English
新闻公告
More
化学进展 2014, Vol. 26 Issue (07): 1172-1189 DOI: 10.7536/PC131235 前一篇   后一篇

• 综述与评论 •

生物医用结冷胶及其改性水凝胶材料

康丁1, 张洪斌*1, 西成胜好2   

  1. 1. 上海交通大学化学化工学院 高分子科学与工程系流变学研究所 上海 200240;
    2. 日本大阪市立大学 生命科学部 大阪 558-8585
  • 收稿日期:2013-12-01 修回日期:2014-01-01 出版日期:2014-07-15 发布日期:2014-05-22
  • 通讯作者: 张洪斌 E-mail:hbzhang@sjtu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21274090,21074071)和上海市重点学科建设项目(No.B202)资助

Gellan Gum and Modified Gellan Gum Hydrogels as Biomedical Materials

Kang Ding1, Zhang Hongbin*1, Nishinari Katsuyoshi2   

  1. 1. Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. Faculty of Human Life Science, Osaka City University, Osaka 558-8585, Japan
  • Received:2013-12-01 Revised:2014-01-01 Online:2014-07-15 Published:2014-05-22
  • Supported by:

    The work was supported by the National Natural Science Foundation of China(No. 21274090,21074071)and Shanghai Leading Academic Discipline Project(No. B202)

结冷胶是一种线型聚阴离子微生物多糖,具有独特的凝胶特性和溶液流变学性质,自发现起即被应用于食品和化妆品中。近年来,随着生物医学学科的发展,天然高分子结冷胶及其水凝胶,在药物传递系统和组织工程材料等领域展现出了广阔的应用前景。结冷胶无毒,具有生物相容性和可生物降解性,所形成的水凝胶透明且稳定性好,并在一定条件下凝胶的力学性质与人体普通组织相近。结冷胶的这些优势使其成为一种良好的生物医用材料的制备来源。但是这种基于结冷胶的水凝胶也有其自身的缺点,如作为组织工程材料缺乏一定的韧性和组织负载能力等。这些不足在很大程度上限制了其在生物医学领域的应用。为了解决上述问题,许多研究者对结冷胶进行了化学和物理的改性。改性后的结冷胶材料在生物医学领域展现出更有发展的应用前景。本文综述了结冷胶凝胶的形成机理以及结冷胶的改性方法,重点详述了结冷胶及其改性材料在生物医学领域中的应用,并指出了结冷胶基组织工程材料在应用上应解决的一些挑战性问题。

Gellan gum is an anionic linear microbial polysaccharide. It has been extensively used in foods and cosmetics industries due to its special gelling property and rheological behavior of its aqueous solution since the early stage of its discovery. Recently, gellan gum as a natural polymer and its hydrogel show a wide range of application perspective in drug delivery and tissue engineering. Gellan gum is nontoxic, biocompatible, biodegradable and the resulting hydrogel is transparent and stable. The mechanical properties of gellan gum hydrogel are similar to those of normal human tissues under certain conditions. These advantages provide gellan gum versatile characteristics as a source of biomaterials. However, gellan gum-based hydrogels have intrinsic disadvantages such as lack of toughness and tissue tolerance as tissue engineering materials. These defects restrict their use in biomedical field. In order to solve these problems, quite a lot of work on chemical and physical modification on gellan gum has been carried out. Modified gellan gum reveals a much more promising perspective in the development of biomedical materials. In this paper, we summarize the gelation mechanism of gellan gum and various modification methods, and highlight the application of gellan gum and modified gellan gum based hydrogels in biomedical field. We also point out a number of main challenges for gellan gum-based tissue engineering materials.

Contents
1 Introduction
2 Structure and properties of gellan gum
2.1 Chemical structure and conformation
2.2 Rheological property of aqueous gellan gum solution
2.3 Gelation mechnism of gellan gum hydrogels
3 Chemical/physical modifications of gellan gum and their effect
3.1 Derivatization
3.2 Hydrophobization
3.3 Crosslinking
3.4 Graft copolymerization
3.5 Dual interpenetrating network
3.6 Compound modification
4 Applications of gellan gum and its modified materials in biomedicine
4.1 Drug controlled release
4.2 Tissue engineering
4.3 Other biological applications
5 Outlook

中图分类号: 

()

[1] Kang K S, Colegrave G T, Veeder G T. EP 0012552, 1980.
[2] Kang K S, Veeder G T, Mirrasoul P J, Kaneko T, Cottrell I W. Applied and Environmental Microbiology, 1982, 43(5): 1086.
[3] Agnihotri S A, Jawalkar S S, Aminabhavi T M. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63(3): 249.
[4] Jansson B, Hägerström H, Fransén N, Edsman K, Björk E. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 59(3): 557.
[5] Sultana Y, Aqil M, Ali A. Drug Delivery, 2006, 13(3): 215.
[6] Kedzierewicz F, Lombry C, Rios R, Hoffman M, Maincent P. International Journal of Pharmaceutics, 1999, 178 (1): 129.
[7] Gal A, Nussinovitch A. Journal of Pharmaceutical Sciences, 2007, 96(1): 168.
[8] Kumar S C, Satish C S, Shivakumar H G. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2008, 45(8): 643.
[9] Pahuja P, Arora S, Pawar P. Expert Opinion on Drug Delivery, 2012, 9(7): 837.
[10] Maiti S, Ghosh S, Mondol R, Ray S, Sa B. Journal of Microencapsulation, 2012, 29(8): 747.
[11] Geethalakshmi A, Karki R, Kumar Jha S P, Venkatesh D, Nikunj B. Current Drug Delivery, 2012, 9(2): 197.
[12] Liu Y J, Liu J P, Zhang X L, Zhang R D, Huang Y L, Wu C J. AAPS PharmSciTech., 2010, 11(2): 610.
[13] Amin K A M, in het Panhuis M. Carbohydrate Polymers, 2011, 86(1): 352.
[14] Amin K A M, Gilmore K J, Matic J, Poon S, Walker M J, Wilson M R, in het Panhuis M. Macromolecular Bioscience, 2012, 12(3): 374.
[15] Cencetti C, Bellini D, Pavesio A, Senigaglia D, Passariello C, Virga A, Matricardi P. Carbohydrate Polymers, 2012, 90(3): 1362.
[16] Lee M W, Tsai H F, Wen S M, Huang C H. Carbohydrate Polymers, 2012, 90(2): 1132.
[17] Ferris C J, in het Panhuis M. Soft Matter, 2009, 5: 3430.
[18] Songmee N, Singjai P, in het Panhuis M. Nanoscale, 2010, 2: 1740.
[19] Lu L H, Chen W. ACS Nano, 2010, 4(2): 1042.
[20] Ferrance J P, Juriani A R, Pettit J W, Meissner K E. Journal of Nanoelectronics and Optoelectronics, 2011, 6(2): 102.
[21] Boge J, Sweetman L J, in het Panhuis M, Ralph S F. Journal of Materials Chemistry, 2009, 19: 9131.
[22] in het Panhuis M, Heurtematte A, Small W R, Pauov V N. Soft Matter, 2007, 3: 840.
[23] Pidcock G C, in het Panhuis M. Advanced Functional Materials, 2012, 22(22): 4790.
[24] Higgins T M, Moulton S E, Gilmore K J, Wallace GG, in het Panhuis M. Soft Matter, 2011, 7: 4690.
[25] Dhar S, Murawala P, Shiras A, Pokharkar V, Prasad B L V. Nanoscale, 2012, 4: 563.
[26] Gong Y H, Wang C M, Lai R C, Su K, Zhang F, Wang D A. Journal of Materials Chemistry, 2009, 19: 1968.
[27] Suri S, Banerjee R. Journal of Biomedical Materials Research Part A, 2006, 79A(3):650.
[28] Smith A M, Shelton R M, Perrie Y, Harris J J. Journal of Biomaterials Application, 2007, 22(3): 241.
[29] Giavasis I, Harvey L M, McNeil B. Critical Reviews in Biotechnology, 2000, 20(3): 177.
[30] Vijan V, Kaity S, Biswas S, Isaac J, Ghosh A. Carbohydrate Polymers, 2012, 90(1): 496.
[31] Hamcerencu M, Desbrieres J, Khoukh A, Popaa M, Riessc G. Carbohydrate Polymers, 2008, 71(1): 92.
[32] Silva-Correia J, Miranda-Gonalves V, Salgado A J, Sousa N, Oliveira J M, Reis R M, Reis R L. Tissue Engineering Part A, 2012, 18(11/12): 1203.
[33] Oliveira J T, Gardel L S, Rada T, Martins L, Gomes M E, Reis R L. Journal of Orthopaedic Research, 2010, 28(9): 1193.
[34] Coutinho D F, Sant S V, Shin H, Oliveira J T, Gomes M E, Neves N M, Khademhosseini A, Reis R L. Biomaterials, 2010, 31(29): 7494.
[35] Miyamoto K, Tsuji K, Nakamura T, Tokita M, Komai T. Carbohydrate Polymers, 1996, 30(2/3): 161.
[36] Ahuja M, Singh S, Kumar A. International Journal of Biological Macromolecules, 2013, 53: 114.
[37] Redouan E, Emmanuel P, Christine B, Bernard C, Josiane C, Cédric D. Carbohydrate Polymers, 2010, 80(2): 485.
[38] Silva N A, Cooke M J, Tam R Y, Sousa N, Salgado A J, Reis R L, Shoichet M S. Biomaterials, 2012, 33(27): 6345.
[39] Matricardi P, Cencetti C, Ria R, Alhaique F, Coviello T. Molecules, 2009, 14(9): 3376.
[40] Du H W, Hamilton1 P, Reilly M, Ravi N. Macromolecular Bioscience, 2012, 12(7): 952.
[41] Morrison N A, Clark R C, Chen Y L, Talashek T, Sworn G. Progress in Colloid and Polymer Science, 1999, 114: 127.
[42] Chilvers G R, Morris V J. Carbohydrate Polymers, 1987, 7(2): 111.
[43] Xu X, Li B, Kennedy J F, Xie B J, Huang M. Carbohydrate Polymers, 2007, 70: 192.
[44] Miyoshi E, Takaya T, Williams P A, Nishinari K. Journal of Agricultural and Food Chemistry, 1996, 44: 2486.
[45] Miyoshi E, Takaya T, Williams P A, Nishinari K. Macromolecular Symposia, 1997, 120: 271.
[46] Nishinari K, Miyoshi E, Takaya T, Williams P A. Carbohydrate Polymers, 1996, 30: 193.
[47] Nitta Y, Nishinari K. Journal of Biological Macromoleules, 2005, 5: 47.
[48] Nishinari K, Watase M, Rinaudo M, Milas M. Food Hydrocolloids, 1996, 10(3): 277.
[49] Phillips G O, Wedlock D J. Williams P A. Gums and Stabilisers for the Food Industry. Oxford, UK: IRL Press, 1994. 6.
[50] Cascone M G, Barbani N, Maltinti S, Lazzeri L. Polymer International, 2001, 50(11): 1241.
[51] Sudhamani S R, Prasad M S, Sankar K U. Food Hydrocolloids, 2003, 17(3): 245.
[52] Alupei I C, Popa M, Bejenariu A, Vasiliuc S, Alupei V. European Polymer Journal, 2006, 42(4): 908.
[53] Wang X, Zhao C M, Zhao P, Dou P P, Ding Y, Xu P. Bioresource Technology, 2009, 100(7): 2301.
[54] Shin H, Olsen B D, Khademhosseini A. Biomaterials, 2012, 33(11): 3143.
[55] Kulkarni R V, Mangond B S, Mutalik S, Sa B. Carbohydrate Polymers, 2011, 83(2): 1001.
[56] Tang Y J, Sun J, Fan H S, Zhang X D. Carbohydrate Polymers, 2012, 88(1): 46.
[57] O'Neill M A, Selevendran R R, Morris V J. Carbohydrate Research, 1983, 124(1): 123.
[58] Jansson P E, Lindberg B, Sandford P A. Carbohydrate Research, 1983, 124(1): 135.
[59] Kuo M S, Mort A J, Dell A. Carbohydrate Research, 1986, 156: 173.
[60] Chandrasekaran R, Millane R P, Arnott S. Carbohydrate Research, 1988, 175(1): 1.
[61] Chandrasekaran R. Macromolecular Symposia, 1999, 140(1):17
[62] Chandrasekaran R. Advances in Carbohydrate Chemistry and Biochemistry, 1997, 52: 311.
[63] Miyoshi E, Nishinari K. Colloid and Polymer Science, 1999, 277(8): 727.
[64] Morris E R, Gothard M G E, Hember M W N, Manning C E, Robinson G. Carbohydrate Polymers, 1996, 30(2/3): 165.
[65] Carroll V, Chilvers G R, Franklin D, Miles M J, Morris V J, Ring S G. Carbohydrate Research, 1983, 114(2): 181.
[66] Brownsey G J, Chilvers G R, I'Anson K J, Morris V J. International Journal of Biological Macromolecules, 1984, 6(4):211.
[67] Phillips G O, Wedlock D J, Williams P A. Gums and Stabilisers for the Food Industry. Pergamon, 1984. 2.
[68] Morris E R, Nishinari K, Rinaudo M. Food Hydrocolloids, 2012, 28(2): 373.
[69] Shoraku A, Takigawa T, Masuda T. Journal of the Society of Rheology, 2002, 30(1): 13.
[70] Miyoshi E, Takaya T, Nishinari K. Food Hydrocolloids, 1994, 8(6): 505.
[71] Miyoshi E, Takaya T, Nishinari K. Thermochimica Acta, 1995, 267: 269.
[72] Miyoshi E, Takaya T, Nishinari K. Carbohydrate Polymers, 1996, 30(2/3): 109.
[73] Robinson G, Manning C E, Morris E R. Conformation and Physical Properties of the Bacterial Polysaccharides Gellan, Welan and Rhamsan. London: Royal Society of Chemistry, 1991.
[74] Gunning A P, Morris V J. International Journal of Biological Macromolecules, 1990, 12(6): 338.
[75] Nakajima K, Ikehara T, Nishi T. Carbohydrate Polymers, 1996, 30(2/3): 77.
[76] Nishinari K, Koide S, Ogino K. Journal de physique Archives (France), 1985, 46(5): 793.
[77] Watase M, Nishinari K. Food Hydrocolloids, 1993, 7(5): 449.
[78] Morris V J, Kirby A R, Gunning A P. Progress in Colloid and Polymer Science, 1999, 114: 102.
[79] Kawai S, Nitta Y, Nishinari K. Journal of Applied Physics, 2007, 102: 043507.
[80] Kawai S, Nitta Y, Nishinari K. Journal of Chemical Physics, 2008, 128: 134903.
[81] Tanaka S, Nishinari K. Polymer Journal, 2007, 39: 397.
[82] Hossain K S, Nishinari K. Progress in Colloid and Polymer Science, 2009, 136: 177.
[83] D'Arrigo G, Di Meo C, Gaucci E, Chichiarelli S, Coviello T, Capitani D, Alhaique F, Matricardi P. Soft Matter, 2012, 8: 11557.
[84] Ohkawa K, Kitagawa T, Yamamoto H. Macromolecular Materials and Engineering, 2004, 289(1): 33.
[85] Dumitriu C L, Popa M, Vasiliu S, Sunel V. Journl of Macromolecular Science Part A: Pure and Applied Chemistry, 2004, 41(6): 727.
[86] Agnihotri S A, Aminabhavi T M. Drug Development and Industrial Pharmacy, 2005, 31(6): 491.
[87] Maiti S, Ranjit S, Mondol R, Ray S, Sa B. Carbohydrate Polymers, 2011, 85(1): 164.
[88] Mundargi R C, Shelke N B, Babu V R, Patel P, Rangaswamy V, Aminabhavi T M. Journal of Applied Polymer Science, 2010, 116(3): 1832.
[89] Hamcerencu M, Desbrieres J, Popa M, Gérard Riessc. Carbohydrate Polymers, 2012, 89(2): 438.
[90] Rupenthal I D, Green C R, Alany R G. International Journal of Pharmaceutics, 2011, 411(1/2): 69.
[91] Silva D A D, Poole-Warren L A, Martens P J, in het Panhuis M. Journal of Applied Polymer Science, 2013, 130(5): 3374.
[92] Pena J, Roman J, Cabanas M V, Vallet-Regí M. Acta Biomaterialia, 2010, 6(4): 1288.
[93] Rath P M, Schmidt D. Journal of Medical Microbiology, 2001, 50(1): 108.
[94] Tang J. Carbohydrate Polymers, 1996, 29(1): 11.
[95] Discher D E, Janmey P, Wang Y L. Science, 2005, 310(5751): 1139.
[96] Garrett R H, Grisham C M. Principles of Biochemistry with a Human Focus. 3rd ed. Thomson Brooks/Cole, 2001.
[97] Oliveira J T, Martins L, Picciochi R, Malafaya P B, Sousa1R A, Neves N M, Mano J F, Reis R L. Journal of Biomedical Materials Research Part A, 2010, 93A(3): 852.
[98] Correia C, Pereira A L, Duarte A R C, Frias A M, Pedro A J, Oliveira J T, Sousa R A, Reis R L. Tissue Engineering Part A, 2012, 18: 1979.
[99] Oliveira A L, Sousa E C, Silva N A, Sousa N, Salgado A J, Reis R L. Journal of Materials Science: Materials in Medicine, 2012, 23: 2821.
[100] Oliveira J T, Santos T C, Martins L, Silva M A, Marques A P, Castro A G, Neves N M, Reis R L. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3(7): 493.
[101] Oliveira J T, Santos T C, Martins L, Picciochi R, Marques A P, Castro A G, Neves N M, Mano J F, Reis R L. Tissue Engineering Part A, 2010, 16(1): 343.
[102] Silva N A, Salgado A J, Sousa R A, Oliveira J T, Pedro A J, Leite-Almeida H, Cerqueira R, Almeida A, Mastronardi F, Mano J F, Neves N M, Sousa N, Reis R L. Tissue Engineering Part A, 2010, 16(1): 45.
[103] Silva-Correia J, Oliveira J M, Caridade S G, Oliveira J T, Sousa1R A, Mano J F, Reis R L. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5(6): 97.
[104] Pereira D R, Silva-Correia J, Caridade S G, Oliveira J T, Sousa R A, Salgado A J, Oliveira J M, Mano J F, Sousa N, Reis R L. Tissue Engineering Part C: Methods, 2011, 17(10): 961.
[105] Lee H, Fisher S, Kallos M S, Hunter C J. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011, 98: 238.
[106] Bertoni F, Barbani N, Giusti P, Ciardelli G. Biotechnology Letters, 2006, 28: 697.
[107] Cascone M G, Barbani N P, Giusti C C, Ciardelli G, Lazzeri L. Journal of Biomaterials Science, Polymer Edition. 2001, 12: 267.
[108] Patil J S, Kamalapur M V, Marapur S C, Shiralshetti S S. Indian Journal of Pharmaceutical Sciences, 2011, 73: 504.
[109] Coutinho D F, Ahari A F, Kachouie N N, Gomes M E, Neves N M, Reis R L, Khademhosseini A. Biofabrication, 2012, 4: 035003.
[110] Wang C, Gong Y, Lin Y, Shen J, Wang D A. Acta Biomaterialia, 2008, 4: 1226.
[111] Ferris C J, Beirne S, McCallum D, McCallum D, Wallace G G, in het Panhuis M. Biomaterial Science, 2013, 1: 224.
[112] Discher D E, Mooney D J, Zandstra P W. Science, 2009, 324(5935): 1673.
[113] Kerin A J, Wisnom M R, Adams M A. Journal of Engineering in Medicine, 1998, 212(4): 273.
[114] Billiet T, Vandenhaute M, Schelfhout J, Vlierberghe S V, Dubruel P. Biomaterials, 2012, 33(26): 6020.
[115] Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Advanced Materials, 2003, 15: 1155.
[116] Gong J P. Soft Matter, 2010, 6: 2583.
[117] Haque M A, Kurokawa T, Gong J P. Polymer, 2012, 53: 1805.
[118] Haque M A, Kurokawa T, Kamita G, Gong J P. Macromolecules, 2011, 44(22): 8916.
[119] Bakarich S E, Pidcock G C, Balding P, Stevens L, Calvert P, in het Panhuis M. Soft Matter, 2012, 8: 9985.
[120] Sun J Y, Zhao X H, Illeperuma W R K, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z. Nature, 2012, 489: 133.
[121] Small W R, Walton C D, Loos J, in het Panhuis M. The Journal of Physical Chemistry B, 2006, 110(26): 13029.
[122] Dhar S, Reddy E M, Shiras A, Pokharkar V, Prasad B L V. Chemistry A European Journal, 2008, 14: 10244.
[123] Dhar S, Reddy E M, Prabhune A, Pokharkar V, Shiras A, Prasad B L V. Nanoscale, 2011, 3: 575.
[124] Ferris C J, Gilmore K J, Wallaceb G G, in het Panhuis M. Soft Matter, 2013, 9: 3705.

[1] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[2] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[3] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[4] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[5] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[6] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[7] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[8] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[9] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[10] 于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. pH敏感性智能水凝胶的设计及其应用[J]. 化学进展, 2020, 32(2/3): 179-189.
[11] 苏喜, 葛闯, 陈李, 徐溢. 基于水凝胶的细菌传感检测[J]. 化学进展, 2020, 32(12): 1908-1916.
[12] 蔡紫煊, 张斌, 姜丽阳, 李允译, 许国贺, 马晶军. 智能响应型水凝胶药物控释体系及其应用[J]. 化学进展, 2019, 31(12): 1653-1668.
[13] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[14] 查东东, 郭斌, 李本刚, 银鹏, 李盘欣. 热塑性淀粉耐水性的化学与物理作用机制[J]. 化学进展, 2019, 31(1): 156-166.
[15] 窦春妍, 李政, 何贵东, 巩继贤, 刘秀明, 张健飞. γ-聚谷氨酸水凝胶的制备及其应用[J]. 化学进展, 2018, 30(8): 1161-1171.