English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 156-166 DOI: 10.7536/PC180309 前一篇   后一篇

• 综述 •

热塑性淀粉耐水性的化学与物理作用机制

查东东1, 郭斌1,2,3,**(), 李本刚1, 银鹏1, 李盘欣2,3   

  1. 1. 南京林业大学理学院 南京 210037
    2. 河南省农林产品深加工院士工作站 漯河 462600
    3. 南街村集团博士后科研工作站 漯河 462600
  • 收稿日期:2018-03-05 修回日期:2018-05-09 出版日期:2019-01-15 发布日期:2018-12-07
  • 通讯作者: 郭斌
  • 基金资助:
    江苏省政府留学基金; 南京林业大学“青年拔尖人才”计划; 江苏省自然科学基金青年基金项目资助(BK20140967)

Chemical and Physical Mechanism of Water Resistance for Thermoplastic Starch

Dongdong Zha1, Bin Guo1,2,3,**(), Bengang Li1, Peng Yin1, Panxin Li2,3   

  1. 1. College of Science, Nanjing Forestry University, Nanjing 210037, China
    2. Agricultural and Forest Products Processing Academician Workstation of Henan Province, Luohe 462600, China
    3. Post-Doctoral Research Center of Nanjiecun Group, Luohe 462600, China
  • Received:2018-03-05 Revised:2018-05-09 Online:2019-01-15 Published:2018-12-07
  • Contact: Bin Guo
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the Jiangsu Government Scholarship for Overseas Studies; The Nanjing Forestry University Young Top Talent Program; The Natural Science Foundation of Jiangsu Province(BK20140967)

石油资源的短缺以及减轻石油基聚合物所产生的环境负担的必要性,推动了生物可降解材料的开发和生产。近几十年来天然聚合物由于无毒性、可生物降解性和生物相容性正在某些领域取代目前的合成聚合物。淀粉由于其可再生性、可生物降解性、低成本和易获得性已经被广泛研究用于制造可生物降解的复合材料,应用于农业、食品、医药和包装行业。但淀粉的多羟基结构赋予其很强的亲水性,这种湿度敏感性限制了它们的机械性能并影响到其应用。本文主要从提高热塑性淀粉耐水性的物理与化学作用机理的角度出发,总结和归纳了近年来国内外以提高热塑性淀粉材料的耐水性能和降低其对环境湿度敏感性为目的的研究工作,介绍了影响耐水性能的相关因素以及改善方法,并指出今后研究工作的发展方向。

The shortage of oil resources and the need to reduce the environmental burden caused by petroleum-based polymers have driven the development and production of biodegradable materials. In recent decades, natural polymers have replaced current synthetic polymers due to their non-toxicity, biodegradability, and biocompatibility. Starch has been extensively studied for the manufacture of biodegradable composites due to its reproducibility, biodegradability, low cost, and availability, which has been widely used for applications in agriculture, alimentary, medicine and packaging industry. However, the polyhydroxyl structure of starch gives it strong hydrophilicity, and the moisture sensitivity limits their mechanical properties and affects their application. In this paper, mainly from the perspective of improving the physical and chemical effects of thermoplastic starch, the research works in recent years on improving the water resistance of thermoplastic starch material and reducing its sensitivity to environmental humidity are summarized. The related factors affecting the water resistance and the methods of improvement are introduced, and the research trend in this field is also proposed.

()
图1 淀粉的塑化机理
Fig.1 Plasticizing mechanism of starch
图2 乙酸、马来酸酐和辛酰氯与淀粉的酯化反应原理
Fig.2 The esterification mechanism of acetic acid, maleic anhydride, and caprylyl chloride with starch
图3 柠檬酸、甘油与淀粉的交联体系可能的结构示意图[24]
Fig.3 Schematic illustrations of citric acid, glycerol, starch and possible structure of crosslinked system[24]
图4 CN促进S/PVA/CN纳米复合材料中氢键的示意图[75]
Fig.4 Schematic representation of hydrogen bonding promoted by CN in S/PVA/CN nanocomposite[75]
[1]
Xie F W, Pollet E, Peter J . Luc Avérous H. Prog. Polym. Sci., 2013,38(10/11):1590.
[2]
Liu T, Koranteng E, Wu Z S, Wang X, Wu Q X . J. Appl. Polym. Sci., 2017,134:45400.
[3]
Teixeira E D M, Pasquini D, Curvelo A A S, Corradini E, Belgacem M N, Dufresne A . Carbohydr. Polym., 2009,78(3):422.
[4]
Yu L, Christie G . J. Mater. Sci., 2005,40(1):111.
[5]
Lecorre D, Bras J, Dufresne A . J. Nanopart. Res., 2011,13(12):7193.
[6]
Nafchi A M, Moradpour M, Saeidi M, Alias A K . Starch-Stärke, 2013,65(1/2):61.
[7]
Bastioli C . Starch-Stärke, 2015,53(8):351.
[8]
Magalhães N F, Andrade C T . Polimeros-ciencia E Tecnologia, 2013,23(3):366.
[9]
Sorrentino A, Gorrasi G, Vittoria V . Trends Food Sci.Technol., 2007,18(2):84.
[10]
Zhou J, Zhang J, Ma Y, Tong J. Carbohydr. Polym ., 2008,74(3):405.
[11]
Detduangchan N, Wittaya T . Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2011,5(9):829.
[12]
He G J, Liu Q, Thompson M R . Starch-Stärke, 2013,65(3/4):304.
[13]
Detduangchan N, Sridach W, Wittaya T . Int. Food Res.J., 2014: 1189.
[14]
Liu Z, Dong Y, Men H, Jiang M, Tong J, Zhou J . Carbohydr.Polym, 2012,89(2):473.
[15]
Adak S, Banerjee R . Carbohydr.Polym, 2016,150:359.
[16]
Morán J I, Cyras V P, Vázquez A . J. Polym. Env., 2013,21(2):395.
[17]
王礼建 (Wang L J), 董亚强 (Dong Y Q), 杨政 (Yang Z), 郭斌 (Guo B), 李本刚 (Li B G), 李盘欣 (Li P X). 材料导报( Materials Review), 2015,29(17):63.
[18]
Zhang Y R, Zhang S D, Wang X L . Carbohydr. Polym., 2009,78(1):157.
[19]
Teramoto N, Motoyama T, Yosomiya R, Shibata M . Eur. Polym. J., 2003,39(2):255.
[20]
Chaudhary A L, Torley P J, Halley P J, McCaffery N, Chaudhary D S . Carbohydr. Polym., 2009,78(4):917.
[21]
Teramoto N, Motoyama T, Yosomiya R, Shibata RM . Eur. Polym. J., 2002,38(7):1365.
[22]
Yeh J T, Hou Y J, Cheng L, Wang Y Z, Yang L, Wang C K . Carbohydr. Polym., 2015,127:135.
[23]
薛灿( Xue C), 银鹏 (Yin P), 姜子邓牙 (Jiang Z D Y), 郭斌 (Guo B), 李盘欣 (Li P X) . 塑料( Plastics), 2017, ( 5):46.
[24]
Seligra P G, Medina J C, Famá L, Goyanes S . Carbohydr.Polym, 2016,138:66.
[25]
Ryu S Y, Rhim J W, Roh H J, Kim S S . LWT Food Sci.Technol., 2002,35(8):680.
[26]
Gao P, Wang F, Gu F, Ning J, Liang J, Li N B, Richard D . Carbohydr. Polym, 2016,157:1254.
[27]
Cao Q, Zhang Y, Chen W, Meng X H, Liu B J . Int. J. Biol.Macromol., 2017,106:1307.
[28]
Cai Z J, Xu Y, Yang H Z, Jian R J, Liu Y P . Mater. Sci. Eng.C Mater. Biol. Appl., 2016,58:757.
[29]
Mendes J F, Paschoalin R T, Carmona V B, Sena Neto A R, Marques A C P, Marconcini J M, Mattoso L H C, Medeiros E S, Oliveira J E . Carbohydr. Polym., 2016,137:452.
[30]
Lopez O, Garcia M A, Villar M A, Gentili A, Rodriguez M S, Albertengo L . LWT Food Sci. Technol., 2014,57(1):106.
[31]
Dang K M, Yoksan R . Carbohydr.Polym, 2015,115(115):575.
[32]
Bangyekan C, Aht-Ong D, Srikulkit K . Carbohydr.Polym, 2006,63(1):61.
[33]
Bergel B F, Luz L M D, Santana R M C . Prog. Org. Coat., 2017,106:27.
[34]
Soares F C, Yamashita F, Müller C M O, Pires A T N . Polym. Test., 2013,32(1):94.
[35]
Fabra M J, Lopez-Rubio A, Lagaron J M . Food Hydrocolloids, 2013,32(1):106.
[36]
Fabra M J, Lopez-Rubio A, Lagaron J M . J. Food Eng., 2014,127:1.
[37]
Pérez-Masiá R, Lagaron J M, Lopez-Rubio A . Food Bioprocess Technol., 2015,8(2):459.
[38]
Li D, Xia Y . Adv.Mater, 2004,16(14):1151.
[39]
Fabra M J, Lopez-Rubio A, Lagaron J M . Food Hydrocolloids, 2015,44:292.
[40]
Fabra M J, López-Rubio A, Ambrosio-Martín J, Lagaron J M . Food Hydrocolloids, 2016,61:261.
[41]
Fabra M J, López-Rubio A, Sentandreu E, Lagaron J M . Starch-Stärke, 2016,68(7/8):603.
[42]
Fabra M J, López-Rubio A, Cabedo L, Lagaron J M . J. Colloid Interface Sci., 2016,483:84.
[43]
Chung Y L, Ansari S, Estevez L, Hayrapetyan S, Giannelis E P, Lai H . Carbohydr.Polym, 2010,79(2):391.
[44]
Goudarzi V, Shahabi-Ghahfarrokhia I, Babaei-Qazvini A . Int. J. Biol. Macromol., 2016,95:306.
[45]
Tang S, Peng Z, Xiong H, Tang H . Carbohydr.Polym, 2008,72(3):521.
[46]
Ge X, Li H, Wu L, Li P, Mu X D, Jiang Y J . J. Appl. Polymerence, 2017,134(22):44910.
[47]
Soykeabkaew N, Laosat N, Ngaokla A, Yodsuwan N, Tunkasiri T . Compos. Sci. Technol., 2012,72(7):845.
[48]
Sanhawong W, Banhalee P, Boonsang S, Kaewpirom S . Ind. Crops Prod., 2017,108:756.
[49]
Santana J S, Do Rosário J M, Pola C C, Otoni C G, De Fátima Ferreira Soares N, Camilloto G P, Cruz R S . J. Appl. Polym. Sci., 2017,134(12):44637.
[50]
Prachayawarakorn J, Hanchana A . Starch-Stärke, 2016,69(3/4):1600113.
[51]
Guo B, Wang L J, Yin P, Li B G, Li P X . J. Thermoplast. Compos. Mater., 2017,30(4):564.
[52]
唐皞 (Tang H), 姜海天 (Jiang H T), 王礼建 (Wang L J), 范磊 (Fan L), 郭斌 (Guo B), 李盘欣 (Li P X), 张齐生 (Zhang Q S) . 塑料工业( China Plastics Industry), 2013,41(9):110.
[53]
郭斌 (Guo B), 查东东 (Zha D D), 薛灿 (Xue C), 银鹏 (Yin P), 李盘欣 (Li P 功能高分子学报( Journal of Functional Polymers), 2018,31(2):68.
[54]
Moran D A, Soares J AB P . Can.J. Chem. Eng. 2017,95(10):1901.
[55]
Cyras V P, Manfredi L B, Ton-that M T, Vázquez A . Carbohydr. Polym., 2008,73(1):55.
[56]
Tang X, Alavi S, Herald T J . Cereal Chem., 2008,85(3):433.
[57]
Azeredo H M C D . Food Res. Int., 2009,42(9):1240.
[58]
Fukushima K, Tabuani D, Camino G . Mater. Sci. Eng.C, 2012,32(7):1790.
[59]
Müller C M, Laurindo J B, Yamashita F . Carbohydr.Polym, 2012,89(2):504.
[60]
Romero-bastida C A, Tapia-blácido D R, Méndez-montealvo G, Bello-Pérez L A, Velázquez G, Alvarez-Ramirezd J . Carbohydr. Polym., 2016,152:351.
[61]
Olivato J B, Marini J, Yamashita F, Pollet E, Grossmann M V, Avérous L . Mater. Sci. Eng. C Biol. Appl., 2017,70(Pt 1):296.
[62]
Kaewtatip K, Tanrattanakul V . Mater.Des, 2012,37:423.
[63]
Mbey J A, Hoppe S, Thomas F . Carbohydr.Polym, 2012,88(1):213.
[64]
Oleyaei S A, Zahedi Y, Ghanbarzadeh B, Moayedi A A . Int. J. Biol. Macromol., 2016,89:256.
[65]
Oleyaei S A, Almasi H, Ghanbarzadeh B, Moayedi A A . Carbohydr. Polym., 2016,152:253.
[66]
Guz L, Famá L, Candal R, Goyanes S . Carbohydr. Polym., 2017,157:1611.
[67]
Müller P, Renner K, Móczó J, Fekete E, Pukánszky B . Carbohydr. Polym., 2014,102(1):821.
[68]
Saetun V, Chiachun C, Riyajan S A, Kaewtatip K . Polym.Compos, 2017,38(6):1063.
[69]
Bénézet J C, Stanojlovic-davidovic A, Bergeret A, Ferry L, Crespy A . Ind. Crops Prod., 2012,37(1):435.
[70]
Li S Y, Wang H Y, Chen C C, Li X Y, Deng Q Y, Gong M, Li D G . J. Appl. Polym. Sci., 2017,134(47):45530.
[71]
He R, Niu F, Chang Q . Surf. Interface Anal., 2017,50(1):73.
[72]
Goffin A L, Raquez J M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P . Biomacromolecules, 2011,12(7):2456.
[73]
Gonzã l K, Retegi A, Gonzãlez A, Eceiza A, Gabilondo N . Carbohydr. Polym., 2015,117(117):83.
[74]
Pelissari F M, Andrade-Mahecha M M, Sobral P J D A, Menegalli F C . J. Colloid Interface Sci., 2017,505:154.
[75]
Frone A N, Nicolae C A, Gabor R A, Panaitescu DM . Polym. Degrad. STab., 2015,121(11):385.
[76]
Slavutsky A M, Bertuzzi M A . Carbohydr. Polym., 2014,110(18):53.
[77]
Montero B, Rico M, Rodríguez-Llamazares S, Barral L, Bouza R . Carbohydr Polym, 2016,157:1094.
[78]
Ghanbarzadeh B, Almasi H, Entezami A A . Ind. Crops Prod., 2011,33(1):229.
[79]
Funke U, Bergthaller W, Lindhaue M . Polym. Degrad. STab., 1998,59(1/3):293.
[80]
Bhat R, Abdullah N, Din R H, Tay G S . J. Food Eng., 2013,119(4):707.
[81]
Spiridon I, Teaca C A, Bodirlau R . J. Mater. Sci., 2011,46(10):3241.
[82]
Kaewtatip K, Thongmee J . Mater.Des, 2013,49:701.
[83]
Bodirlau R, Teaca C A, Spiridon I . Composites Part B, 2013,44(1):575.
[84]
Dang K M, Yoksan R . Composites Part 2016,150:40.
[85]
Lazaridou A, Biliaderis C G . J. Cereal Sci., 2007,46(2):101.
[86]
Sagnelli D, Kirkensgaard J J K, Giosafatto C V L, Ogrodowicz N, Kruczała K, Mikkelsen M S, Maigret J E, Lourdin D, Mortensen K, Blennow A . Carbohydr.Polymers, 2017,172:237.
[87]
Ortega-Toro R, Collazo-Bigliardi S, Talens P, Chiralt A . J. Appl. Polym. Sci., 2015,133(2):42220
[88]
Ninago M D, López O V, Lencina M M, Garcia M A, Andreucetti N A, Ciolino A E, Villar M A . Carbohydr. Polym., 2015,134:205.
[89]
Tachaphiboonsap S, Jarukumjorn K . Adv. Mater. Res., 2013,747:67.
[90]
Karagoz S, Ozkoc G . Polym. Eng. Sci., 2013,53(10):2183.
[91]
Akrami M, Ghasemi I, Azizi H, Karrabi M, Seyedabadi M . Carbohydr.Polym, 2016,144:254.
[92]
Müller C M O, Pires A T N, Yamashita F . J. Braz. Chem. Soc., 2012,23(3):426.
[93]
Zeng J B, Jiao L, Li Y D, Srinivasan M, Li T, Wang Y Z . Carbohydr. Polym., 2011,83(2):762.
[94]
Li J, Luo X, Lin X, Zhou Y . Starch-Stärke, 2013,65(9/10):831.
[95]
Tian H, Yan J, Rajulu A V, Xiang A, Luo X . Int. J. Biol. Macromol., 2016,96:518.
[96]
郭斌 ( Guo B), 王礼建 (Wang L J), 董亚强 (Dong Y Q), 李本刚 (Li B G), 范磊 (Fan L), 李盘欣 (Li P X) . 高分子材料科学与工程( Polymer Materials Science and Engineering), 2015,31(6):112.
[97]
Oromiehie A R, Lari T T, Rabiee A . J. Appl. Polym. Sci., 2012,127(2):1128.
[98]
Sabetzadeh M, Bagheri R, Masoomi M . J. Appl. Polym. Sci., 2012,126(S1):E63.
[99]
Raee E, Kaffashi B . J. Appl. Polym. Sci., 2017,135(4):45740.
[100]
Schmitt H, Prashantha K, Soulestin J, Lacrampe M F, Krawczak P. . Carbohydr.Polym, 2012,89(3):920.
[101]
González K, Martin L, González A, Retegi A, Eceiza A, Gabilondo N . J. Appl. Polym. Sci., 2017,134(20):44793.
[102]
Edhirej A, Sapuan S M, Jawaid M, Zahari N I . Starch-Stärke, 2017,69(1):1500366.
[103]
Sankri A, Arhaliass A, Dez I, Gaumont A C, Grohens Y, Lourdin D, Pillin I, Rolland-Sabaté A, Leroy E . Carbohydr.Polym, 2010,82(2):256.
[104]
Jiménez A, Fabra M J, Talens P, Chiralt A . Food Bioprocess Technol., 2012,5(6):2058.
[105]
Pang M M, Pun M Y, Ishak Z A M . J. Appl. Polym. Sci., 2013,129(6):3656.
[106]
Fechner P M, Wartewig S, Kiesow A, Heilmann A, Kleinebudde P, Neubert R H H . Starch-Stärke, 2005,57(12):605.
[107]
Liu W W, Xue J, Cheng B J, Zhu S W, Ma Q, Ma H . Int J. Agric. Biol. Eng., 2016,9(5):184.
[108]
Deng J, Li K, Harkin-Jones E, Price M, Karnachi N, Kelly A, Vera-Sorroche J, Coates P, Brown E, Fei M . Appl. Energy, 2014,113(6):1775.
[109]
Zepon K M, Vieira L F, Soldi V, Salmoria G V, Kanis L A . Polym. Test., 2013,32(6):1123.
[110]
Soares F C, Yamashita F, Müller C M O, Pires A T N . Polym. Test., 2014,33(33):34.
[111]
Fitch-Vargas P R, Aguilar-Palazuelos E, Zazueta-Morales J J, Vega-García M O, Valdez-Morales J E, Martínez-Bustos F, Jacobo-Valenzuela N . J. Food Sci., 2016,81(9):E2224.
[112]
González-Seligra P, Guz L, Yepes O O, Goyanes S, Famá L . LWT Food Sci. Technol., 2017,84:520.
[1] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[2] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[3] 周文, 张鑫, 马宏鹏, 许杰, 郭斌, 李盘欣. 热塑性淀粉制备的化学与物理机制及方法[J]. 化学进展, 2021, 33(11): 1972-1982.
[4] 杨世迎, 刘俊琴, 李乾风, 李阳. 机械球磨改性零价铝的作用机制[J]. 化学进展, 2021, 33(10): 1741-1755.
[5] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[6] 查东东, 周文, 银鹏, 郭斌, 李本刚, 黄亚男. 热塑性淀粉力学性能的提升途径及作用机理[J]. 化学进展, 2019, 31(7): 1044-1055.
[7] 郑娜, 介素云, 李伯耿. 端羟基聚丁二烯液体橡胶的合成、化学改性及应用[J]. 化学进展, 2016, 28(5): 665-672.
[8] 杨皓程, 陈一夫, 叶辰, 万灵书, 徐志康. 有机-无机复合多孔膜制备与应用[J]. 化学进展, 2015, 27(8): 1014-1024.
[9] 刘天辉, 常刚, 曹瑞军, 孟令杰. 超顺磁性Fe3O4纳米粒子在磁共振造影中的应用[J]. 化学进展, 2015, 27(5): 601-613.
[10] 刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性中的应用[J]. 化学进展, 2015, 27(2/3): 212-219.
[11] 张勇杰, 李化毅, 董金勇, 胡友良. 聚烯烃共价键接枝纳米材料及其聚烯烃纳米复合材料[J]. 化学进展, 2015, 27(1): 47-58.
[12] 于谦, 陈红. PNIPAAm改性表面对蛋白质吸附的调控及其应用[J]. 化学进展, 2014, 26(08): 1275-1284.
[13] 康丁, 张洪斌, 西成胜好. 生物医用结冷胶及其改性水凝胶材料[J]. 化学进展, 2014, 26(07): 1172-1189.
[14] 孙璠, 徐民, 李克让, 张帅, 刘蒲*. 甲壳素和壳聚糖在离子液体中的溶解与改性[J]. 化学进展, 2013, 25(05): 832-837.
[15] 刘涛, 孙丽宁, 刘政, 仇衍楠, 施利毅. 稀土上转换发光纳米材料的应用[J]. 化学进展, 2012, 24(0203): 304-317.