English
新闻公告
More
化学进展 2021, Vol. 33 Issue (11): 1972-1982 DOI: 10.7536/PC200874 前一篇   后一篇

• 综述 •

热塑性淀粉制备的化学与物理机制及方法

周文1, 张鑫1, 马宏鹏1, 许杰2, 郭斌1,3,4,*(), 李盘欣3,4   

  1. 1 南京林业大学理学院 南京 210037
    2 武汉纺织大学材料科学与工程学院 武汉 430200
    3 河南省农林产品深加工院士工作站 漯河 462600
    4 河南省南街村集团博士后科研工作站 漯河 462600
  • 收稿日期:2020-08-27 修回日期:2020-10-12 出版日期:2020-12-28 发布日期:2020-12-28
  • 通讯作者: 郭斌
  • 基金资助:
    江苏省政府留学基金; 南京林业大学“青年拔尖人才”计划; 2019年度江苏省研究生科研与实践创新计划项目(SJKY19_0867); 2018年度南京林业大学大学生创新训练计划项目(201810298078Y); 江苏省自然科学基金青年基金项目(BK20140967)

Chemical and Physical Mechanism and Method of Preparation of Thermoplastic Starch

Wen Zhou1, Xin Zhang1, Hongpeng Ma1, Jie Xu2, Bin Guo1,3,4(), Panxin Li3,4   

  1. 1 College of Science, Nanjing Forestry University,Nanjing 210037, China
    2 College of Materials Science and Engineering, Wuhan Textile University,Wuhan 430200, China
    3 Agricultural and Forest Products Processing Academician Workstation of Henan Province,Luohe 462600, China
    4 Post-Doctoral Research Center of Nanjiecun Group,Luohe 462600, China
  • Received:2020-08-27 Revised:2020-10-12 Online:2020-12-28 Published:2020-12-28
  • Contact: Bin Guo
  • Supported by:
    Jiangsu Government Scholarship for Overseas Studies; Nanjing Forestry University Yong Top Talent Program; PostGraduate Research & Practice Innovation Program of Jiangsu Province in 2019(SJKY19_0867); Higher school in Jiangsu Province College Students’ Practice Innovation Training Programs in 2018(201810298078Y); Natural Science Foundation of Jiangsu Province(BK20140967)

淀粉是一大类来源丰富、可再生、可完全生物降解及价格低廉的天然高分子,广泛应用于食品、降解塑料、包装和医药等领域。然而,淀粉内部的结晶和半晶结构使其熔融温度大于分解温度,因而不能热塑加工,这一问题严重制约了其在各领域的应用与发展。因此,研究制备热塑性淀粉过程中所涉及的化学与物理机制及具体方法是影响和拓宽其应用的关键科学问题之一。本文以此为出发点,系统总结了近年来国内外该领域的相关研究工作和进展,将制备热塑性淀粉过程中的化学与物理机制归纳为8种(氢键、化学键、压力、剪切力、导热、微波、热空气和γ射线),并以实践中的8种方法(熔融法、溶液法、模压法、球磨法、喷雾干燥、高静压、化学改性和高能辐射)为主线,以不同形成机制和方法之间的相互关系为重点,系统介绍了该领域的研究进展,以期为热塑性淀粉的深入应用与发展提供一定的理论基础。

Starch, as a natural polymer, its attractiveness stems from the annual renewability, low cost and biodegradability in the areas of food, degradable plastics and packaging materials etc. However, the natural starch cannot be directly used in plastics application due to the strong intra- and inter-molecular hydrogen bonds, resulted in the lower thermal decomposition temperature than its melting point. It must be plasticized with low molecular weight compounds such as polyols to form thermoplastic starch(TPS) for processing on conventional processing equipment. Therefore, studying the mechanisms and methods in the processing of TPS is the key point to expand its application. Herein, based on the recent works reported, and considering different physical and chemical nature in mechanism, we summarized as 8 factors(hydrogen bond, chemical bond, stress, shear force, thermal conductivity, microwave, hot-air, γ-ray) in TPS formation, and discussed 8 preparation methods(melting, solution, compression molding, ball milling, spray drying, high hydrostatic pressure, chemical modification, high-energy radiation) of TPS, emphasizing on their relationship. This review is expected to be helpful in studying and developing various TPS products in future.

Contents

1 Introduction

2 Preparation methods

2.1 Melting method

2.2 Solution method

2.3 Compression molding

2.4 Ball milling

2.5 Spray drying

2.6 High hydrostatic pressure

3 Chemical modification

3.1 Oxidation

3.2 Esterification

3.3 Etherification

3.4 Cross-linking

3.5 Dual modification

4 High-energy radiation

5 Conclusion and outlook

()
表1 热塑性淀粉的制备机理及方法
Table 1 Preparation mechanism and method of thermoplastic starch
图1 淀粉和马来酸酐的反应性挤出反应
Fig. 1 Reaction between starch and maleic anhydride by reactive extrusion
图2 壳聚糖(CTS)与聚乙烯(PE)接枝马来酸酐在熔融共混过程中发生的反应
Fig. 2 Proposed reaction between chitosan(CTS)and polyethylene(PE)-graft-maleic anhydride that occurred during melt-blending
图3 干法制备酯化淀粉
Fig. 3 The preparation of the esterified starches by dry method
图4 淀粉与氯乙酸钠(SMCA)反应的示意图
Fig. 4 A schematic representation of the reaction of starch with sodium monochloroacetate(SMCA)
图5 淀粉与几种常用交联剂的反应
Fig. 5 Reactions of starch with some commonly used cross-linking reagents
[1]
Zha D D, Chen C H, Yin P, Guo B, Huang Y N, Li P X. Plast. Sci. Technol., 2019, 47(4): 103.
(查东东, 陈春昊, 银鹏, 郭斌, 黄亚男, 李盘欣. 塑料科技, 2019, 47(4): 103.)
[2]
Zha D D, Guo B, Li B G, Yin P, Li P X. Progress in Chemistry, 2019, 31(1): 156.
(查东东, 郭斌, 李本刚, 银鹏, 李盘欣. 化学进展, 2019, 31(1): 156.)
[3]
Battegazzore D, Bocchini S, Nicola G, Martini E, Frache A. Carbohydr. Polym., 2015, 119: 78.

doi: 10.1016/j.carbpol.2014.11.030     URL    
[4]
Cerclé C, Sarazin P, Favis B D. Carbohydr. Polym., 2013, 92(1): 138.

doi: 10.1016/j.carbpol.2012.08.107     URL    
[5]
Salaberria A M, Labidi J, Fernandes S C M. Chem. Eng. J., 2014, 256: 356.

doi: 10.1016/j.cej.2014.07.009     URL    
[6]
Lendvai L, Apostolov A, Karger-Kocsis J. Carbohydr. Polym., 2017, 173: 566.

doi: 10.1016/j.carbpol.2017.05.100     URL    
[7]
Taghizadeh A, Sarazin P, Favis B D. J. Mater. Sci., 2013, 48(4): 1799.

doi: 10.1007/s10853-012-6943-8     URL    
[8]
Magalhães N F, Andrade C T. J. Braz. Chem. Soc., 2010, 21(2): 202.

doi: 10.1590/S0103-50532010000200003     URL    
[9]
Dogossy G, Czigany T. J. Reinf. Plast. Compos., 2011, 30(21): 1819.

doi: 10.1177/0731684411429728     URL    
[10]
Liu Z J, Zhao L, Chen M N, Yu J G. Carbohydr. Polym., 2011, 83(2): 447.

doi: 10.1016/j.carbpol.2010.08.007     URL    
[11]
Yang J H, Tang K K, Qin G Q, Chen Y X, Peng L, Wan X, Xiao H N, Xia Q Y. Carbohydr. Polym., 2017, 166: 256.

doi: 10.1016/j.carbpol.2017.03.001     URL    
[12]
Misman M A, Azura A R, Hamid Z A A. Ind. Crops Prod., 2015, 65: 397.

doi: 10.1016/j.indcrop.2014.11.009     URL    
[13]
Shahbazi M, Majzoobi M, Farahnaky A. J. Food Eng., 2018, 223: 10.

doi: 10.1016/j.jfoodeng.2017.11.033     URL    
[14]
Zou J, Xu M J, Tian J, Li B. Int. J. Biol. Macromol., 2019, 135: 379.

doi: 10.1016/j.ijbiomac.2019.05.147     URL    
[15]
Jun W, Yong Y. Int. J. Food Sci. Technol., 2009, 44(4): 674.

doi: 10.1111/ifs.2009.44.issue-4     URL    
[16]
Drakopoulos S X, Karger-Kocsis J, Kmetty Á, Lendvai L, Psarras G C. Carbohydr. Polym., 2017, 157: 711.

doi: 10.1016/j.carbpol.2016.10.036     URL    
[17]
Liu W C, Halley P J, Gilbert R G. Macromolecules, 2010, 43(6): 2855.

doi: 10.1021/ma100067x     URL    
[18]
Song D L, Thio Y S, Deng Y L. Carbohydr. Polym., 2011, 85(1): 208.

doi: 10.1016/j.carbpol.2011.02.016     URL    
[19]
Liu H S, Xie F W, Yu L, Chen L, Li L. Prog. Polym. Sci., 2009, 34(12): 1348.

doi: 10.1016/j.progpolymsci.2009.07.001     URL    
[20]
Zdybel E, Tomaszewska-Ciosk E, Gertchen M, Dro?d? W. Pol. J. Chem. Technol., 2017, 19(2): 51.

doi: 10.1515/pjct-2017-0027     URL    
[21]
Dang K M, Yoksan R. Carbohydr. Polym., 2015, 115: 575.

doi: 10.1016/j.carbpol.2014.09.005     URL    
[22]
Schmitt H, Guidez A, Prashantha K, Soulestin J, Lacrampe M F, Krawczak P. Carbohydr. Polym., 2015, 115: 364.

doi: 10.1016/j.carbpol.2014.09.004     URL    
[23]
Zhang Y C, Liu Q, Hrymak A, Han J H. J. Polym. Environ., 2013, 21(1): 122.

doi: 10.1007/s10924-012-0528-0     URL    
[24]
Cai C X, Wei B X, Tian Y Q, Ma R R, Chen L, Qiu L Z, Jin Z Y. Food Chem., 2019, 288: 354.

doi: 10.1016/j.foodchem.2019.03.017     URL    
[25]
Milotskyi R, Bliard C, Tusseau D, de Benoit C. Carbohydr. Polym., 2018, 194: 193.

doi: 10.1016/j.carbpol.2018.04.040     URL    
[26]
Moad G. Prog. Polym. Sci., 2011, 36(2): 218.

doi: 10.1016/j.progpolymsci.2010.11.002     URL    
[27]
Raquez J M, Narayan R, Dubois P. Macromol. Mater. Eng., 2008, 293(6): 447.

doi: 10.1002/(ISSN)1439-2054     URL    
[28]
Kalambur S B, Rizvi S S. Polym. Int., 2004, 53(10): 1413.

doi: 10.1002/(ISSN)1097-0126     URL    
[29]
Zuo Y F, Gu J Y, Yang L, Qiao Z B, Zhang Y H. J. Thermoplast. Compos. Mater., 2016, 29(3): 397.

doi: 10.1177/0892705713518809     URL    
[30]
Raquez J M, Nabar Y, Srinivasan M, Shin B Y, Narayan R, Dubois P. Carbohydr. Polym., 2008, 74(2): 159.

doi: 10.1016/j.carbpol.2008.01.027     URL    
[31]
Zhou Y, Zhou Y Z. Rubber Science and Technology, 2017, 15(3):38.
(周毅, 周英志. 橡胶科技, 2017, 15(3):38.)
[32]
Han B K, Zhang J. China Rubber/plastics Technol. Equip., 2018, 44(1): 45.
(韩帮阔, 张津. 橡塑技术与装备, 2018, 44(1): 45.)
[33]
Olivato J B, Marini J, Yamashita F, Pollet E, Grossmann M V E, Avérous L. Mater. Sci. Eng.: C, 2017, 70: 296.

doi: 10.1016/j.msec.2016.08.077     URL    
[34]
Jantanasakulwong K, Leksawasdi N, Seesuriyachan P, Wongsuriyasak S, Techapun C, Ougizawa T. Carbohydr. Polym., 2016, 153: 89.

doi: 10.1016/j.carbpol.2016.07.091     URL    
[35]
Sabetzadeh M, Bagheri R, Masoomi M. Carbohydr. Polym., 2015, 119: 126.

doi: 10.1016/j.carbpol.2014.11.038     URL    
[36]
Area M R, Rico M, Montero B, Barral L, Bouza R, LÓpez J, Ramírez C. Carbohydr. Polym., 2019, 206: 726.

doi: 10.1016/j.carbpol.2018.11.055     URL    
[37]
Ostafinska A, Mikesova J, Krejcikova S, Nevoralova M, Sturcova A, Zhigunov A, Michalkova D, Slouf M. Int. J. Biol. Macromol., 2017, 101:273.

doi: 10.1016/j.ijbiomac.2017.03.104     URL    
[38]
Gutiérrez T J, Alvarez V A. React. Funct. Polym., 2017, 112:33.

doi: 10.1016/j.reactfunctpolym.2017.01.002     URL    
[39]
Xu M M, Yang F W, Zhang Y X, Wang C G, Chen X M, Tian X M, Zhu J X. Synthetic Materials Aging and Application, 2019, 48(1):93.
(徐蒙蒙, 阳范文, 张雅欣, 王晨光, 陈晓明, 田秀梅, 朱继翔. 合成材料老化与应用, 2019, 48(1):93.)
[40]
González K, Retegi A, González A, Eceiza A, Gabilondo N. Carbohydr.Polym., 2015, 117:83.
[41]
Kaushik A, Kaur R. Compos. Interfaces, 2016, 23(7): 701.

doi: 10.1080/09276440.2016.1169487     URL    
[42]
Koch K, Gillgren T, Stading M, Andersson R. Int. J. Biol. Macromol., 2010, 46(1): 13.

doi: 10.1016/j.ijbiomac.2009.10.002     URL    
[43]
Liu H H, Adhikari R, Guo Q P, Adhikari B. J. Food Eng., 2013, 116(2): 588.

doi: 10.1016/j.jfoodeng.2012.12.037     URL    
[44]
Mohan C C, Harini K, Karthikeyan S, Sudharsan K, Sukumar M. Int. J. Biol. Macromol., 2018, 120: 2007.

doi: 10.1016/j.ijbiomac.2018.09.161     URL    
[45]
Zeng Q W, Yao Y, Zhang X, Xie W D, Luo Y B. Fiber Glass, 2016(4): 1.
(曾庆文, 姚远, 张玺, 谢卫东, 罗元彬. 玻璃纤维, 2016(4): 1.)
[46]
Liu J J, Luo S M, Liang G D, Liu H G, Fan J H. China Plast. Ind., 2015, 43(9): 15.
(刘军舰, 罗诗明, 梁贵东, 刘华官, 樊江河. 塑料工业, 2015, 43(9): 15.)
[47]
Perdomo J, Cova A, Sandoval A J, García L, Laredo E, Müller A J. Carbohydr. Polym., 2009, 76(2): 305.

doi: 10.1016/j.carbpol.2008.10.023     URL    
[48]
Zdanowicz M, Jędrzejewski R, Pilawka R. Int. J. Biol. Macromol., 2019, 129: 1040.

doi: 10.1016/j.ijbiomac.2019.02.103     URL    
[49]
Sanhawong W, Banhalee P, Boonsang S, Kaewpirom S. Ind. Crops Prod., 2017, 108: 756.

doi: 10.1016/j.indcrop.2017.07.046     URL    
[50]
Trongchuen K, Ounkaew A, Kasemsiri P, Hiziroglu S, Mongkolthanaruk W, Wannasutta R, Pongsa U, Chindaprasirt P. Starch Stärke, 2018, 70(7/8): 1700238.
[51]
Liu L. Sichuan Chem. Ind., 2019, 22(3): 14.
(刘露. 四川化工, 2019, 22(3): 14.)
[52]
Prabhakar M N, Rehman Shah A U, Song J I. Carbohydr. Polym., 2017, 168: 201.

doi: 10.1016/j.carbpol.2017.03.036     URL    
[53]
Prabhakar M N, Song J I. Int. J. Biol. Macromol., 2018, 119: 1335.

doi: S0141-8130(18)31024-9     pmid: 29981828
[54]
Lv Y, Zhang L M, Li M N, He X H, Hao L M, Dai Y J. Int. J. Biol. Macromol., 2019, 129: 207.

doi: 10.1016/j.ijbiomac.2019.02.028     URL    
[55]
Liu T Y, Ma Y, Yu S F, Shi J, Xue S. Innov. Food Sci. Emerg. Technol., 2011, 12(4): 586.

doi: 10.1016/j.ifset.2011.06.009     URL    
[56]
Ren G Y, Li D, Wang L J, Özkan N, Mao Z H. Carbohydr. Polym., 2010, 79(1): 101.

doi: 10.1016/j.carbpol.2009.07.031     URL    
[57]
Santos T P R, Franco C M L, Carmo E L, Jane J L, Leonel M. J. Food Sci. Technol., 2019, 56(1): 376.

doi: 10.1007/s13197-018-3498-y     URL    
[58]
Ahmed I, Niazi M B K, Hussain A, Jahan Z. Polym. Plast. Technol. Eng., 2018, 57(1): 17.

doi: 10.1080/03602559.2017.1298803     URL    
[59]
Khan B, Niazi M B K, Hussain A, Jahan Z. Fibers Polym., 2017, 18(1):64.

doi: 10.1007/s12221-017-6769-8     URL    
[60]
Fu Z Q, Wang L J, Li D, Adhikari B. Carbohydr. Polym., 2012, 88(4): 1319.

doi: 10.1016/j.carbpol.2012.02.010     URL    
[61]
Niazi M B K, Broekhuis A A. J. Appl. Polym. Sci., 2012, 126(S1): E143. DOI: 10.1002/app.36551.

doi: 10.1002/app.36551     URL    
[62]
Liu P L, Zhang F S, Bai Y F, Hu X S, Shen Q. Chinese Journal of High Pressure Physics, 2010, 24(6):472.
(刘培玲, 张甫生, 白云飞, 胡小松, 沈群. 高压物理学报, 2010, 24(6):472.)
[63]
Liu P L, Hu X S, S Q. Starch., 2010, 62: 615.

doi: 10.1002/star.v62.12     URL    
[64]
Li H Y, Xu X P, Chen H R, Tao X Q, Zhang F S. Food Sci., 2018, 39(13): 106.
(李红云, 徐晓萍, 陈厚荣, 陶晓奇, 张甫生. 食品科学, 2018, 39(13): 106.)
[65]
Mo F, Xu X P, Tao X Q, Chen H R, Zhang F S. Food Science, 2018, 39(17):109.
(莫芳, 徐晓萍, 陶晓奇, 陈厚荣, 张甫生. 食品科学, 2018, 39(17):109.)
[66]
King A, Kaletunç G. J. Therm. Anal. Calorim., 2009, 98(1): 83.

doi: 10.1007/s10973-009-0279-x     URL    
[67]
Li W H, Bai Y F, Mousaa S A S, Zhang Q, Shen Q. Food Bioprocess Technol., 2012, 5(6): 2233.

doi: 10.1007/s11947-011-0542-6     URL    
[68]
Kuakpetoon D, Wang Y J. Carbohydr. Res., 2006, 341(11): 1896.

doi: 10.1016/j.carres.2006.04.013     URL    
[69]
Takizawa F F, de Oliveira da Silva G, Konkel F E, Demiate I M. Braz. Arch. Biol. Technol., 2004, 47(6): 921.

doi: 10.1590/S1516-89132004000600012     URL    
[70]
Demiate I M, Dupuy N, Huvenne J P, Cereda M P, Wosiacki G. Carbohydr. Polym., 2000, 42(2): 149.

doi: 10.1016/S0144-8617(99)00152-6     URL    
[71]
Shah U, Naqash F, Gani A, Masoodi F A. Compr. Rev. Food Sci. Food Saf., 2016, 15(3): 568.

doi: 10.1111/crf3.2016.15.issue-3     URL    
[72]
Masina N, Choonara Y E, Kumar P, du Toit L C, Govender M, Indermun S, Pillay V. Carbohydr. Polym., 2017, 157: 1226.

doi: 10.1016/j.carbpol.2016.09.094     URL    
[73]
Oluwasina O O, Olaleye F K, Olusegun S J, Oluwasina O O, Mohallem N D S. Int. J. Biol. Macromol., 2019, 135: 282.

doi: 10.1016/j.ijbiomac.2019.05.150     URL    
[74]
Zhang Y R, Wang X L, Zhao G M, Wang Y Z. Carbohydr. Polym., 2013, 96(1): 358.

doi: 10.1016/j.carbpol.2013.03.093     URL    
[75]
Zhang C W, Li F Y, Li J F, Xie Q, Xu J, Guo A F, Wang C Z. Int. J. Precis. Eng. Manuf. Green Technol., 2018, 5(3): 435.

doi: 10.1007/s40684-018-0046-1     URL    
[76]
Otache M A, Ifeanyi E G, Amagbor S C, Agbajor G K, Imanah J E. J. Mater. Environ. Sci., 2021, 12(4):497.
[77]
Golachowski A, Zięba T, Kapelko-$\dot{Z}$eberska M, Dro$\dot{z}$d$\dot{z}$ W, Gryszkin A, Grzechac M. Food hem., 2015, 176: 350.
[78]
Bello-Pérez L A, Agama-Acevedo E, Zamudio-Flores P B, Mendez-Montealvo G, Rodriguez-Ambriz S L. LWT Food Sci. Technol., 2010, 43(9): 1434.

doi: 10.1016/j.lwt.2010.04.003     URL    
[79]
Hong J, Zeng X N, Buckow R, Han Z, Wang M S. Food Hydrocoll., 2016, 54: 139.

doi: 10.1016/j.foodhyd.2015.09.025     URL    
[80]
Mbougueng P D, Tenin D, Scher J, Tchiégang C. J. Food Eng., 2012, 108(2): 320.

doi: 10.1016/j.jfoodeng.2011.08.006     URL    
[81]
Alves R M L, Grossmann M V E, Silva R S S F. Food Chem., 1999, 67(2): 123.

doi: 10.1016/S0308-8146(99)00064-3     URL    
[82]
El Halal S L M, Colussi R, Biduski B, Evangelho J A D, Bruni G P, Antunes M D, Dias A R G, Zavareze E D R. J. Sci. Food Agric., 2017, 97(2): i.
[83]
Colussi R, Pinto V Z, El Halal S L M, Biduski B, Prietto L, Castilhos D D, Zavareze E D R, Dias A R G. Food Chem., 2017, 221: 1614.

doi: S0308-8146(16)31808-8     pmid: 27979137
[84]
Zuo Y F, Gu J Y, Yang L, Qiao Z B, Tan H Y, Zhang Y H. Int. J. Biol. Macromol., 2014, 64: 174.

doi: 10.1016/j.ijbiomac.2013.11.026     URL    
[85]
Zarski A, Ptak S, Siemion P, Kapusniak J. Carbohydr. Polym., 2016, 137: 657.

doi: 10.1016/j.carbpol.2015.11.029     URL    
[86]
Lin R H, Li H, Long H, Su J T, Huang W Q. Food Hydrocoll., 2015, 43: 352.

doi: 10.1016/j.foodhyd.2014.06.008     URL    
[87]
Zhang L, Yu L, Liu H S, Wang Y F, Simon G P, Ji Z L, Qian J Y. Food Hydrocoll., 2017, 70: 251.

doi: 10.1016/j.foodhyd.2017.03.019     URL    
[88]
Chen J, Chen F S, Long Z, Dai L, Wang S F, Zhang D. Polym. Compos., 2019, 40(S1): E856. DOI: 10.1002/pc.25048.

doi: 10.1002/pc.25048    
[89]
Lawal O S, Ogundiran O O, Adesogan E K, Ogunsanwo B M, Sosanwo O A. Starch Stärke, 2008, 60(7): 340.

doi: 10.1002/star.v60:7     URL    
[90]
Lawal O S. LWT Food Sci. Technol., 2011, 44(3): 771.

doi: 10.1016/j.lwt.2010.05.025     URL    
[91]
Chun E H, Oh S M, Kim H Y, Kim B Y, Baik M Y. Carbohydr. Polym., 2016, 146: 328.

doi: 10.1016/j.carbpol.2016.03.067     URL    
[92]
Zhou M, Shi L, Cheng F, Lin Y, Zhu P X. Starch Stärke, 2018, 70(5/6): 1700250.
[93]
Spychaj T, Wilpiszewska K, Zdanowicz M. Starch Stärke, 2013, 651-2: 22.
[94]
Wilpiszewska K, Antosik A K, Spychaj T. Carbohydr. Polym., 2015, 128: 82.

doi: 10.1016/j.carbpol.2015.04.023     URL    
[95]
Wilpiszewska K. Pol. J. Chem. Technol., 2019, 21(2): 26.

doi: 10.2478/pjct-2019-0016    
[96]
Xie W L, Zhang Y X, Liu Y W. Carbohydr. Polym., 2011, 85(4): 792.

doi: 10.1016/j.carbpol.2011.03.047     URL    
[97]
Acquarone V M, Rao M A. Carbohydr. Polym., 2003, 51(4): 451.

doi: 10.1016/S0144-8617(02)00217-5     URL    
[98]
Chai K G, Lu K, Xu Z J, Tong Z F, Ji H B. J. Hazard. Mater., 2018, 348: 20.

doi: 10.1016/j.jhazmat.2018.01.034     URL    
[99]
Heo H, Lee Y K, Chang Y H. Int. J. Food Prop., 2017, 20(S2):S2138.
[100]
Guo L, Liu R, Li X L, Sun Y, Du X F. Starch Stärke, 2015, 67(3/4): 237.

doi: 10.1002/star.201400200     URL    
[101]
Zhou L Y, Zhao G Y, Jiang W. J. Appl. Polym. Sci., 2016, 133(2): 42297. DOI: 10.1002/app.42297.

doi: 10.1002/app.42297    
[102]
Jose J, Al-Harthi M A. Iran. Polym. J., 2017, 26(8): 579.

doi: 10.1007/s13726-017-0542-0     URL    
[103]
Haq F, Yu H J, Wang L, Teng L S, Haroon M, Khan R U, Mehmood S, Bilal-Ul-amin, Ullah R S, Khan A, Nazir A. Carbohydr. Res., 2019, 476: 12.

doi: 10.1016/j.carres.2019.02.007     URL    
[104]
Din Z U, Xiong H G, Fei P. Crit. Rev. Food. Sci., 2017, 57(12):2691.

doi: 10.1080/10408398.2015.1087379     URL    
[105]
Tanetrungroj Y, Prachayawarakorn J. Int. J. Biol. Macromol., 2018, 120: 1240.

doi: S0141-8130(18)32581-9     pmid: 30171956
[106]
González-Soto R A, Núñez-Santiago M C, Bello-Pérez L A. J. Sci. Food Agric., 2019, 99(6): 3134.

doi: 10.1002/jsfa.2019.99.issue-6     URL    
[107]
Hazarika B J, Sit N. Carbohydr. Polym., 2016, 140: 269.

doi: 10.1016/j.carbpol.2015.12.055     URL    
[108]
Huang G D. For. Environ. Sci., 2016, 32(2): 107.
(黄桂丹. 林业与环境科学, 2016, 32(2): 107.)
[109]
Song W Q, Guo Z C, Zhang L Q, Zheng H J, Zhao Z W. Radiat. Phys. Chem., 2013, 91: 114.

doi: 10.1016/j.radphyschem.2013.06.003     URL    
[110]
Wu Z W, Song X Y. J. Appl. Polym. Sci., 2006, 101(4): 2210.

doi: 10.1002/(ISSN)1097-4628     URL    
[111]
Polesi L F, Sarmento S B S, de Moraes J, Franco C M L, Canniatti-Brazaca S G. Food Chem., 2016, 191: 59.

doi: 10.1016/j.foodchem.2015.03.055     URL    
[112]
Bashir K, Aggarwal M. Int. J. Biol. Macromol., 2017, 97: 426.

doi: 10.1016/j.ijbiomac.2017.01.025     URL    
[113]
Li L, Chen H P, Wang M, Lv X, Zhao Y F, Xia L R. Carbohydr. Polym., 2018, 194: 395.

doi: 10.1016/j.carbpol.2018.04.060     URL    
[114]
Cieśla K, Sartowska B. Radiat. Phys. Chem., 2016, 118: 87.

doi: 10.1016/j.radphyschem.2015.04.027     URL    
[115]
Tang H, Guo B, Xue L, Li P X, Huang Y N, Zhang Q S. China Plast. Ind., 2012, 40(7): 64.
(唐皞, 郭斌, 薛岚, 李盘欣, 黄亚男, 张齐生. 塑料工业, 2012, 40(7): 64.)
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[6] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[7] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[8] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[9] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[10] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[11] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[12] 周丽, Abdelkrim Yasmine, 姜志国, 于中振, 曲晋. 微塑料:生物效应、分析和降解方法综述[J]. 化学进展, 2022, 34(9): 1935-1946.
[13] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[14] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[15] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.