): 8888.

doi: 10.1039/C5TC02012C     URL    
[36]
Wu Z, Sun J B, Zhang Z Q, Gong P, Xue P C, Lu R. RSC Adv., 2016, 6(99): 97293.

doi: 10.1039/C6RA20910F     URL    
[37]
Wu Z, Sun J B, Zhang Z Q, Yang H, Xue P C, Lu R. Chem. Eur. J., 2017, 23(8): 1901.

doi: 10.1002/chem.v23.8     URL    
[38]
Xue P C, Yao B Q, Shen Y B, Gao H Q. J. Mater. Chem. C, 2017, 5(44): 11496.

doi: 10.1039/C7TC03752J     URL    
[39]
Bhattacharjee S, Maiti B, Bhattacharya S. Nanoscale, 2016, 8(21): 11224.

doi: 10.1039/c6nr01128d     pmid: 27187776
[40]
Wang S S, Xue P C, Wang P P, Yao B Q. New J. Chem., 2015, 39(9): 6874.

doi: 10.1039/C5NJ01168J     URL    
[41]
Pang X L, Yu X D, Lan H C, Ge X T, Li Y J, Zhen X L, Yi T. ACS Appl. Mater. Interfaces, 2015, 7(24): 13569.

doi: 10.1021/acsami.5b03000     URL    
[42]
Zhai L, Liu M Y, Xue P C, Sun J B, Gong P, Zhang Z Q, Sun J B, Lu R. J. Mater. Chem. C, 2016, 4(34): 7939.

doi: 10.1039/C6TC01790H     URL    
[43]
Xue P C, Yao B Q, Ding J P, Shen Y B, Wang P P, Lu R, Zhao X J. ChemistrySelect, 2017, 2(9): 2841.

doi: 10.1002/slct.201700423     URL    
[44]
Cao X H, Zhao N, Gao A P, Lv H T, Jia Y L, Wu R M, Wu Y Q, Mater. Sci. Eng. C, 2017, 70: 216.

doi: 10.1016/j.msec.2016.08.079     URL    
[45]
Cao X H, Ding Q Q, Zhao N, Gao A P, Jing Q S. Sens. Actuat. B: Chem., 2018, 256: 711.

doi: 10.1016/j.snb.2017.09.210     URL    
[46]
Wang Y Q, Yu X D, Li Y J, Zhang Y J, Geng L J, Shen F J, Ren J J. ACS Appl. Mater. Interfaces, 2019, 11(21): 19605.

doi: 10.1021/acsami.9b02592     URL    
[47]
Cao X H, Li Y R, Gao A P, Yu Y S, Chang X P, Hei X H. ACS Appl. Polym. Mater., 2019, 1(6): 1485.

doi: 10.1021/acsapm.9b00238     URL    
[48]
Yuan J P, Wen D, Gaponik N, Eychmüller A. Angew. Chem., 2013, 125(3): 1010.

doi: 10.1002/ange.201205791     URL    
[49]
Mahapatra T S, Singh H, Maity A, Dey A, Pramanik S K, Suresh E, Das A. J. Mater. Chem. C, 2018, 6(36): 9756.

doi: 10.1039/C8TC03487G     URL    
[50]
Sutar P, Maji T K. Inorg. Chem., 2017, 56(16): 9417.

doi: 10.1021/acs.inorgchem.7b01002     URL    
[51]
Xue P C, Yao B Q, Wang P P, Gong P, Zhang Z Q, Lu R. Chem. Eur. J., 2015, 21(48): 17508.

doi: 10.1002/chem.201502401     URL    
[52]
Xue P C, Ding J P, Shen Y B, Gao H Q, Zhao J Y, Sun J B, Lu R. J. Mater. Chem. C, 2017, 5(44): 11532.

doi: 10.1039/C7TC03192K     URL    
[53]
Cao X H, Zhao N, Zou G D, Gao A P, Ding Q Q, Zeng G J, Wu Y Q. Soft Matter, 2017, 13(20): 3802.

doi: 10.1039/C7SM00714K     URL    
[54]
Cao X H, Ding Q Q, Gao A P, Li Y R, Chang X P, Wu Y Q. New J. Chem., 2018, 42(8): 6305.

doi: 10.1039/C8NJ00753E     URL    
[55]
Cao X H, Ding Q Q, Li Y R, Gao A P, Chang X P. J. Mater. Chem. C, 2019, 7(1): 133.

doi: 10.1039/C8TC04964E     URL    
[56]
Cao X H, Li Y R, Gao A P, Yu Y S, Zhou Q J, Chang X P, Hei X H. J. Mater. Chem. C, 2019, 7(34): 10589.

doi: 10.1039/C9TC03243F     URL    
[57]
Cao X H, Li Y R, Yu Y C, Fu S Y, Gao A P, Chang X P. Nanoscale, 2019, 11(22): 10911.

doi: 10.1039/C9NR01433K     URL    
[58]
Wang T, Yu X D, Li Y J, Ren J J, Zhen X L. ACS Appl. Mater. Interfaces, 2017, 9(15): 13666.

doi: 10.1021/acsami.6b15249     URL    
[1] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[2] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[3] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[4] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[5] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[6] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[7] 廖金花, 高佳俊, 王宇超, 孙巍. 微结构化弹性体介电层的制备方法与应用[J]. 化学进展, 2021, 33(6): 975-987.
[8] 范路洁, 陈莉, 何崟, 刘皓. 基于3D导电材料的柔性应力/应变传感器[J]. 化学进展, 2021, 33(5): 767-778.
[9] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[10] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[11] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[12] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[13] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[14] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[15] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
阅读次数
全文


摘要