English
新闻公告
More
化学进展 2021, Vol. 33 Issue (2): 243-253 DOI: 10.7536/PC200504 前一篇   后一篇

• 综述 •

乙炔羰基化反应催化剂:由均相到多相

魏雪梅1,2, 马占伟1,*(), 慕新元1, 鲁金芝1,2, 胡斌1,*()   

  1. 1 中国科学院兰州化学物理研究所 羰基合成与选择氧化国家重点实验室 兰州 730000
    2 中国科学院大学 北京 100049
  • 收稿日期:2020-05-06 修回日期:2020-07-01 出版日期:2021-02-24 发布日期:2020-12-28
  • 通讯作者: 马占伟, 胡斌
  • 基金资助:
    中国科学院“西部之光”人才培养引进计划基金项目与甘肃省科技计划(20JR10RA044)

Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous

Xuemei Wei1,2, Zhanwei Ma1,*(), Xinyuan Mu1, Jinzhi Lu1,2, Bin Hu1,*()   

  1. 1 State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-05-06 Revised:2020-07-01 Online:2021-02-24 Published:2020-12-28
  • Contact: Zhanwei Ma, Bin Hu
  • About author:
    * Corresponding author e-mail: (Zhanwei Ma);
  • Supported by:
    CAS “Light of West China” Program and the Science and Technology Plan of Gansu Province(20JR10RA044)

基于非石油路线制备的乙炔小分子,其羰基化反应可制备大量高附值化学品,在CO排放的环境治理以及化学品应用方面有着十分重要的意义。本文主要概述了乙炔羰基化反应的催化剂由均相到多相的研究进展,总结了乙炔单/双羰基化催化剂种类及添加剂对反应活性的影响。基于反应机理分析提出调控结构敏感性因素(尺寸效应及形貌效应)制备高效催化剂的设计思路,并进一步综述了多相催化剂微纳结构的可控制备方法及其结构与催化活性之间的构效关系,以期对未来设计高效乙炔羰基化反应的多相催化体系提供指导意义。

The dicarbonylation of acetylene small molecule, produced based on non-petroleum routes, can produce a large number of high value-added chemicals, which is of great significance in the environmental treatment of CO gas emissions and the chemicals application. The artide mainly reviews the advances in research on the catalyst in acetylene carbonylation from homogeneous to heterogeneous, and summarize the effects of catalyst types and additives on the acetylene mono-/bi-carbonylation reaction activity. Based on the analysis of the reaction mechanism, this article introduces the design ideas for the preparation of high-efficiency catalysts by adjusting the structural sensitivity factors(size effect and morphology effect). Thus the method for controllable preparation of the micro-nano structure of the heterogeneous catalyst and the structure-activity relationship are further reviewed, with a view to provide guidance for the design of a heterogeneous catalytic system for efficient acetylene carbonylation in the future.

Contents

1 Introduction

2 Homogeneous catalytic system for acetylene carbonylation

2.1 Carbonyl metal homogeneous catalytic system

2.2 Transition metal salt homogeneous catalytic system

3 Heterogeneous catalytic system for acetylene carbonylation

3.1 Nickel-based heterogeneous catalyst

3.2 Palladium-based heterogeneous catalyst

4 Palladium-based catalyst micro-nano structure construction

4.1 Palladium particle size controllable preparation

4.2 Pd-based catalyst morphology controllable preparation

5 Conclusion and outlook

()
图1 由煤制乙炔单羰化和双羰化反应合成基础有机化工中间体
Fig. 1 The synthesis of basic organic chemical intermediates by coal-based acetylene mono-/di-carbonylation method
图2 羰基金属催化体系中催化性能较好的配体[8]
Fig. 2 Ligands for carbonyl metal catalytic system with good catalytic activity[8]
图3 乙炔双羰基化单核反应机理[28]
Fig. 3 The plausible mechanism for acetylene dicarbonylation[28]
表1 钯基均相催化炔烃羰化反应活性
Table 1 Palladium-based homogeneous catalytic carbonylation of alkynes
图4 推测乙炔双羰基化顺反异构反应机理[34]
Fig. 4 Plausible mechanism proposed for acetylene dicarbonylation cis-trans isomerization[34]
图5 氧化还原循环示意图[38]
Fig. 5 The principle of redox cycles[38]
图6 推测反应机理及丙烯酸的抑制作用[43]
Fig. 6 Proposed reaction mechanism and inhibition by AA[43]
图7 镍改性催化剂表面的活性位点[45]
Fig. 7 Active sites on the Ni-modified catalyst surface[45]
图8 Pd/α-Fe2O3催化剂微观结构图[47]
Fig. 8 Microstructure of Pd/α-Fe2O3 catalyst[47]
图9 Pd/α-Fe2O3催化乙炔转化率及富马酸二甲酯的选择性[47]
Fig. 9 The acetylene conversion and selectivity(line chart) for dimethyl fumarate Pd/α-Fe2O3 as catalyst[47]
图10 (A) Pd{100}立方体平面上连续增长转换为Pd{111}八面体的示意图,及(B)其形貌[59]
Fig. 10 (A)Schematic illustrating how continuous growth on the {100} planes eventually leads to the transformation of a Pd cube bound by {100} facets into an octahedron enclosed by {111} facets, and(B) SEM images of the Pd nanoparticles[59]
图11 Pd凹面纳米立方体的微观形貌[50]
Fig. 11 Micromorphology images of Pd concave nanocubes[50]
图12 Fe2O3-R(A1, A2, A3),Fe2O3-S(B1, B2, B3)及Fe2O3-C(C1, C2, C3)的微观形貌[64]
Fig. 12 FE-SEM and HR-TEM images of(A1, A2, A3) Fe2O3-R,(B1, B2, B3) Fe2O3-S, and(C1, C2, C3) Fe2O3-C[64]
图13 CeO2纳米立方体(a, b, c),纳米棒(d, e, f)相应负载Ru催化剂(g, h)及纳米颗粒(i)的微观形貌[66]
Fig. 13 TEM and SEM images of the as-prepared CeO2 nanocrystals and the corresponding catalysts:(a, b, and c) nanocubes,(d, e, and f) nanorods,(g and h) Ru/r-CeO2 and Ru/c-CeO2, and(i) nanoparticles(p-CeO2) [66]
图14 甘油酸钛前驱体形貌演化过程的图示[69]
Fig. 14 Illustration of the morphological evolution process of the titanium glycerolate precursor[69]
[1]
Centi G, Trifiro F, Ebner J R, Franchetti V M. Chem. Rev., 1988, 88(1):55.
[2]
Bordes E. Catal. Today, 1993, 16(1):27.
[3]
Lan J H, Chen Z Q, Lin J C, Yin G C. Green Chem., 2014, 16(10):4604.
[4]
Huang Z J, Cheng Y Z, Chen X P, Wang H F, Du C X, Li Y H. Chem. Commun., 2018, 54(32):3967.
[5]
Peng J B, Geng H Q, Wu X F. Chem, 2019, 5(3):526.
[6]
Reppe. US 2127127, 1939.
[7]
Reppe. US 2883418, 1959.
[8]
Dakli I, Corsi L. US 2881205, 1959.
[9]
Piero P. US 3060228, 1962.
[10]
Copenhaver J W, Bigelow M H. Acetylene and Carbon Monoxide Chemistry. New York: Reinhold Publishing Corporation, 1949.
[11]
Liu R, Xiong X M, Mu X Y, Ma Z W, Song C L, Hu B. J. Mol. Catal.(China), 2015, 29(2):97.
刘蕊, 熊绪茂, 慕新元, 马占伟, 宋承立, 胡斌. 分子催化, 2015, 29(2):97.
[12]
Liu R, Mu X Y, Xiong X M, Ma Z W, Song C L, Hu B. Natural Gas Chemical Industry, 2015, 40(5):76.
( 刘蕊, 慕新元, 熊绪茂, 马占伟, 宋承立, 胡斌. 天然气化工(C1化学与化工), 2015,40(5):76.
[13]
Zhao S L. Masteral Dissertation of Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences, 2017.
( 赵胜利. 中国科学院兰州化学物理研究所硕士论文, 2017.).
[14]
Walter R. US 260490, 1952.
[15]
Tauster S J, Fung S C, Garten R L. US 3060227, 1962.
[16]
An Y Z, Qiu J M, Yang D H, He D H, Wang Z S. Natural Gas Chemical Industry, 1991, 16(6):17.
安一哲, 邱家明. 杨大海, 贺德华, 王宗说. 天然气化工, 1991, 16(6):17.
[17]
Cui L, Yang X G, Zhou X, Zeng Y, Wang G Y. Industrial Catal., 2013, 21(12):13.
[18]
Edelmann R E. US 2882299, 1949.
[19]
Bengamin J L. US 2882297, 1959.
[20]
Reppe. US 2925436, 1960.
[21]
Smolin E M. US 3025322, 1962.
[22]
Reppe. US 2604490, 1950.
[23]
Birch A J. J. Am. Chem. Soc., 1964, 86(10):2095.
[24]
Tang C M, Zeng Y, Yang X G, Lei Y C, Wang G Y. J. Mol. Catal. A: Chem., 2009, 314:15.
[25]
Larock R C. J. Org. Chem., 1975, 40(22):3237.
[26]
Knifton J F. US 3905672, 1975.
[27]
Deng X G. Nat. Gas Chem. Ind., 1994, 3(19): 46.
( 邓祥贵. 天然气化工, 1994, 3(19): 46.
[28]
Cassar L, Chiusoli G P, Guerrieri F. Synthesis, 1973(9):509.
[29]
Heck R F. J. Am. Chem. Soc., 1972, 94(8):2712.
[30]
Xu S Y, Nie Z W, Chen Y D, Ma J B. Chinese J. Catal., 1983, 4(1):24.
[31]
Gabriele B, Costa M, Salerno G, Chiusoli G P. J. Chem. Soc., Perkin Trans. 1, 1994(1):83.
[32]
Sakurai Y, Sakaguchi S, Ishii Y. Tetrahedron Lett., 1999, 40(9):1701.
[33]
Liu H Z, Lau G P S, Dyson P J. J. Org. Chem., 2015, 80(1):386.

URL     pmid: 25418524
[34]
Zhao S L, Zhang Q S, Ma Z W, Song C L, Pei X P, Xiong X M, Hu B. J. Mol. Catal., 2017, 31(5):411.
赵胜利, 张勤生, 马占伟, 宋承立, 裴小平, 熊旭茂, 胡斌. 分子催化, 2017, 31(5):411.
[35]
Matthias B, Boy C, Carl D F, Christian W K. J. Mol. Catal. A, 1995, 104:17.
[36]
Zargarian D, Alper H. Organometallics, 1991, 10(8):2914.
[37]
Bruk L G, Kozlova A P, Marshakha O V, Oshanina I V, Temkin O N, Kaliya O L. Russ. Chem. Bull., 1999, 48(10):1875.
[38]
Beller M. Catalytic Carbonylation Reactions. Springer-Verlag Berlin Heidelberg, 2006.
[39]
Bhattacharyya S K, Sen A K. J. Appl. Chem., 1963, 13:498.
[40]
Bhattacharyya S K, Sen A K. Ind. Eng. Chem. Proc. Des. Dev., 1964, 3(2):169.
[41]
Bhattacharyya S K, Bhattach D P. J. Appl. Chem., 1966, 16(7):202.
[42]
Lin T J, Meng X, Shi L. J. Mol. Catal. A: Chem., 2015, 396:77.
[43]
Choi H S, Park J H, Bae J W, Lee J H, Chang T S. Catal. Commun., 2019, 123:86.
[44]
Lin T J, Meng X, Shi L. Appl. Catal. A: Gen., 2014, 485:163.
[45]
Xie H, Lin T J, Shi L, Meng X. RSC Adv., 2016, 6(99):97285.
[46]
Bhanage B, Gadge S. Synlett, 2013, 24(8):981.
[47]
Wei X M, Ma Z W, Lu J Z, Mu X Y, Hu B. New J. Chem., 2020, 44(4):1221.
[48]
Wang S M, Fu J W, Wang K, Gao M, Wang X Z, Wang Z W, Chen J F, Xu Q. Appl. Surf. Sci., 2018, 459:208.
[49]
Zhang L, Filot I A W, Su Y Q, Liu J X, Hensen E J M. J. Phys. Chem. C, 2019, 123(12):7290.
[50]
Jin M S, Zhang H, Xie Z X, Xia Y N. Angew. Chem. Int. Ed., 2011, 50(34):7850.
[51]
Chen X M, Wu G H, Chen J M, Chen X, Xie Z X, Wang X R. J. Am. Chem. Soc., 2011, 133(11):3693.

URL     pmid: 21348468
[52]
Ayesh A I, Thaker S, Qamhieh N, Ghamlouche H. J. Nanoparticle Res., 2011, 13(3):1125.
[53]
Fujimoto K I, Ribeiro F H, Avalos-Borja M, Iglesia E. J. Catal., 1998, 179(2):431.
[54]
Ma N, Suematsu K, Yuasa M, Shimanoe K. ACS Appl. Mater. Interfaces, 2015, 7(28):15618.

URL     pmid: 26111855
[55]
Murata K, Mahara Y, Ohyama J, Yamamoto Y, Arai S, Satsuma A. Angew. Chem. Int. Ed., 2017, 56(50):15993.

doi: 10.1002/anie.201709124     URL    
[56]
Iglesias-Juez A, Kubacka A, Fernández-García M, di Michiel M, Newton M A. J. Am. Chem. Soc., 2011, 133(12):4484.

URL     pmid: 21370924
[57]
Li Y, Boone E, El-Sayed M A. Langmuir, 2002, 18(12):4921.
[58]
Zhang Y G, Wen X, Shi Y Q, Yue R, Bai L B, Liu Q T, Ba X W. Ind. Eng. Chem. Res., 2019, 58(3):1142.
[59]
Jin M S, Zhang H, Xie Z X, Xia Y N. Energy Environ. Sci., 2012, 5(4):6352.
[60]
Wei X M, Ma Z W, Lu J Z, Mu X Y, Hu B. New J. Chem., 2020, 44(3):1157.
[61]
Sun L M, Zhan W W, Li Y A, Wang F, Zhang X L, Han X G. Inorg. Chem. Front., 2018, 5(9):2332.
[62]
Zhao N N, He C C, Liu J B, Gong H J, An T, Xu H X, Zhao F Q, Hu R Z, Ma H X, Zhang J Z. J. Solid State Chem., 2014, 219:67.
[63]
Wei X M, Ma Z W, Mu X Y, Zhang Q S, Hu B. Molecular Catalysis, 2021, 499:111303.
[64]
Jian Y F, Yu T T, Jiang Z Y, Yu Y K, Douthwaite M, Liu J Y, Albilali R, He C. ACS Appl. Mater. Interfaces, 2019, 11(12):11369.

URL     pmid: 30829030
[65]
Du X J, Zhang D S, Shi L Y, Gao R H, Zhang J P. J. Phys. Chem. C, 2012, 116(18):10009.
[66]
Ma Z W, Zhao S L, Pei X P, Xiong X M, Hu B. Catal. Sci. Technol., 2017, 7(1):191.
[67]
Lu J Z, Ma Z W, Wei X M, Zhang Q S, Hu B. New J. Chem., 2020, 44(22):9298.
[68]
Martra G. Appl. Catal. A: Gen., 2000,275.
[69]
Tian G H, Chen Y J, Zhou W, Pan K, Tian C G, Huang X R, Fu H G. CrystEngComm, 2011, 13(8):2994.
[70]
Beck D D, White J M, Ratcliffe C T. J. Phys. Chem., 1986, 90(14):3123.
[1] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[2] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[3] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[4] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[5] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
[6] 缪谦, 杨代月. 从含有八元环的稠环芳烃到具有负曲率的碳纳米结构:进展与展望[J]. 化学进展, 2020, 32(11): 1835-1845.
[7] 赵云, 亢玉琼, 金玉红, 王莉, 田光宇, 何向明. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019, 31(4): 613-630.
[8] 刘畅, 吴峰, 苏倩倩, 钱卫平. 贵金属多孔纳米结构的模板法制备及生物检测应用[J]. 化学进展, 2019, 31(10): 1396-1405.
[9] 鲍长远, 韩家军*, 程瑾宁, 张瑞涛. 石墨烯-聚苯胺类超级电容器复合电极材料[J]. 化学进展, 2018, 30(9): 1349-1363.
[10] 李勃天, 温幸, 唐黎明. 一维聚合物-无机纳米复合材料的制备[J]. 化学进展, 2018, 30(4): 338-348.
[11] 赵云, 金玉红, 王莉, 田光宇, 何向明. 自组装多级结构在锂离子电池中的应用[J]. 化学进展, 2018, 30(11): 1761-1769.
[12] 叶德楷, 左小磊, 樊春海. 基于DNA纳米结构的传感界面调控及生物检测应用[J]. 化学进展, 2017, 29(1): 36-46.
[13] 庄树新, 吕建先, 路密, 刘翼民, 陈晓彬. 钙钛矿型氧化物的制备及其在固体氧化物燃料电池和金属-空气电池中的应用[J]. 化学进展, 2015, 27(4): 436-447.
[14] 周国珺, 叶志凯, 石微微, 刘吉洋, 奚凤娜. 三维(3D)石墨烯及其复合材料的应用[J]. 化学进展, 2014, 26(06): 950-960.
[15] 刘张波, 刘蓓蓓, 夏长荣. 固体氧化物燃料电池的纳米阳极[J]. 化学进展, 2013, 25(11): 1821-1829.