English
新闻公告
More
化学进展 2020, Vol. 32 Issue (9): 1274-1293 DOI: 10.7536/PC200118 前一篇   后一篇

• 综述 •

离子液体固载化及应用研究

康美荣1, 金福祥1, 李臻1, 宋河远1,**(), 陈静1,**()   

  1. 1. 中国科学院兰州化学物理研究所 羰基合成与选择氧化国家重点实验室 兰州 730000
  • 收稿日期:2020-06-30 修回日期:2020-05-15 出版日期:2020-09-24 发布日期:2020-06-30
  • 通讯作者: 宋河远, 陈静
  • 作者简介:
    ** Corresponding author e-mail: (Heyuan Song); (Jing Chen)
  • 基金资助:
    *国家自然科学基金项目(21673259); 江苏省自然科学基金项目(BK20171241)

Research and Application of Supported Ionic Liquids

Meirong Kang1, Fuxiang Jin1, Zhen Li1, Heyuan Song1,**(), Jing Chen1,**()   

  1. 1. State Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2020-06-30 Revised:2020-05-15 Online:2020-09-24 Published:2020-06-30
  • Contact: Heyuan Song, Jing Chen
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(21673259); the National Science Foundation of Jiangsu Province of China(BK20171241)

离子液体固载化是将离子液体通过物理吸附或化学键合的方法负载到不同的载体上,得到一种新型固体材料,兼具了离子液体与载体的特征,能够显著提升离子液体的利用率,解决离子液体黏度大、传质及分离困难等问题,拓展了离子液体的应用领域。本文根据不同的载体类型,综述了近年来离子液体固载化的研究进展及应用情况,总结了不同载体的优缺点及现阶段研究和应用发展中存在的一些问题,并对固载化离子液体的应用前景进行了展望。

Supported ionic liquid is a new kind of solid materials prepared by loading ionic liquids onto different carriers through physical adsorption or chemical bonding, which has the characteristics of both ionic liquids and carriers. This process can significantly improve the utilization of ionic liquids, solve the problems of high viscosity, mass transfer and separation of ionic liquids, and expand the application field of ionic liquids. This paper reviews the research progress and application of supported ionic liquids in recent years, summarizes the advantages and disadvantages of different carriers and some problems existing in the current application. Furthermore, the prospect to the development and application of supported ionic liquids is also discussed.

Contents

1 Introduction

2 Immobilization of ionic liquids

2.1 Methods of immobilization

2.2 Immobilization of ionic liquids onto silica gel

2.3 Immobilization of ionic liquids onto polymer

2.4 Immobilization of ionic liquids onto molecular sieve

2.5 Immobilization of ionic liquids onto magnetic materials

2.6 Immobilization of ionic liquids onto metal-organic frameworks

2.7 Immobilization of ionic liquids onto other carriers

3 Conclusion and outlook

()
图1 S-[bpim][HCO3]结构式[11]
Fig.1 Structure of S-[bpim][HCO3] [11]
图2 [(CH2)3SO3HVIm]HSO4/硅胶制备示意图[12]
Fig.2 Preparation diagram of [(CH2)3SO3HVIm]HSO4/SiO2[12]
图3 固载型离子液体结构式[16]
Fig.3 Structural of supported ionic liquids[16]
图4 固载型离子液体IL-Ala/SiO2结构式[17]
Fig.4 Structural of immobilized ionic liquid IL-Ala/SiO2[17]
图5 [Pmim]AlCl3/SiO2的制备示意图[19]
Fig.5 Preparation diagram of [Pmim]AlCl3/SiO2[19]
图6 [Silica-Ps-im]HSO4的合成路线[23]
Fig.6 Synthetic route of [Silica-Ps-im]HSO4[23]
图7 KCC-1/IL/PbS结构示意图[24]
Fig.7 Structure of KCC-1/IL/PbS[24]
图8 固载型离子液体合成路线[26]
Fig.8 Synthetic route of immobilized ionic liquids[26]
图9 Si-P8883TFSI/SiO2分子结构式[27]
Fig.9 Structure of Si-P8883TFSI/Si2[27]
图10 固载离子液体结构示意图[29]
Fig.10 Structure of immobilized ionic liquids[29]
图11 MPM-C6V-SO3CF3-IL结构式[33]
Fig.11 Structure of MPM-C6V-SO3CF3-IL[33]
图12 P(4-VPBSA)[HSO4]合成过程[34]
Fig.12 Synthetic route of P(4-VPBSA)[HSO4] [34]
图13 CS-VImPS-PW合成路线[37]
Fig.13 Synthetic route of CS-VImPS-PW[37]
图14 PEK-C-ILs结构式[38]
Fig.14 Structure of PEK-C-ILs[38]
图15 MMFP-IL结构式[39]
Fig.15 Structure of MMFP-IL[39]
图16 PVC固载型离子液体的合成[40]
Fig.16 Synthetic route of PVC immobilized ionic liquid[40]
图17 固载化烷基咪唑离子液体的制备[41]
Fig.17 Preparation of supported alkylimidazolium ionic liquids[41]
图18 PS-CH2-[TSiIm][Cl]结构式[42]
Fig.18 Structure of PS-CH2-[TSiIm][Cl][42]
图19 Resin-X结构式[44]
Fig.19 Structure of Resin-X[44]
图20 [PolyVMPS]PW结构示意图[47]
Fig.20 Structure of [PolyVMPS]PW[47]
图21 Poly(VPyPS)-PW制备过程[51]
Fig.21 Synthetic route of Poly(VPyPS)-PW[51]
图22 PAILs合成路线[54]
Fig.22 Synthetic route of PAILs[54]
图23 离子液体聚合物结构式[55]
Fig.23 Structure of polymeric ionic liquids[55]
图24 离子液体及其聚合物的结构式[57]
Fig.24 Structure of polymerizable ionic liquids and polymeric ionic liquids[57]
图25 Poly(AMPS-BA-co-HEMA)和poly(AMPS-DMAEMA-co-HEMA)结构式[59]
Fig.25 Structure of poly(AMPS-BA-co-HEMA) and poly(AMPS-DMAEMA-co-HEMA) [59]
图26 NO3@PIL和N3@PIL制备过程[60]
Fig.26 Synthetic process of NO3@PIL and N3@PIL[60]
图27 HIILsBr/MCM-41制备过程[64]
Fig.27 Synthetic process of HIILsBr/MCM-41[64]
图28 MCM-22-[CeMIM]Cl/(ZnBr2)2的结构式[65]
Fig.28 Structure of MCM-22-[CeMIM]Cl/(ZnBr2)2[65]
图29 [MCM-41@(CH2)3-1-MIM]Br3的结构式[69]
Fig.29 Structure of [MCM-41@(CH2)3-1-MIM]Br3[69]
图30 SBA-15-pr-ILOH[74]、$[SBA-15-Ps-im]HSO_{4}$[75]和IL-PRO/SBA-15[76]结构式
Fig.30 Structure of SBA-15-Pr-ILOH[74]、$[SBA-15-Ps-im]HSO_{4}$[75] and IL-PRO/SBA-15[76]
图31 SBA-IL-HPW结构示意图[78]
Fig.31 Structure of SBA-IL-HPW[78]
图32 固载离子液体合成过程[83]
Fig.32 Synthetic process of supported ionic liquid[83]
图33 [NaZSM-5IMBs]HSO4结构式[84]
Fig.33 Structure of [NaZSM-5IMBs]HSO4[84]
图34 Fe3O4NPs/IL/Pd(0)结构式[86]
Fig.34 Structure of Fe3O4NPs/IL/Pd(0) [86]
图35 Fe3O4@IL纳米粒子结构式[90]
Fig.35 Structure of Fe3O4@IL[90]
图36 固载离子液体结构式[92]
Fig.36 Structure of the supported ionic liquid[92]
图37 固载离子液体anion-DMIL@SIO2@Fe3O4结构式[95]
Fig.37 Structure of anion-DMIL@SIO2@Fe3O4[95]
图38 Fe3O4@SiO2-IL结构式[97]
Fig.38 Structure of Fe3O4@SiO2-IL[97]
图39 MIL-101(Cr)固载离子液体催化剂结构式[101]
Fig.39 Structure of the MIL-101(Cr) supported ionic liquid[101]
图40 氨基功能化的咪唑类离子液体结构式[106]
Fig.40 Structure of the supported ionic liquid[106]
图41 NpmimBF4-FDU合成路线[113]
Fig.41 Synthetic route of the NpmimBF4-FDU[113]
图42 Na+-MMT-[pmim]HSO4[117]和HT-IL结构式[119]
Fig.42 Structure of Na+-MMT-[pmim]HSO4 and HT-IL[119]
图43 PMO-IL-SH[120]和Ni@IL-PMO结构式[121]
Fig.43 Structure of PMO-IL-SH and Ni@IL-PMO[121]
表1 CO2与环氧丙烷环加成反应合成碳酸丙烯酯
Table 1 Synthesis of propylene carbonate by cycloaddition reaction of CO2 and propylene oxide
[1]
张锁江(Zhang S J), 徐春明(Xu C M), 吕兴梅(Lv X M), 周清(Zhou Q).离子液体与绿色化学(Ionic Liquid and Green Chemistry). 北京:科学出版社(Beijing: Science Press), 2009. 569.
[2]
杨本群(Yang B Q), 张庆华(Zhang Q H), 石峰(Shi F), 邓友全(Deng Y Q).化学反应工程与工艺(Chemical Reaction Engineering and Technology), 2013, 29(5): 430.
[3]
Xin B W, Hao J C.Chem. Soc. Rev., 2014, 43:7171.
[4]
刘文巧(Liu W Q), 李臻(Li Z), 夏春谷(Xia C G). 化学进展(Progress In Chemistry), 2018, 30(8): 1143.
[5]
段晓磊(Duan X L), 迟骋(Chi C), 朱丽君(Zhu L J), 周玉路(Zhou Y L), 项玉芝(Xiang Y Z), 夏道宏(Xia D H). 化工进展(Chemical Industry and Engineering Progress), 2015, 34(12): 4238.
[6]
赵地顺(Zhao D S), 杨洁(Yang J), 张娟(Zhang J), 董兰芬(Dong L F), 张妍(Zhang Y).化工进展(Chemical Industry and Engineering Progress), 2010, 29(11): 2079.
[7]
Tamboli A H,Chaugule A A,Sheikh F A,Chung W J,Kim H. Chinese J. Catal., 2015, 36(8): 1365.
[8]
杨刚胜(Yang G S), 曾淦宁(Zeng G N), 赵强(Zhao Q), 陈徐(Chen X), 陈盛积(Chen S J), 艾宁(Ai N). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2016, 44(1): 106.
[9]
王颖(Wang Y), 罗仕忠(Luo S Z), 文婕(WenJ), 周夫东(Zhou F D).合成化学(Chinese Journal of Synthetic Chemistry), 2012, 20(3): 276.
[10]
邱晓艳(Qiu X Y), 张丽珍(Zhang L Z), 钟小超(Zhong X C), 曾双(Zeng S), 杨骏(Yang J).化学研究与应用(Chemical Research and Application), 2015, 27(12): 1817.
[11]
王耀红(Wang Y H), 成卫国(Cheng W G), 孙剑(Sun J), 张香平(Zhang X P),张锁江(Zhang S J).过程工程学报(The Chinese Journal of Process Engineering), 2009, 9(5):904.
[12]
万辉(Wan H), 张继申(Zhang J S), 管国锋(Guan G F).石油化工(Petrochemical Technology), 2009, 38(2): 134.
[13]
张信伟(Zhang X W), 艾秋红(Ai Q H). 工业催化(Industrial Catalysis), 2008, 16(8): 54.
[14]
Fehér C, Tomasek S,Hancsòk J, Skoda -Földes R.Appl.Catal. B: Envirin.,2018, 239: 52.
[15]
Guo X P, Peng Z J, Traitangwong A, Wang G, Xu H Y, MeeyooV, Li C S, Zhang S J.Green Chem., 2018, 20(21): 4932.
[16]
高腾(Gao T), 宋河远(Song H Y), 陈静(Chen J). 分子催化(Journal of Molecular Catalysis), 2016, 30(3): 199.
[17]
唐斌艳(Tang B Y), 郭建平(Guo J P), 陈林(Chen L), 胡强(Hu Q), 毛丽秋(Mao L Q). 化工进展(Chemical Industry and Engineering Progress), 2011, 30(12): 2642.
[18]
郑国才(Zheng G C), 许杰(Xu J), 薛冰(Xue B), 刘平(Liu P), 李永昕(Li Y X). 化学通报(Chemistry), 2010, 75(8): 754.
[19]
张雪红(Zhang X H), 高岩磊(Gao Y L), 常永芳(Chang Y F), 张云霄(Zhang Y X),杨晓辉(Yang X H), 刘会茹(Liu H R), 任蕾(Ren L), 胡瑞省(Hu R S), 陈汝芬(Chen R F). 天然气化工(Natural Gas Chemical Industry), 2010, 38(1): 15.
[20]
张学兰(Zhang X L), 王登峰(Wang D F), 魏伟(Wei W). 工业催化(Industrial Catalysis), 2012, 20(7): 12.
[21]
唐婧亚(Tang J Y), 王华(Wang H), 韩金玉(Han J Y), 姚锐(Yao R).化学工业与工程(Chemical Industry and Engineering), 2015, 32(2): 18.
[22]
Xu H M, Zhao H H, Song H L, Miao Z C, Yang J, Zhao J, Liang N, Chou L J.J. Mol. Catal. A: Chem., 2015, 410: 235.
[23]
Yang J B, Zhou L H, Guo X T, Li L, Zhang P, Hong R Y, Qiu T. Chem. Eng. J., 2015, 280: 147.
[24]
Sadeghzadeh S M. Micropor. Mesopor. Mat., 2016, 234: 310.
[25]
Cao Y, Zhou H B, Li J.Renew. Sust. Energ. Rev., 2016, 58: 871.
[26]
胡甜甜(Hu T T), 赵地顺(Zhao D S), 胡晶晶(Hu J J), 张娟(Zhang J), 翟建华(Zhai J H). 精细化工(Fine Chemicals), 2016, 33(6): 648.
[27]
Zhu J M, He B T, Huang J H, Li C C, Ren T.Micropor. Mesopor. Mat., 2018, 260: 190.
[28]
Moravcová D, Planeta J, W. T. King A, K.Wiedmer S. J.Chromatogr. A, 2018, 1552: 53.
[29]
吕东伟(Lv D W), 肖林飞(Xiao L F), 苏丹(Su D), 刘丹(Liu D), 吴伟(Wu W).现代化工(Modern Chemical Industry), 2011, 31(1): 271.
[30]
Wang Y, Guan X, Chen F Y, Zhu S S, Ye Y S, Peng H Y, Zhou X P, Xie X L, Mai Y W.Catal. Sci. Technol., 2017, 7(18): 4173.
[31]
Liu Y, Cheng W G, Zhang Y Q, Sun J, Zhang S J.Green Chem., 2017, 19(9): 2184.
[32]
Shi X L, Lin H K, Li P Y, Zhang W Q.Chem. Cat. Chem., 2014, 6(10): 2947.
[33]
Gao H Y, Zhou Y M, Sheng X L, Zhao S, Zhang C, Fang J S, Wang B B.Appl. Catal. A: Gen., 2018, 552:138.
[34]
Kiasat A R, Mouradzadegun A, Saghanezhad S J.Chinese J.Catal., 2013, 34(10): 1861.
[35]
Ma M, Li H S, Yang W, Wu Q, Shi D X, Zhao Y, Feng C H, Jiao Q Z.Catal. Lett., 2017, 148(1): 134.
[36]
Dong B, Wang L Y, Zhao S, Ge R L, Song X D, Wang Y, Gao Y N.Chem. Commun., 2016, 52(44): 7082.
[37]
Zhang W H, Liu S S, Liu P, Xu J, Xue B, Wei X Y, Li Y X.RSC Adv., 2016, 6(47):41404.
[38]
Lu P, Cao Y, Wang X L.Appl. Sci., 2018, 8(5): 770.
[39]
Pan H, Li H, Zhang H, Wang A P, Yang S.Fuel, 2019, 239: 886.
[40]
陈旭伟(Chen X W), 刘宇佳(Liu Y J), 舒杨(Shu Y), 王建华(Wang J H). 中国科学化学(Scientia Sinica Chimica), 2010, 40(1): 63.
[41]
祝丽荔(Zhu L L), 张振江(Zhang Z J), 张玉环(Zhang Y H), 商鲁伟(Shang L W), 陈继(Chen J). 离子交换与吸附(Ion Exchange and Adsorption), 2014, 30(6): 551.
[42]
Cheng M, Song G F, Zhu G F, Shi D Y, Fan J. J. Appl. Polym.Sci., 2019, 47981.
[43]
Feng S C, Wu Y Y, Luo J Q, Wan Y H.J.Energ. Chem., 2019, 29: 31.
[44]
Dong Z, Zhao L.Cellulose, 2018, 25(4): 2205.
[45]
Dou H Z, Jiang B, Xu M, Zhou J H, Sun Y L, Zhang L H.Chem. Eng. Sci., 2019, 193: 27.
[46]
Xing C Y, Wang Y Y, Zhang C, Li L F, Li Y J, Li J Y.Ind. Eng. Chem. Res., 2015, 54(38): 9351.
[47]
Leng Y, Jiang P P, Wang J.Catal. Commun., 2012, 25: 41.
[48]
Liang X Z. Ind. Eng. Chem. Res., 2013, 52(21): 6894.
[49]
Liang X Z.Appl. Catal. A: Gen., 2013, 455: 206.
[50]
Liang X Z.Energy, 2013, 63: 103.
[51]
Wang J K, Zao Y X, Fu R G, Niu Y Y, Yue G R, Quan Z J, Wang X C, Pan Y.Ultrason. Sonochem., 2014, 21(1): 29.
[52]
Li W Y, Zong Y X, Wang J K, Niu Y Y.Chinese Chem. Lett., 2014, 25(4): 575.
[53]
Sheng X L, Gao H Y, Zhou Y M, Wang B B, Sha X.Appl. Organomet. Chem., 2019, 33(8): e4979.
[54]
Song H Y, Jin F X, Kang M R, Chen J.RSC Adv., 2019, 9: 40662.
[55]
Ran H Y, Wang J X, Abdeltawab A A, Chen X C, Yu G G, Yu Y H.J. Energ. Chem., 2017, 26(5): 909.
[56]
Nayebi R, Tarigh G D, Shemirani F.Sci Rep., 2019, 9(1): 11130.
[57]
Wu B R, Zhang Z W, Huang M H, Peng Y Y.RSC Adv., 2017, 7(9): 5394.
[58]
Hu X C, Muchakayala R, Song S H, Wang J W, Chen J J, Tan M.Int. J. Hydrogen Energ., 2018, 43(7): 3741.
[59]
Yang X J, Fang Y X, Li X M, Zhang K, Cui Y D, Zhang B N, Yin G Q.E-Polymers, 2014, 14(5): 335.
[60]
Farzin M, Nosratzadegan K, Azarnia J, Ferdosi M.Chem. Pap., 2015, 69(9): 1211.
[61]
付格红(Fu G H), 吕功煊(Lv G X), 马建泰(Ma J T). 分子催化(Journal of Molecular Catalysis), 2013, 27(3): 218.
[62]
黄亮亮(Huang L L), 陈立(Chen L). 科技导报(Cience & Technology Review), 2013, 31(26): 60.
[63]
倪邦庆(Ni B Q), 黄江磊(Huang J L), 张萍波(Zhang P B), 范明明(Fan M M). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2015, 31(5): 961.
[64]
任俊毅(Ren J Y), 王少君(Wang S J), 成卫国(Cheng W G), 孙剑(Sun J), 张锁江(Zhang S J), 王荣刚(Wang R G). 化工学报(CIESC Journal), 2009, 60(6): 1471.
[65]
Guo L Y, Deng L L, Jin X C, Wu H, Yin L Z.Catal. Lett., 2017, 147(9): 2290.
[66]
Wang B, Zhang J, Zou X, Dong H G, Yao P J.Chem. Eng. J., 2015, 260: 172.
[67]
Li H X, Zhang T, Yuan S J, Tang S W.Chinese J. Chem. Eng., 2016, 24(12): 1703.
[68]
Li Y L, Zhang T, Tang S W.Adsorption, 2018, 24(2): 179.
[69]
Zolfigol M A, Sajjadifar S, Ghorbani-Choghamarani A, Tami F.Res. Chem. Intermediate, 2018, 44(11): 7093.
[70]
Tripathi A K, Verma Y L, Singh R K.J. Mater. Chem. A, 2015, 3(47): 23809.
[71]
Tripathi A K, Singh R K.J. Phys. D Appl. Phys., 2018, 51(7): 075301.
[72]
甄梦媛(Zhen M Y), 李卓剑(Li Z J), 徐琴琴(Xu Q Q), 詹华书(Zhan H S), 银建中(Yin J Z). 应用科技(Applied Science and Technology), 2019, 46(2): 98.
[73]
Yin J Z, Zhen M Y, Cai P, Zhou D, Li Z J, Zhu H Y, Xu Q Q.Mater. Res. Express, 2018, 5(6): 065060.
[74]
Xie W L, Hu L B, Yang X L.Ind. Eng. Chm. Res., 2015, 54(5): 1505.
[75]
Yang J B, Zeng T, Cai D R, Li L, Tang W L, Hong R Y, Qiu T.Asia. J. Chem. Eng., 2016, 11(6): 901.
[76]
沈家春(Shen J C), 郭建平(Guo J P), 孙艳美(Sun Y M), 唐斌艳(Tang B Y), 陈小花(Chen X H), 尹笃林(Yin D L). 催化学报(Chinese Journal of Catalysis), 2010, 31(7): 827.
[77]
He Y B, Zhang Q H, Zhan X L, Cheng D G, Chen F G.Catal. Today, 2016, 276: 112.
[78]
Malihan L B, Nisola G M, Mittal N, Lee S P, Seo J G, Kim H, Chung W J.RSC Adv., 2016, 6(40): 33901.
[79]
Li R Y, Song H Y, Wang G Q, Chen J.RSC Adv., 2018, 8(13): 7179.
[80]
Li R Y, Song H Y, Jin F X, Chen J. J. Mol. Catal., 2019, 33(2): 149.
[81]
李贞玉(Li Z Y), 唐存国(Tang C G), 胡爽(Hu S), 王成静(Wang C J). 环境工程学报(Chinese Journal of Environmental Engineering), 2014, 8(9): 3848.
[82]
郝翊彤(HaoY T), 颜文超(Yan W C), 李珂(Li K). 石油化工高等学校学报(Journal of Petrochemical Universities), 2013, 26(4): 27.
[83]
张朝峰(Zhang C F), 张海新(Zhang H X), 陈树伟(Chen S W), 李瑞丰(Li R F).燃料化学学报(Journal of Fuel Chemistry and Technology), 2014, 42(5): 609.
[84]
Song H Y, Li R Y, Jin F X, Li Z, Chen J.Molecular Catalysis, 2018, 455: 179.
[85]
Yuan H, Jiao Q Z, Zhang Y P, Zhang J, Wu Q, Zhao Y, Neerunjun S, Li H S.Catal. Lett., 2016, 146(5): 951.
[86]
Veisi H, Pirhayati M, Kakanejadifard A.Tetrahedron Lett., 2017, 58(45): 4269.
[87]
Azarifar D, Badalkhani O, Abbasi Y.Appl. Organomet. Chem., 2018, 32(1): e3949.
[88]
Shojaei R, Zahedifar M, Mohammadi P, Saidi K, Sheibani H.J.Mol. Struct., 2019, 1178: 401.
[89]
Aliyari E, Alvand M, Shemirani F.RSC Adv., 2016, 6(69): 64193.
[90]
Qian L W, Sun J X, Hou C, Yang J F, Li Y W, Lei D, Yang M X, Zhang S F.Talanta, 2017, 168: 174.
[91]
Sadeghzadeh S M, Daneshfar F.J. Mol. Liq., 2014, 199: 440.
[92]
Vessally E, Ghasemisarabbadeih M, Ekhteyari Z, Hosseinzadeh -Khanmiri R, Ghorbani-Kalhor E, Ejlalid L.RSC Adv., 2016, 6(108):106769.
[93]
Hosseini S H, Tavakolizadeh M, Zohreh N, Soleyman R.Appl Oragnomet. Chem., 2018, 32(1): e3953.
[94]
Ghorbani-Vaghei R, Mahmoodi J, Shahriari A, Maghbooli Y.Appl. Organomet. Chem., 2017, 31(12): e3816.
[95]
Hu Y L, Rong X.Catal. Lett., 2017, 147(6): 1453.
[96]
Nasrollahzadeh M, Issaabadi Z, Sajadi S M.RSC Adv., 2018, 8(49): 27631.
[97]
Xie W L, Zhang C.LWT-Food Sci. Technol., 2018, 93: 71.
[98]
Ghorbani-Choghamarani A, Seydyosefi Z, Tahmasbi B.Res. Chem. Intermediat., 2018, 44(11): 6591.
[99]
Xun S H, Jiang W, Guo T, He M Q, Ma R L, Zhang M, Zhu W S, Li H M.J.Colloid Interf. Sci., 2019, 534: 239.
[100]
Takashima Y, Yokoyama M, Horikoshi A, Sato Y, Tsuruoka T, Akamatsu K.New J. Chem., 2017, 41(23): 14409.
[101]
Bahadori M, Tangestaninejad S, Bertmer M, Moghadam M, Mirkhani V, Mohammadpoor.ACS Sustain. Chem. Eng., 2019, 7(4): 3962.
[102]
Abednatanzi S, Abbasi A, Masteri.Catal. Commun., 2017, 96: 6.
[103]
Chong S Y, Wang T T, Cheng L C, Lv H Y, Ji M.Langmuir, 2019, 35(2): 495.
[104]
Han M J, Li Y, Gu Z, Shi H L, Chen C, Wang Q, Wan H, Guan G F.Colloid. Surface. A, 2018, 553: 593.
[105]
Chen C, Wu Z W, Que Y G, Li B X, Guo Q R, Li Z, Wang L, Wan H, Guan G F.RSC Adv., 2016, 6(59): 54119.
[106]
Xie W L, Wan F.Fuel, 2018, 220: 248.
[107]
Kanj A B, Verma R, Liu M, Helfferich J, Wenzel W, Heinke L.Nano Lett., 2019, 19(3): 2114.
[108]
Xie W L, Wan F.Chem. Eng. J., 2019, 365: 40.
[109]
彭长宏(Peng C H), 程晓苏(Cheng X S), 曹金艳(Cao J Y), 陈带军(Chen D J). 中南大学学报(Journal of Central South University), 2010, 41(2): 416.
[110]
田晋平(Tian J P), 闻立静(Wen L J), 吕永康(Lv Y K), 李秉正(Li B Z), 马燕(Ma Y). 过程工程学报(The Chinese Journal of Process Engineering), 2012, 12(2): 223.
[111]
孙爱军(Sun A J), 张金龙(Zhang J L), 孟洪(Meng H), 李春喜(Li C X). 北京化工大学学报(Journal of Beijing University of Chemical Technology), 2009, 36(6): 22.
[112]
Losch P, Pascual A M, Boltz M, Ivanova S, Louis B, Montilla F, Odriozola J A.Comptes Rendus Chimie, 2015, 18(3): 324.
[113]
陈欣(Chen X), 曾海浪(Zheng H l), 胡强(Hu Q), 毛丽秋(Mao L Q), 郭建平(Guo J P). 应用化学(Chinese Journal of Applied Chemistry), 2014, 31(9): 1069.
[114]
Garkoti C, Shabir J, Gupta P, Sharma M, Mozumdar S.New J. Chem., 2017, 41(24): 15545.
[115]
Zhu J, Wang S Q, Gu Y K, Xue B, Li Y X.Mater. Chem. Phys., 2018, 208: 68.
[116]
屈浩楠(Qu H N), 暴冲(Bao C), 马一鸣(Ma Y M), 李莉(Li L), 赵鹏(Zhao P), 郭美霞(Guo M X), 周艳梅(Zhou Y M). 化学研究(Chemical Research), 2018, 29(5): 500.
[117]
Shirini F, Seddighi M, Mzaloumi M, Makhsous M, Abedini M.J.Mol. Liq., 2015, 208: 291.
[118]
Zhou Y J, Liu J J, Xiao M, Meng Y Z, Sun L Y.ACS Appl. Mater. Inter., 2016, 8(8): 5547.
[119]
Finn M, An N, Voutchkova-Kostal A.RSC Adv., 2015, 5(17): 13016.
[120]
Elhamifar D, Shojaeipoor F, Yari O.RSC Adv., 2016, 6(63): 58658.
[121]
Elhamifar D, Khanmohammadi H, Elhamifar D.RSC Adv., 2017, 7(86): 54789.
[122]
杨旗(Yang Q), 胡辉(Hu H), 夏琪(Xia Q), 李芳(Li F), 操火锋(Cao H F). 应用化工(Applied Chemical Industry), 2016, 45(1): 1.
[123]
Azimzadeh H, Akbari A,Chem. Eng. J., 2017, 320: 189.
[124]
Xu Y Q, Jiang Y S, Xu H, Wang Q T, Huang W M, He H H, Zhai Y Y, Di S X, Guo L L, Xu X L, Zhao J, Feng F, Zhang Q F, Li X N.Appl. Catal. A: Gen., 2018, 567: 12.
[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[4] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[5] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[6] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[7] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[8] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[9] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[10] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[11] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[12] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
[13] 宋路杰, 吴友平, 邓建平. 手性药物的对映体选择性释放[J]. 化学进展, 2021, 33(9): 1550-1559.
[14] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[15] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
阅读次数
全文


摘要

离子液体固载化及应用研究