English
新闻公告
More
化学进展 2022, Vol. 34 Issue (6): 1275-1289 DOI: 10.7536/PC210902 前一篇   后一篇

• 综述与评论 •

磺酰氯与不饱和化合物的反应

孙思敏, 许家喜*()   

  1. 北京化工大学化学学院有机化学系 化工资源有效利用国家重点实验室 北京 100029
  • 收稿日期:2021-09-01 出版日期:2022-04-01 发布日期:2022-04-01
  • 通讯作者: 许家喜
  • 基金资助:
    国家自然科学基金项目(21572017); 国家自然科学基金项目(21772010)

Reactions of Sulfonyl Chlorides and Unsaturated Compounds

Simin Sun, Jiaxi Xu()   

  1. State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology,Beijing 100029, China
  • Received:2021-09-01 Online:2022-04-01 Published:2022-04-01
  • Contact: Jiaxi Xu
  • Supported by:
    National Natural Science Foundation of China(21572017); National Natural Science Foundation of China(21772010)

磺酰氯是一类重要的有机合成中间体,广泛应用于有机和药物合成中。磺酰氯可以作为烯砜、磺酰基、次磺酰基、芳基、氟代烷基等的来源应用于多种有机合成反应中。本文综述了磺酰氯与烯烃、炔烃、(杂)芳香环、亚胺、卤代醛酮等不饱和化合物的反应,主要包括[2+2]环合反应、氯磺酰化、磺酰化、次磺酰化、芳基化和氟代烷基化等反应,并讨论和预测了磺酰氯与不饱和化合物反应今后的发展方向。

Sulfonyl chlorides are a class of important organic synthetic intermediates and have been widely applied in organic and medicinal synthesis. Sulfonyl chlorides have been utilized in organic reactions as important and powerful sources of sulfenes, sulfonyl, sulfenyl, aryl, and fluorinated alkyl groups. Reactions of sulfonyl chlorides with alkenes, alkynes, (hetero)aromatics, imines, halogenated aldehydes and ketones, and other unsaturated compounds are summarized in this review, including mainly [2+2] annulations, chlorosulfonylation, sulfonylation, sulfenylation, arylation, and fluoroalkylation. The further development on the reactions of sulfonyl chlorides and unsaturated compounds are discussed and predicted.

Contents

1 Introduction

2 Reactions of sulfonyl chlorides with alkenes, alkynes and (hetero)arenes

2.1 Annulations

2.2 Radical reactions

2.3 Ionic reactions

3 Reactions of sulfonyl chlorides with imines

4 Reactions of sulfonyl chlorides with aldehydes/ketones

5 Reactions of sulfonyl chlorides with other unsaturated compounds

6 Conclusion and outlook

()
图1 含磺酰胺基以及硫醚基的药物[1⇓⇓~4]
Fig. 1 Drugs containing the sulfonamide groups and the thioether groups[1⇓⇓~4]
图式1 磺酰氯与1,1-二烷氧基乙烯的反应[11]
Scheme 1 Reaction of sulfonyl chlorides and 1,1-dialkoxyet -hene[11]
图式2 磺酰氯与烯胺的反应[18⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~40]
Scheme 2 Reaction of sulfonyl chlorides and enamines[18⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~40]
图式3 磺酰氯与N,N-二甲基丙-1-炔-1-胺的环合反应[41,42]
Scheme 3 Annulation of sulfonyl chlorides and N,N-dimethyl prop-1-yn-1-amine[41,42]
图式4 磺酰氯与丁炔二酸酯的环合反应[43]
Scheme 4 Annulation of sulfonyl chlorides and dialkyl acetylenedicarboxylates[43]
图式5 磺酰氯与芳基乙烯的反应[44]
Scheme 5 Reaction of sulfonyl chlorides and arylethenes[44]
图式6 钌催化的磺酰氯与端烯反应生成链状砜化合物[46]
Scheme 6 Ruthenium-catalyzed reaction of sulfonyl chlorides with terminal olefins to form chain sulfones[46]
图式7 铜催化的磺酰氯与炔反应[47]
Scheme 7 Copper-catalyzed reaction of sulfonyl chlorides with alkynes[47]
图式8 铜催化的烯炔烃邻位氯磺酰化[48]
Scheme 8 Copper-catalyzed vicinal chlorosulfonylation of alkenes and alkynes[48]
图式9 铁催化末端炔烃与芳基磺酰氯的氯磺酰化[49]
Scheme 9 Iron-catalyzed chlorosulfonylation of terminal alkynes with arenesulfonyl chlorides[49]
图式10 无金属条件下芳乙烯与磺酰氯的磺酰化反应合成乙烯基砜[51]
Scheme 10 Metal-free synthesis of vinyl sulfones through sulfonylation of styrenes with sulfonyl chlorides[51]
图式11 铱催化磺酰氯与烯烃生成β-羟基砜[52]
Scheme 11 Iridium-catalyzed formation of β-hydroxysulfones from sulfonyl chlorides and olefins[52]
图式12 铱催化磺酰氯与烯炔烃的氧化磺酰化反应[53,54]
Scheme 12 Iridium-catalyzed oxidative sulfonylation of sulfonyl chlorides with alkenes and alkynes[53,54]
图式13 N-炔丙基吲哚磺酰环化反应[55]
Scheme 13 Sulfonyl cyclization of N-propargyl indoles[55]
图式14 磺酰氯与吲哚嗪的反应合成二芳基硫醚[56]
Scheme 14 Synthesis of diaryl sulfides by the reaction of sulfonyl and indoleazines[56]
图式15 可见光诱导的N-甲基吲哚与芳基磺酰氯的3位芳硫化反应[57]
Scheme 15 Visible light-induced 3-sulfenylation of N-methylindoles with arenesulfonyl chlorides[57]
图式16 碘化四甲基铵介导的芳烃芳基硫化[58]
Scheme 16 TMAI-mediated arylthiolation of aromatics[58]
图式17 铜催化磺酰氯对炔烃和烯烃的邻位氯烃硫化[59,60]
Scheme 17 Copper-Catalyzed vicinal chloro-thiolation of alkynes and alkenes with sulfonyl chlorides[59,60]
图式18 光催化芳烃和杂芳烃的三氟甲基化反应[61]
Scheme 18 Photoredox trifluoromethylation of arenes and heteroarenes[61]
图式19 光催化的烯烃邻氯三氟甲基化反应[64]
Scheme 19 Photocatalytic vicinal chlorotrifluoromethylation of olefins[64]
图式20 用氟代烷基磺酰氯构建氟化3,3-二取代吲哚烷酮[65]
Scheme 20 Construction of fluorinated 3,3-disubstituted 2-oxindoles with fluoroalkylsulfonyl chlorides[65]
图式21 可见光诱导氟代烷基磺酰氯与缺电子烯烃的反应[66]
Scheme 21 Visible light-induced reaction of fluoroalkanesulfonyl chlorides with electron-deficient alkenes[66]
图式22 非金属催化的烯烃的二氟甲基化反应[67]
Scheme 22 Metal-free difluoromethylation of olefins[67]
图式23 铜催化的烯烃三氟甲基氯磺酰化反应[68,69]
Scheme 23 Copper-catalyzed trifluoromethyl chlorosulfonylation of alkenes[68,69]
图式24 铜催化β-三氟甲基磺内酯的生成[70]
Scheme 24 Copper-catalyzed formation of β-trifluoromethyl sultones[70]
图式25 芳烃磺酰氯和末端炔烃的脱硫交叉偶联[71]
Scheme 25 Desulfitative Cross-Coupling of arenesulfonyl chlorides and terminal alkynes[71]
图式26 芳基磺酰氯与烯烃的脱硫Mizoroki-Heck型偶联反应[72]
Scheme 26 Desulfitative Mizoroki-Heck Coupling of sulfonyl chlorides with olefins[72]
图式27 酸促进的磺酰氯与烯烃合成β-羟基砜的反应[74]
Scheme 27 Acid-promoted reaction of sulfonyl chlorides with olefins to synthesize β-hydroxysulfones[74]
图式28 TBAI-HBr体系介导(杂)芳环的芳硫化[75]
Scheme 28 TBAI-HBr-mediated arylthiolation of (hetero)aromatics[75]
图式29 亚磷酸二乙酯诱导的三氟甲磺酰氯的三氟甲硫代反应[76]
Scheme 29 (EtO)2P(O)H-induced trifluoromethylthiolation with trifluoromethanesulfonyl chloride[76]
图式30 三苯基膦-酸促进的三氟甲磺酰氯对烯烃的邻氯三氟甲硫化反应[77]
Scheme 30 Ph3P-acid-promoted vicinal chlorotrifluorome-thylthiolation of alkenes with trifluoromethanesulfonyl chloride[77]
图式31 磺酰氯与富电子亚胺的[2+2]环合反应[86]
Scheme 31 [2+2] Annulation of sulfonyl chlorides with electron-rich imines[86]
图式32 磺酰氯与环状和链状亚胺的环合反应[92,93]
Scheme 32 Annulation of sulfonyl chlorides with cyclic and linear imines[92,93]
图式33 磺酰氯与亚胺反应的环合选择性[94⇓~96]
Scheme 33 Annuloselectivity in the reaction of sulfonyl chlorides and imines[94⇓~96]
图式34 烷基磺酰氯与缺电子亚胺的环化反应[99]
Scheme 34 Catalytic asymmetric annulation of alkanesulfonyl chlorides with electron-deficient imines[99]
图式35 烷基磺酰氯与2-吡啶基磺酰基亚胺的环合反应[100]
Scheme 35 Annulation of alkanesulfonyl chlorides and 2-pyridylsulfonyl imines[100]
图式36 烷基磺酰氯与卤代醛酮的反应[101,102,105]
Scheme 36 Reactions of alkanesulfonyl chlorides with halogenated aldehydes and ketones[101,102,105]
图式37 不对称催化合成β-磺内酯[106,107]
Scheme 37 Asymmetric catalytic synthesis of β-sultones[106,107]
图式38 叔胺催化的磺酰氯和偶氮二甲酸酯直接合成α-氯烷磺酰基肼[108]
Scheme 38 Tertiary amine-catalyzed and direct synthesis of α-chloroalkanesulfonylhydrazines from sulfonyl chlorides and azodicarboxylates[108]
图式39 1,4-两性离子吡啶硫醇盐与磺酰氯的反应[109]
Scheme 39 Reaction of pyridinium 1,4-zwitterionic thiolates and sulfonyl chlorides[109]
[1]
Cianchi F, Cortesini C, Magnelli L, Fanti E, Papucci L, Schiavone N, Messerini L, Vannacci A, Capaccioli S, Perna F, Lulli M, Fabbroni V, Perigli G, Bechi P, Masini E. Mol. Cancer Ther., 2006, 5(11): 2716.

pmid: 17121918
[2]
Banerjee M, Poddar A, Mitra G, Surolia A, Owa T, Bhattacharyya B. J. Med. Chem., 2005, 48(2): 547.

pmid: 15658868
[3]
Ragno R, Coluccia A, La Regina G, de Martino G, Piscitelli F, Lavecchia A, Novellino E, Bergamini A, Ciaprini C, Sinistro A, Maga G, Crespan E, Artico M, Silvestri R. J. Med. Chem., 2006, 49(11): 3172.

pmid: 16722636
[4]
Nuth M, Guan H C, Zhukovskaya N, Saw Y L, Ricciardi R P. J. Med. Chem., 2013, 56(8): 3235.

doi: 10.1021/jm301735k     URL    
[5]
Sohrabnezhad S, Bahrami K, Hakimpoor F. J. Sulfur Chem., 2019, 40(3): 256.

doi: 10.1080/17415993.2019.1570196    
[6]
Yang Z, Xu J. Synthesis, 2014, 44: 1675.
[7]
Yang Z H, Zheng Y P, Xu J X. Synlett, 2012, 24: 2165.

doi: 10.1055/s-0033-1339675     URL    
[8]
Yang Z H, Zhou B N, Xu J X. Synthesis, 2014, 46: 225.

doi: 10.1055/s-0033-1338567     URL    
[9]
Xu W, Zhang L D, Xu J X. Chem. Reag., 2016, 38(10): 954.
( 许薇, 张丽丹, 许家喜. 化学试剂, 2016, 38(10): 954.)
[10]
Xu J X. Tetrahedron Asymmetry, 2002, 13(11): 1129.

doi: 10.1016/S0957-4166(02)00312-9     URL    
[11]
Truce W E, Breiter J J, Abraham D J, Norell J R. J. Am. Chem. Soc., 1962, 84(15): 3030.
[12]
Truce W E, Norell J R. J. Am. Chem. Soc., 1963, 85(20): 3231.

doi: 10.1021/ja00903a039     URL    
[13]
Truce W E, Norell J R. Tetrahedron Lett., 1963, 4(20): 1297.

doi: 10.1016/S0040-4039(01)90821-4     URL    
[14]
Truce W E, Son P N. J. Org. Chem., 1965, 30(1): 71.

pmid: 5870716
[15]
Truce W E, Abraham D J, Son P N. J. Org. Chem., 1967, 32(4): 990.

pmid: 6042165
[16]
Paquette L A, Houser R W. J. Am. Chem. Soc., 1971, 93(4): 944.

doi: 10.1021/ja00733a027     URL    
[17]
Shipov A G, Kisin A V, Baukov Y I. Zh. Obshch. Khim., 1979, 49: 1170.
[18]
Stork G, Borowitz I J. J. Am. Chem. Soc., 1962, 84(2): 313.

doi: 10.1021/ja00861a042     URL    
[19]
Opitz G, Adolph H. Angew. Chem. Int. Ed. Engl., 1962, 1(2): 113.
[20]
Paquette L A. J. Org. Chem., 1964, 29(10): 2851.

doi: 10.1021/jo01033a009     URL    
[21]
Paquette L A. J. Org. Chem., 1964, 29(10): 2854.

doi: 10.1021/jo01033a010     URL    
[22]
Borowitz I J. J. Am. Chem. Soc., 1964, 86(6): 1146.

doi: 10.1021/ja01060a038     URL    
[23]
Paquette L A, Rosen M. J. Org. Chem., 1968, 33(5): 2130.

doi: 10.1021/jo01269a101     URL    
[24]
Paquette L A, Freeman J P, Houser R W. J. Org. Chem., 1969, 34(10): 2901.

doi: 10.1021/jo01262a020     URL    
[25]
Paquette L A, Rosen M, Stucki H. J. Org. Chem., 1968, 33(8): 3020.

doi: 10.1021/jo01272a003     URL    
[26]
Wells J N, Abbott F S. J. Med. Chem., 1966, 9(4): 489.

pmid: 5968011
[27]
Chen S C, Chow Y L. Can. J. Chem., 1974, 52(12): 2283.

doi: 10.1139/v74-329     URL    
[28]
King J F, Beatson R P, Buchshriber J M. Can. J. Chem., 1977, 55(12): 2323.

doi: 10.1139/v77-319     URL    
[29]
Ferri R A, Pitacco G, Valentin E. Tetrahedron, 1978, 34(16): 2537.

doi: 10.1016/0040-4020(78)88384-7     URL    
[30]
Ried W, Bopp H. Chem. Ber., 1978, 111(4): 1527.

doi: 10.1002/cber.19781110433     URL    
[31]
Benedetti F, Pitacco G, Valentin E. Tetrahedron, 1979, 35(19): 2293.

doi: 10.1016/0040-4020(79)80124-6     URL    
[32]
Block E, Aslam M. Tetrahedron Lett., 1982, 23(41): 4203.

doi: 10.1016/S0040-4039(00)88704-3     URL    
[33]
Fatutta S, Pitacco G, Valentin E. J. Chem. Soc., Perkin Trans. 1, 1983: 2735.
[34]
Birkofer L, Quittmann W. Chem. Ber., 1986, 119(1): 257.

doi: 10.1002/cber.19861190123     URL    
[35]
Sedergran T C, Dittmer D C. J. Org. Chem., 1987, 52(4): 695.

doi: 10.1021/jo00380a043     URL    
[36]
Schwan A L, John W. Can. J. Chem., 1988, 66: 155.

doi: 10.1139/v88-024     URL    
[37]
Kitane S, Vebrel J, Cerutti E, Berrada M. Bull. Soc. Chim. Belges, 2010, 98(2): 109.

doi: 10.1002/bscb.19890980205     URL    
[38]
King J F, Lam J Y L. J. Org. Chem., 1993, 58(12): 3429.

doi: 10.1021/jo00064a037     URL    
[39]
Woolhouse A D, Gainsford G J, Crump D R. J. Heterocycl. Chem., 1993, 30(4): 873.

doi: 10.1002/jhet.5570300405     URL    
[40]
Opitz G, Deißler M, Rieth K, Wegner R, Irngartinger H, Nuber B. Liebigs Ann., 1995, 1995(12): 2151.

doi: 10.1002/jlac.1995199512301     URL    
[41]
Eckroth D R, Love G M. J. Org. Chem., 1969, 34(4): 1136.

doi: 10.1021/jo01256a084     URL    
[42]
Rosen M H. Tetrahedron Lett., 1969, 10(8): 647.

doi: 10.1016/S0040-4039(01)87772-8     URL    
[43]
Sun S M, Zhang M Y, Xu J X. Org. Chem. Front., 2022, 9(12): 3335.

doi: 10.1039/D2QO00556E     URL    
[44]
Truce W, Goralski C. J. Org. Chem., 1970, 35(12): 4220.

doi: 10.1021/jo00837a613     URL    
[45]
Liu L X, Xue P, Chen Q L, Wang C M. Tetrahedron Lett., 2021, 80: 153319.

doi: 10.1016/j.tetlet.2021.153319     URL    
[46]
Kamigata N, Sawada H, Suzuki N, Kobayashi M. Phosphorus Sulfur Relat. Elem., 1984, 19(2): 199.
[47]
Liu X Y, Duan X H, Pan Z L, Han Y, Liang Y M. Synlett, 2005, 36: 1752.
[48]
Hossain A, Engl S, Lutsker E, Reiser O. ACS Catal., 2019, 9: 1103.

doi: 10.1021/acscatal.8b04188    
[49]
Zeng X M, Ilies L, Nakamura E. Org. Lett., 2012, 43: 954.
[50]
Chen D, Lin L, Peng X Y, Yu X Y, Yang Z L, Liu Y T, Zhang X B, Li J H, Jiang H Z. Tetrahedron Lett., 2021, 75: 153203.

doi: 10.1016/j.tetlet.2021.153203     URL    
[51]
Wang X, Hu B, Yang P, Zhang Q, Li D. Tetrahedron, 2020, 76(15): 131082.

doi: 10.1016/j.tet.2020.131082     URL    
[52]
Pagire S K, Paria S, Reiser O. Org. Lett., 2016, 18(9): 2106.

doi: 10.1021/acs.orglett.6b00734     URL    
[53]
Niu T F, Cheng J, Zhuo C L, Jiang D Y, Shu X G, Ni B Q. Tetrahedron Lett., 2017, 58(37): 3667.
[54]
Niu T F, Jiang D Y, Ni B Q. Tetrahedron Lett., 2017, 58(45): 4299.
[55]
Zhang P B, Shi S S, Gao X, Han S, Lin J M, Zhao Y F. Org. Biomol. Chem., 2019, 17(11): 2873.

doi: 10.1039/C9OB00218A     URL    
[56]
Wu Q, Zhao D B, Qin X R, Lan J B, You J S. Chem. Commun., 2011, 47(32): 9188.

doi: 10.1039/c1cc13633j     URL    
[57]
Chen M, Huang Z T, Zheng Q Y. Chem. Commun., 2012, 48(95): 11686.

doi: 10.1039/c2cc36866h     URL    
[58]
Zhao F, Tan Q, Wang D H, Deng G J. Green Chem., 2020, 22(2): 427.

doi: 10.1039/C9GC03384J     URL    
[59]
Liang S S, Jiang L Q, Yi W B, Wei J J. Org. Lett., 2018, 20(22): 7024.

doi: 10.1021/acs.orglett.8b02929     URL    
[60]
Wei J J, Liang S S, Jiang L Q, Mumtaz Y, Yi W B. J. Org. Chem., 2020, 85(2): 977.

doi: 10.1021/acs.joc.9b02920     URL    
[61]
Nagib D A, MacMillan D W C. Nature, 2011, 480(7376): 224.

doi: 10.1038/nature10647     URL    
[62]
Natarajan P, Bala A N, Mehta S K, Bhasin K K. Tetrahedron, 2016, 72(19): 2521.

doi: 10.1016/j.tet.2016.03.087     URL    
[63]
Pagire S K, Hossain A, Reiser O. Org. Lett., 2018, 20(3): 648.

doi: 10.1021/acs.orglett.7b03790     URL    
[64]
Oh S H, Malpani Y R, Ha N, Jung Y S, Han S B. Org. Lett., 2014, 16(5): 1310.

doi: 10.1021/ol403716t     URL    
[65]
Tang X J, Thomoson C S, Dolbier W R. Org. Lett., 2014, 16(17): 4594.

doi: 10.1021/ol502163f     URL    
[66]
Tang X J, Dolbier W R. Angew. Chem. Int. Ed., 2015, 54(14): 4246.

doi: 10.1002/anie.201412199     URL    
[67]
Thomoson C S, Tang X J, Dolbier W R. J. Org. Chem., 2015, 80(2): 1264.

pmid: 25513895
[68]
Bagal D B, Kachkovskyi G, Knorn M, Rawner T, Bhanage B M, Reiser O. Angew. Chem. Int. Ed., 2015, 54(24): 6999.

doi: 10.1002/anie.201501880     URL    
[69]
Reiser O. Acc. Chem. Res., 2016, 49(9): 1990.

doi: 10.1021/acs.accounts.6b00296     URL    
[70]
Rawner T, Knorn M, Lutsker E, Hossain A, Reiser O. J. Org. Chem., 2016, 81(16): 7139.

doi: 10.1021/acs.joc.6b01001     URL    
[71]
Reddy Dubbaka S, Vogel P. Adv. Synth. Catal., 2004, 346(13/15): 1793.

doi: 10.1002/adsc.200404146     URL    
[72]
Dubbaka S R, Vogel P. Chem. Eur. J., 2005, 11(9): 2633.

doi: 10.1002/chem.200400838     URL    
[73]
Dubbaka S R, Zhao D B, Fei Z F, Volla C M R, Dyson P J, Vogel P. Synlett, 2006, 18: 3155.
[74]
Xi C J, Lai C B, Chen C, Wang R J. Synlett, 2004(9): 1595.
[75]
Wang D Y, Guo S M, Zhang R X, Lin S, Yan Z H. RSC Adv., 2016, 6(59): 54377.

doi: 10.1039/C6RA02302A     URL    
[76]
Jiang L Q, Yi W B, Liu Q R. Adv. Synth. Catal., 2016, 358: 3700.

doi: 10.1002/adsc.201600651     URL    
[77]
Jiang L Q, Ding T Q, Yi W B, Zeng X, Zhang W. Org. Lett., 2018, 20(8): 2236.

doi: 10.1021/acs.orglett.8b00581     pmid: 29624070
[78]
Baganz H, Dransch G. Chem. Ber., 1960, 93(4): 784.

doi: 10.1002/cber.19600930406     URL    
[79]
Baxter N J, Rigoreau L J M, Laws A P, Page M I. J. Am. Chem. Soc., 2000, 122(14): 3375.

doi: 10.1021/ja994293b     URL    
[80]
Barwick M, Abu-Izneid T, Novak I. J. Phys. Chem. A, 2008, 112(43): 10993.

doi: 10.1021/jp805024y     pmid: 18828576
[81]
Hinchliffe P S, Wood J M, Davis A M, Austin R P, Beckett R P, Page M I. Org. Biomol. Chem., 2003, 1(1): 67.

pmid: 12929392
[82]
Page M I. Acc. Chem. Res., 2004, 37(5): 297.

doi: 10.1021/ar0200899     URL    
[83]
Tsang W Y, Ahmed N, Harding L P, Hemming K, Laws A P, Page M I. J. Am. Chem. Soc., 2005, 127(25): 8946.

pmid: 15969560
[84]
Page M I, Hinchliffe P S, Wood J M, Harding L P, Laws A P. Bioorg. Med. Chem. Lett., 2003, 13(24): 4489.

doi: 10.1016/j.bmcl.2003.08.082     URL    
[85]
Llinás A, Ahmed N, Cordaro M, Laws A P, Frère J M, Delmarcelle M, Silvaggi N R, Kelly J A, Page M I. Biochemistry, 2005, 44(21): 7738.

doi: 10.1021/bi050110o     URL    
[86]
Tsuge O, Iwanami S. Bull. Chem. Soc. Jpn., 1970, 43(11): 3543.

doi: 10.1246/bcsj.43.3543     URL    
[87]
Szymonifka M J, Heck J V. Tetrahedron Lett., 1989, 30(22): 2869.

doi: 10.1016/S0040-4039(00)99145-7     URL    
[88]
Grunder E, Leclerc G. Synthesis, 1989, 1989(2): 135.

doi: 10.1055/s-1989-27176     URL    
[89]
Grunder-Klotz E, Ehrhardt J D. Tetrahedron Lett., 1991, 32(6): 751.

doi: 10.1016/S0040-4039(00)74875-1     URL    
[90]
Gordeev M F, Gordon E M, Patel D V. J. Org. Chem., 1997, 62(23): 8177.

doi: 10.1021/jo9713316     URL    
[91]
Liu J, Hou S L, Xu J X. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186(12): 2377.

doi: 10.1080/10426507.2011.608097     URL    
[92]
Yang Z H, Xu J X. J. Org. Chem., 2014, 79(21): 10703.

doi: 10.1021/jo5020933     URL    
[93]
Yang Z H, Xu J X. Tetrahedron, 2015, 71(19): 2844.

doi: 10.1016/j.tet.2015.03.076     URL    
[94]
Yang Z H, Chen N, Xu J X. J. Org. Chem., 2015, 80(7): 3611.

doi: 10.1021/acs.joc.5b00312     URL    
[95]
Yang Z H, Xu J X. RSC Adv., 2015, 5(96): 78396.

doi: 10.1039/C5RA15717J     URL    
[96]
Wu Q Y, Yang Z H, Xu J X. Org. Biomol. Chem., 2016, 14(30): 7258.

doi: 10.1039/C6OB01259K     URL    
[97]
Yang Z H, Hassane A, He W, Xu J X. Molecules, 2017, 22: 784.

doi: 10.3390/molecules22050784     URL    
[98]
Xu W, Fu Z C, Yang Z H, Zhang L D, Xu J X. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(5): 335.

doi: 10.1080/10426507.2017.1418741     URL    
[99]
Zajac M, Peters R. Org. Lett., 2007, 9(10): 2007.

doi: 10.1021/ol070644c     URL    
[100]
Zajac M, Peters R. Chem. Eur. J., 2009, 15(33): 8204.

doi: 10.1002/chem.200900496     URL    
[101]
Borrmann D, Wegler R. Chem. Ber., 1966, 99(4): 1245.

doi: 10.1002/cber.19660990427     URL    
[102]
Truce W E, Liu L K. Chem. Ind., 1969, 457.
[103]
Liu S J, Zhou B, Yang H Y, He Y T, Jiang Z X, Kumar S, Wu L, Zhang Z Y. J. Am. Chem. Soc., 2008, 130(26): 8251.

doi: 10.1021/ja711125p     URL    
[104]
Ghosh A K, Kumaragurubaran N, Hong L, Lei H, Hussain K A, Liu C F, Devasamudram T, Weerasena V, Turner R, Koelsch G, Bilcer G, Tang J. J. Am. Chem. Soc., 2006, 128(16): 5310.

doi: 10.1021/ja058636j     pmid: 16620080
[105]
Truce W E, Kao Liu L L. Tetrahedron Lett., 1970, 11(7): 517.

doi: 10.1016/0040-4039(70)89014-1     URL    
[106]
Koch F, Peters R. Angew. Chem. Int. Ed., 2007, 46(15): 2685.

doi: 10.1002/anie.200604796     URL    
[107]
Koch F M, Peters R. Chem. Eur. J., 2011, 17(13): 3679.

doi: 10.1002/chem.201003542     URL    
[108]
Zhou B N, Xu J X. Org. Biomol. Chem., 2016, 14(21): 4918.

doi: 10.1039/C6OB00648E     URL    
[109]
Cheng B, Li Y T, Zhang X P, Duan S G, Li H, He Y X, Li Y, Wang T M, Zhai H B. Org. Lett., 2020, 22(15): 5817.

doi: 10.1021/acs.orglett.0c01888     pmid: 32648762
[110]
Dong J, Xu J X. Prog. Chem., 2022, 34(5): 1088.

doi: 10.7536/PC210626    
( 董军, 许家喜. 化学进展, 2022, 34(5): 1088.)

doi: 10.7536/PC210626    
[111]
Liang Y, Jiao L, Zhang S W, Xu J X. J. Org. Chem., 2005, 70(1): 334.

pmid: 15624943
[112]
Jiao L, Liang Y, Xu J X. J. Am. Chem. Soc., 2006, 128(18): 6060.

pmid: 16669675
[113]
Liang Y, Jiao L, Zhang S W, Yu Z X, Xu J X. J. Am. Chem. Soc., 2009, 131(4): 1542.

doi: 10.1021/ja808046e     pmid: 19132931
[114]
Qi H Z, Li X Y, Xu J X. Org. Biomol. Chem., 2011, 9(8): 2702.

doi: 10.1039/c0ob00783h     URL    
[115]
Li B N, Wang Y K, Du D M, Xu J X. J. Org. Chem., 2007, 72(3): 990.

doi: 10.1021/jo0622734     URL    
[116]
Fu Z C, Xu J X. Prog. Chem., 2018, 30(8): 1047.
( 符志成, 许家喜. 化学进展, 2018, 30(8): 1047.)

doi: 10.7536/PC180113    
[117]
Xu J X. Beilstein J. Org. Chem., 2020, 16: 1357.

doi: 10.3762/bjoc.16.116     URL    
[118]
Xu J X. Asian J. Org. Chem., 2020, 9(7): 1008.

doi: 10.1002/ajoc.202000219     URL    
[119]
Fu Z C, Xu J X. Prog. Chem., 2021, 33(6): 895.
( 符志成, 许家喜. 化学进展, 2021, 33(6): 895.)

doi: 10.7536/PC200758    
[120]
Xu J X. Chem. Heterocycl. Compd., 2020, 56(3): 308.

doi: 10.1007/s10593-020-02660-1     URL    
[121]
Xu J X. Chem. Heterocycl. Compd., 2020, 56(8): 979.

doi: 10.1007/s10593-020-02763-9     URL    
[1] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[2] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[3] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[4] 廖伊铭, 吴宝琪, 唐荣志, 林峰, 谭余. 环张力促进的叠氮-炔环加成反应[J]. 化学进展, 2022, 34(10): 2134-2145.
[5] 郭文迪, 刘晔. 过渡金属配合物催化炔烃和亲核试剂的羰化反应[J]. 化学进展, 2021, 33(4): 512-523.
[6] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
[7] 孙连伟, 孙中鹤, 王雪, 徐林, 冯岸超, 张立群. 可控/“活性”自由基聚合制备聚乙烯及聚卤代烯烃[J]. 化学进展, 2020, 32(6): 727-737.
[8] 朱成浩, 张俊良. 钯催化有机卤化物与烷基炔的Heck型反应[J]. 化学进展, 2020, 32(11): 1745-1752.
[9] 张勇杰, 樊明帅, 李晓佩, 李化毅, 王书唯, 祝文亲. 含硅功能化聚烯烃:合成及应用[J]. 化学进展, 2020, 32(1): 84-92.
[10] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[11] 曲树璋, 张韬毅, 王伟. 氮配位单茂金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(7): 929-938.
[12] 袁世芳, 闫艺. 同核双金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(12): 1737-1748.
[13] 袁梦娅, 陈孝云*, 林生岭*. 功能化烯胺的合成[J]. 化学进展, 2018, 30(8): 1082-1096.
[14] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[15] 许云汉, 王磊磊, 胡爱军, 袁莉莉, 王志媛, 杨士勇*. 耐高温聚酰亚胺泡沫材料[J]. 化学进展, 2018, 30(5): 684-691.
阅读次数
全文


摘要

磺酰氯与不饱和化合物的反应