English
新闻公告
More
化学进展 2016, Vol. 28 Issue (5): 665-672 DOI: 10.7536/PC151023 前一篇   后一篇

• 综述与评论 •

端羟基聚丁二烯液体橡胶的合成、化学改性及应用

郑娜, 介素云*, 李伯耿   

  1. 化学工程联合国家重点实验室 浙江大学化学工程与生物工程学院 杭州 310027
  • 收稿日期:2015-10-01 修回日期:2016-01-01 出版日期:2016-05-15 发布日期:2016-03-25
  • 通讯作者: 介素云 E-mail:jiesy@zju.edu.cn
  • 基金资助:
    浙江省自然科学基金项目(No.LY16B040001)和中央高校基本科研业务费专项资金(No.2016FZA4020)资助

Synthesis, Chemical Modifications and Applications of Hydroxyl-Terminated Polybutadiene

Zheng Na, Jie Suyun*, Li Bogeng   

  1. State Key Laboratory of Chemical Engineering, College of Chemical Engineering and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2015-10-01 Revised:2016-01-01 Online:2016-05-15 Published:2016-03-25
  • Supported by:
    The work was supported by Zhejiang Provincial Natural Science Foundation of China (No. LY16B040001) and the Fundamental Research Funds for the Central Universities (No. 2016FZA4020).
端羟基聚丁二烯(HTPB)是一种低分子量的遥爪液体橡胶,因具有玻璃化温度低、透明度好、黏度低、不易挥发、耐油耐老化、低温和加工性能好等优点,在军事和民用领域均具有广泛的应用。HTPB的性能主要受其主链微观结构的影响,不同的制备方法得到不同链结构的HTPB,其性能也有较大的差别。另外,通过对HTPB主链中的双键或末端羟基进行化学修饰可将其转变为不同分子结构或不同官能团的遥爪聚合物,赋予改性后的HTPB不同性能,并拓宽其应用领域。本文主要概述端羟基聚丁二烯的合成方法、化学改性和应用。
Hydroxyl-terminated polybutadiene (HTPB) is a low molecular-weight telechelic liquid rubber. Because of its various advantages, such as low glass transition temperature, good transparency, low viscosity, hard volatilization, oil resistance, good processability, HTPB has a wide range of applications in military and civilian fields. The properties of HTPB are mainly influenced by its chain microstructure. The different synthetic methods produce HTPB with different microstructure, which will result in the large difference in the properties. In addition, the chemical modifications of C=C double bonds in the main chain and hydroxyl groups in the chain ends lead to the formation of telechelic polymers with different molecular structure and various functional groups. After modifications, the different properties are endowed to HTPB and the application fields are also expanded. In this review, the research progress about the synthesis, chemical modifications and applications of HTPB is discussed in detail.

Contents
1 Introduction
2 Synthesis of HTPB
2.1 Free radical polymerization
2.2 Anionic polymerization
2.3 Ring-opening metathesis polymerization
2.4 Oxidolysis of polybutadiene
3 Chemical modifications of HTPB
3.1 Reactions with double bonds in the main chain
3.2 Reactions with hydroxyl groups in the chain ends
3.3 Reactions with carbon atoms at the terminal
4 Applications
4.1 Solid propellants
4.2 HTPB-based polyurethane
4.3 Block copolymers
5 Conclusion

中图分类号: 

()
[1] 董松(Dong S), 王新(Wang X), 高丽萍(Gao L P), 刘宇辉(Liu Y H), 王海军(Wang H J), 李艳(Li Y), 姜东升(Jiang D S), 蒋剑雄(Jiang J X). 弹性体(China Elastomerics), 2003, 13(3): 53.
[2] 梁滔(Liang T), 魏绪玲(Wei X L), 龚光碧(Gong G B), 吴江(Wu J). 合成橡胶工业(China Synthetic Rubber Industry), 2011, 34(3): 234.
[3] 程倩(Cheng Q), 梁基照(Liang J Z). 特种橡胶制品(Special Purpose Rubber Products), 2013, 34(4): 72.
[4] Krishnan P S G, Ayyaswamy K, Nayak P S K. J. Macromol. Sci., Part A: Pure Appl. Chem., 2013, 50(1): 128.
[5] 沈春晖(Shen C H), 沈景春(Shen J C), 吕锡元(Lv X Y), 丁彩凤(Ding C F), 刑政(Xing Z), 李德和(Li D H). 聚氨酯工业(Polyurethane Industry), 2001, 16(3): 17.
[6] Sadeghi G M M, Morshedian J, Barikani M. React. Funct. Polym., 2006, 66(2): 255.
[7] 赵铭(Zhao M), 胡春圃(Hu C P), 应圣康(Ying S K). 合成橡胶工业(China Synthetic Rubber Industry), 1986, 9(4): 270.
[8] 天虎(Tian H), 金关泰(Jin G T). 合成橡胶工业(China Synthetic Rubber Industry), 1983, 6(6): 451.
[9] 黄义(Huang Y), 鲁建民(Lu J M), 韩丙勇(Han B Y). 合成橡胶工业(China Synthetic Rubber Industry), 2010, 33(5): 353.
[10] Chen J, Lu Z, Pan G, Qi Y, Yi J, Bai H. Chin. J. Polym. Sci., 2010, 28(5): 715.
[11] Hillmyer M A, Grubbs R H. Macromolecules, 1993, 26: 872.
[12] Hillmyer M A, Grubbs R H. Macromolecules, 1996, 28: 8662.
[13] Hillmyer M A, Nguyen S T, Grubbs R H. Macromolecules, 1997, 30: 718.
[14] Bielawski C W, Scherman O A, Grubbs R H. Polymer, 2001, 42: 4939.
[15] Zhou Q, Jie S, Li B G. Ind. Eng. Chem. Res., 2014, 53(46): 17884.
[16] Zhou Q, Jie S, Li B G. Polymer, 2015, 67: 208.
[17] Ajaz A G. Rubber Chem. Technol., 1995, 68(3): 481.
[18] Singha N K, Bhattacharjee S, Sivaram S. Rubber Chem. Technol., 1997, 70: 309.
[19] Podesva J, Holler P. J. Appl. Polym. Sci., 1999, 74(13): 3203.
[20] Podesva J, Spevacek J, Dybal J. J. Appl. Polym. Sci., 1999, 74(13): 3214.
[21] Abata S, Hetflej J. J. Appl. Polym. Sci., 2002, 85(6): 1185.
[22] Lira C H, Nicolini L F, Dolinsky M C B. Ann. Magn. Reson., 2006, 5: 22.
[23] Latha P B, Adhinarayanan K, Ramaswamy R. Int. J. Adhes. Adhes., 1994, 14(1): 57.
[24] Aguiar M, de Menezes S C, Akcelrud L. Macromol. Chem. Phys., 1994, 195: 3937.
[25] Barcia F L, Amaral T P, Soares B G. Polymer, 2003, 44: 5811.
[26] Boutevin G, Ameduri B, Boutevin B, Joubert J P. J. Appl. Polym. Sci., 2000, 75(13): 1655.
[27] Wu W, Zeng X, Li H, Lai X, Yan Z. J. Macromol. Sci., Part A: Pure Appl. Chem., 2014, 51: 229.
[28] Patrick W R, Ronald E T. US 3652520, 1972.
[29] Ronald E T, Patrick W R. US 3733370, 1973.
[30] Kimura T, Yamakawa S. Electron. Lett., 1984, 20: 201.
[31] Hideaki M, Takashi S. J. Macromol. Sci. Chem., 1981, A16(6): 1065.
[32] Geetha J, Prabhakaran G. J. Polym. Mater., 1991, 8: 283.
[33] Boutevin G, Robin J J, Boutevin B, Amduri B. J. Appl. Polym. Sci., 2003, 90: 72.
[34] Benny A C, Thomas T E. J. Appl. Polym. Sci., 2004, 94: 1956.
[35] Nigam V, Setua D K, Mathur G N. J. Appl. Polym. Sci., 1998, 70: 537.
[36] Tyagi A K, Choudhary V, Varma I K. Eur. Polym. J., 1994, 30: 919.
[37] Deuri S A, Bhowmick A K. Mater. Chem. Phys., 1987, 18: 35.
[38] Smith T L, Magnusson A B. J. Polym. Sci., 1960, 42: 391.
[39] Sasaki N, Yokoyama T, Tanaka T. J. Polym. Sci.: Polym. Chem. Ed., 1973, 11: 1765.
[40] Dzierza S, Janacek J. J. Rubber Chem. Technol., 1977, 50: 934.
[41] Barcia F L, Abrahao M A. J. Appl. Polym. Sci., 2002, 83: 838.
[42] Reshmi S, Arunan E, Reghunadhan Nair C P. Ind. Eng. Chem. Res., 2014, 53: 16612.
[43] 柏海见(Bai H J), 陈继明(Chen J M), 齐永新(Qi Y X), 潘广勤(Pan G Q), 易建军(Yi J J), 鲁在君(Lu Z J). 弹性体(China Elastomerics), 2011, 21(3): 35.
[44] Sankar M R, Saha S, Meera S K, Jana T. Bull. Mater. Sci., 2009, 32: 507.
[45] Shankar R M, Roy T K, Jana T. J. Appl. Polym. Sci., 2009, 114: 732.
[46] Abdullah M, Gholamian F, Zareiee M R. J. Propul. Power, 2013, 29(6): 1343.
[47] Malkappa K, Jana T. Ind. Eng. Chem. Res., 2013, 52, (36): 12887.
[48] Malkappa K, Jana T. Ind. Eng. Chem. Res., 2015, 54 (30): 7423.
[49] 俞国星(Yu G X), 范晓东(Fan X D), 张翔宇(Zhang X Y), 龚彦(Gong Y). 中国胶粘剂(China Adhesives), 2006, 15(8): 37.
[50] Ninan K N, Krishnan K, Rajeev R, Viswanathan G. Propell. Explos. Pyrotech., 1996, 21: 199.
[51] Ganesh K, Sundarrajan S, Kishore K, Ninan K N, George B, Surianarayanan M. Macromolecules, 2000, 33(2): 326.
[52] Kothandaraman H, Venkatarao K, Chithambara Thanoo B. Polym. J., 1989, 21: 829.
[53] Zafar F, Sharmin E. Polyurethane. InTech, 2012, 11: 229.
[54] Coutinho F M B, Rocha M C G. Eur. Polym. J., 1991, 27: 213.
[55] Kothandaraman H, Nasar A S. J. Appl. Polym. Sci., 1993, 50: 1611.
[56] Kamath P, Srinivasan M, Krishnamurthy V N. Chin. J. Polym. Sci., 1993, 11: 284.
[57] Kamath P, Srinivasan M, Krishnamurthy V N. Chin. J. Polym. Sci., 1994, 12: 91.
[58] Dubois C, Desilets S, Ait-Kadi A, Tanguy P. J. Appl. Polym. Sci., 1995, 58: 827.
[59] Varghese A, Scariah K J, Bera S C, Rama R M, Sastri K S. Eur. Polym. J., 1996, 32: 79.
[60] Kincal D, Ozkar S. J. Appl. Polym. Sci., 1997, 66: 1979.
[61] Sekkar V, Krishnamurthy V N, Jain S R. J. Appl. Polym. Sci., 1997, 66: 1795.
[62] Singh M, Kanungo B K, Bansal T K. J. Appl. Polym. Sci., 2002, 85: 842.
[63] Sekkar V, Venkatachalam S, Ninan K N. Eur. Polym. J., 2002, 38: 169.
[64] Ramis X, Salla J M, Cadenato A, Morancho J M. J. Therm. Anal. Calorim., 2003, 72: 707.
[65] Catherine K B, Kannan K G, Ninan K N. J. Therm. Anal. Calorim., 2004, 78: 53.
[66] Vinnik R M, Roznyatovsky V A. J. Therm. Anal. Calorim., 2004, 75: 753.
[67] Manjari R, Joseph V C, Pandureng L P, Sriram T. J. Appl. Polym. Sci., 1993, 48: 271.
[68] Nazare A N, Deuskar V D, Asthana S N, Shrotri P G. J. Polym. Mater., 1993, 10: 213.
[69] Desai S, Thakore I M, Sarawade B D, Devi S. Eur. Polym. J., 2000, 36: 711.
[70] Sarkar S, Adhikari B. Polym. Degrad. STab., 2001, 73: 169.
[71] Sekkar V, Gopalakrishnan S, Devi K A. Eur. Polym. J., 2003, 39: 1281.
[72] Ghosh U K, Pradhan N C, Adhikari B. Desalination, 2007, 208: 146.
[73] 柴春鹏(Chai C P), 罗运军(Luo Y J), 郭素芳(Guo S F), 李国平(Li G P), 陈鹤(Chen H). 含能材料(Chinese Journal of Energetic Materials), 2008, 16(3): 301.
[74] Meng F L, Zheng S X, Zhang W A, Li H Q, Liang Q. Macromolecules, 2006, 39: 711.
[75] Lemoine M, Brachais C H, Boni G, Brachais L, Couvercelle J P. J. Macromol. Sci. A, 2010, 47: 794.
[76] Pitet L M, Hillmyer M A. Macromolecules, 2009, 42: 3674.
[77] Kim N Y, Yun Y S, Lee J Y, Choochottiros C, Pyo H R, Chin I J, Jin H J. Macromol. Res., 2011, 19(9): 943.
[78] Lee I, Panthani T R, Bates F S. Macromolecules, 2013, 46(18): 7387.
[79] Delgado P A, Hillmyer M A. RSC Adv., 2014, 4(26): 13266.
[80] Vasudevan V, Sundararajan G. Propell. Explos. Pyrot., 1999, 24: 295.
[81] Subramanian K. Eur. Polym. J., 1999, 35: 1403.
[82] Luo Y L, Yang X L, Xu F, Chen Y S, Zhao X. Colloid Polym. Sci., 2014, 292(5): 1061.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[4] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[5] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[6] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[7] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[8] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[11] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[12] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[13] 靳钧, 林梓恒, 石磊. 一维新型碳的同素异形体:碳链[J]. 化学进展, 2021, 33(2): 188-198.
[14] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[15] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.