English
新闻公告
More
化学进展 2014, Vol. 26 Issue (08): 1275-1284 DOI: 10.7536/PC140350 前一篇   后一篇

• 特约稿 •

PNIPAAm改性表面对蛋白质吸附的调控及其应用

于谦, 陈红*   

  1. 苏州大学 材料与化学化工学部 苏州 215123
  • 收稿日期:2014-03-01 修回日期:2014-04-01 出版日期:2014-08-15 发布日期:2014-06-10
  • 通讯作者: 陈红 E-mail:chenh@suda.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21334004)和国家杰出青年科学基金项目(No. 21125418)资助

Applications of Regulation of Protein Adsorption Using PNIPAAm Modified Surfaces

Yu Qian, Chen Hong*   

  1. College of Chemistry, Chemical Engineering and Materials Science of Soochow University, Suzhou 215123, China
  • Received:2014-03-01 Revised:2014-04-01 Online:2014-08-15 Published:2014-06-10
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.21334004) and the National Science Fund for Distinguished Young Scholars (No. 21125418)

根据不同领域的需要,控制蛋白质在材料表面的吸附是一个具有重要应用价值的课题。聚(N-异丙基丙烯酰胺)(PNIPAAm)改性表面能够响应外界温度变化从而改变其表面性质,这一特点为调控蛋白质的吸附提供了可能。近年来,研究者们应用多种表征方法考察了不同温度下蛋白质在PNIPAAm改性表面的吸附,并试图从分子水平上深入理解其吸附机制及影响因素。本文综述了近年来应用PNIPAAm改性表面对蛋白质吸附的研究及其最新进展。发现当PNIPAAm层厚度处于一定范围内时,PNIPAAm改性表面表现出对蛋白质吸附的温度敏感性,并可以利用这一性质将其应用于蛋白质纯化及分离和生物传感器等领域。而当PNIPAAm层厚度超过一个临界值时,PNIPAAm改性表面表现出良好的阻抗血浆蛋白质的性质,使其有望在血液相容性表面领域得到应用。最后,就PNIPAAm改性表面调控蛋白质吸附的未来发展方向简要地进行了展望。

Control over the adsorption of proteins on surfaces according to the specific requirements of different fields is of crucial importance for various applications including implanted devices, biosensors, tissue engineering, and separation sciences. Surfaces modified by poly (N-isopropylacrylamide) (PNIPAAm) are capable of reversibly altering their properties in response to the change of environmental temperature, providing possibility to regulate protein adsorption on surfaces. In recent decades, considerable attentions have been paid to investigating protein adsorption on PNIPAAm modified surfaces under different temperatures using various characterization methods, and trying to understand the mechanism and influence factors in molecular level. In this paper, the recent progress on studies of protein adsorption on PNIPAAm modified surfaces are reviewed. It is found that when the thickness of PNIPAAm layer is within a certain range, PNIPAAm modified surfaces exhibit thermo-responsivity of protein adsorption, which can be used in applications of protein purification and separation as well as biosensors. On the other hand, when the thickness of PNIPAAm layer is beyond a critical thickness, PNIPAAm modified surfaces show good resistance to plasma proteins, making them beneficial for applications as hemocompatible surfaces. In the end, the directions of future development on regulation of protein adsorption using PNIPAAm modified surfaces are proposed.

Contents
1 Introduction
2 PNIPAAm modified surfaces
2.1 Preparation of PNIPAAm modified surfaces
2.2 Conformational changes of PNIPAAm grafted on surfaces
3 Studies on protein adsorption on PNIPAAm modified surfaces
3.1 Methods of characterization of protein adsorption
3.2 Mechanisms and influence factors of protein adsorption
4 Applications of PNIPAAm modified surfaces on regulation of protein adsorption
4.1 Purification and separation of protein
4.2 Biosensors
4.3 Hemocompatible surfaces
5 Conclusion and outlook

中图分类号: 

()

[1] Chen H, Yuan L, Song W, Wu Z, Li D. Prog. Polym. Sci., 2008, 33: 1059.
[2] Tsapikouni T S, Missirlis Y F. Mater. Sci. Eng. B, 2008, 152: 2.
[3] Szott L M, Horbett T A. Curr. Opin. Chem. Biol., 2011, 15: 683.
[4] Banerjee I, Pangule R C, Kane R S. Adv. Mater., 2011, 23: 690.
[5] Horbett T A. Colloids Surf. B, 1994, 2: 225.
[6] Jain P, Baker G L, Bruening M L. Annu. Rev. Anal. Chem., 2009, 2: 387.
[7] Yuan L, Yu Q, Li D, Chen H. Macromol. Biosci., 2011, 11: 1031.
[8] Li M, Neoh K G, Xu L Q, Wang R, Kang E T, Lau T, Olszyna D P, Chiong E. Langmuir, 2012, 28: 16408.
[9] Li D, Zheng Q, Wang Y, Chen H. Polym. Chem., 2013, 5: 14.
[10] Mendes P M. Chem. Soc. Rev., 2008, 37: 2512.
[11] Cole M A, Voelcker N H, Thissen H, Griesser H J. Biomaterials, 2009, 30: 1827.
[12] Schild H G. Prog. Polym. Sci., 1992, 17: 163.
[13] Ista L K, Lopez G P. J. Ind. Microbiol. Biotechnol., 1998, 20: 121.
[14] Cho E C, Kim Y D, Cho K. Polymer, 2004, 45: 3195.
[15] Cunliffe D, Alarcon C D, Peters V, Smith J R, Alexander C. Langmuir, 2003, 19: 2888.
[16] Yakushiji T, Sakai K, Kikuchi A, Aoyagi T, Sakurai Y, Okano T. Langmuir, 1998, 14: 4657.
[17] Heinz P, Bretagnol F, Mannelli I, Sirghi L, Valsesia A, Ceccone G, Gilliland D, Landfester K, Rauscher H, Rossi F. Langmuir, 2008, 24: 6166.
[18] Sugiura S, Imano W, Takagi T, Sakai K, Kanamori T. Biosens. Bioelectron., 2009, 24: 1135.
[19] Wu Z, Chen H, Huang H, Zhao T, Liu X, Li D, Yu Q. Macromol. Biosci., 2009, 9: 1165.
[20] Li L, Zhu Y, Li B, Gao C. Langmuir, 2008, 24: 13632.
[21] Barbey R, Lavanant L, Paripovic D, Schuüwer N, Sugnaux C, Tugulu S, Klok H A. Chem. Rev., 2009, 109: 5437.
[22] Cheng X H, Canavan H E, Stein M J, Hull J R, Kweskin S J, Wagner M S, Somorjai G A, Castner D G, Ratner B D. Langmuir, 2005, 21: 7833.
[23] Balamurugan S, Mendez S, Balamurugan S S, O'Brien M J, Lopez G P. Langmuir, 2003, 19: 2545.
[24] Zhang G. Macromolecules, 2004, 37: 6553.
[25] Liu G, Cheng H, Yan L, Zhang G. J. Phys. Chem. B, 2005, 109: 22603.
[26] Canavan H E, Graham D J, Cheng X H, Ratner B D, Castner D G. Langmuir, 2007, 23: 50.
[27] Cole M A, Jasieniak M, Thissen H, Voelcker N H, Griesser H J. Anal. Chem., 2009, 81: 6905.
[28] Kurkuri M D, Nussio M R, Deslandes A, Voelcker N H. Langmuir, 2008, 24: 4238.
[29] 于谦 (Yu Q), 张燕霞 (Zhang Y X), 李鑫 (Li X), 徐亚骏 (Xu Y J), 陈红 (Chen H). 高分子学报 (Acta Polym. Sin.), 2011, (5): 537.
[30] Yu Q, Zhang Y, Chen H, Zhou F, Wu Z, Huang H, Brash J L. Langmuir, 2010, 26: 8582.
[31] Teare D O H, Barwick D C, Schofield W C E, Garrod R P, Beeby A, Badyal J P S. J. Phys. Chem. B, 2005, 109: 22407.
[32] Alf M E, Hatton T A, Gleason K K. Langmuir, 2011, 27: 10691.
[33] Yu Q, Zhang Y, Chen H, Wu Z, Huang H, Cheng C. Colloids Surf. B, 2010, 76: 468.
[34] Zhao T, Chen H, Zheng J, Yu Q, Wu Z, Yuan L. Colloids Surf. B, 2011, 85: 26.
[35] Yu Q, Li X, Zhang Y, Yuan L, Zhao T, Chen H. RSC Adv., 2011, 1: 262.
[36] Cho E C, Kim Y D, Cho K. J. Colloid Interface Sci., 2005, 286: 479.
[37] Cho E C, Kim D H, Cho K. Langmuir, 2008, 24: 9974.
[38] Jeon S I, Lee J H, Andrade J D, de Gennes P G. J. Colloid Interface Sci., 1991, 142: 149.
[39] Chen S, Zheng J, Li L, Jiang S. J. Am. Chem. Soc., 2005, 127: 14473.
[40] Halperin A, Kröger M. Macromolecules, 2011, 44: 6986.
[41] Zhu X, Yan C, Winnik F M, Leckband D. Langmuir, 2007, 23: 162.
[42] 于谦 (Yu Q), 张燕霞 (Zhang Y X), 徐亚骏 (Xu Y J), 陈红 (Chen H). 材料导报 (Mater. Rev.), 2010, 24: 25.
[43] Xue C, Choi B C, Choi S, Braun P V, Leckband D E. Adv. Funct. Mater., 2012, 22: 2394.
[44] Xue C, Yonet-Tanyeri N, Brouette N, Sferrazza M, Braun P V, Leckband D E. Langmuir, 2011, 27: 8810.
[45] Halperin A, Fragneto G, Schollier A, Sferrazza M. Langmuir, 2007, 23: 10603.
[46] Halperin A. Langmuir, 1999, 15: 2525.
[47] Yin Z Z, Zhang J J, Jiang L P, Zhu J J. J. Phys. Chem. C, 2009, 113: 16104.
[48] Huber D L, Manginell R P, Samara M A, Kim B I, Bunker B C. Science, 2003, 301: 352.
[49] Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T. Biomacromolecules, 2008, 9: 1340.
[50] Nagase K, Kumazaki M, Kanazawa H, Kobayashi J, Kikuci A, Akiyama Y, Annaka M, Okano T. ACS Appl. Mater. Interfaces, 2010, 2: 1247.
[51] Nagase K, Yuk S F, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T. J. Mater. Chem., 2011, 21: 2590.
[52] Malmstadt N, Yager P, Hoffman A S, Stayton P S. Anal. Chem., 2003, 75: 2943.
[53] Malmstadt N, Hoffman A S, Stayton P S. Lab Chip, 2004, 4: 412.
[54] Hoffman J M, Ebara M, Lai J J, Hoffman A S, Folch A, Stayton P S. Lab Chip, 2010, 10: 3130.
[55] Shamim N, Hong L, Hidajat K, Uddin M S. J. Colloid Interface Sci., 2006, 304: 1.
[56] Shamim N, Hong L, Hidajat K, Uddin M S. Colloids Surf. B, 2007, 55: 51.
[57] Shamim N, Liang H, Hidajat K, Uddin M S. J. Colloid Interface Sci., 2008, 320: 15.
[58] Meng T, Xie R, Chen Y C, Cheng C J, Li P F, Ju X J, Chu L Y. J. Membr. Sci., 2010, 349: 258.
[59] Wang H, Wang Y, Yuan L, Wang L, Yang W, Wu Z, Li D, Chen H. Nanotechnology, 2013, 24: 105101.
[60] Yu Q, Shivapooja P, Johnson L M, Tizazu G, Leggett G J, Lopez G P. Nanoscale, 2013, 5: 3632.
[61] Song S Y, Choi H G, Hong J W, Kim B W, Sim S J, Yoon H C. Colloids Surf. A, 2008, 313: 504.
[62] Lee D S, Choi H G, Chung K H, Lee B Y, Pyo H B, Yoon H C. ETRI J., 2007, 29: 667.
[63] Ketelson H A. US 7485607 B2,2009.
[64] Chen L, Liu M, Bai H, Chen P, Xia F, Han D, Jiang L. J. Am. Chem. Soc., 2009, 131: 10467.

[1] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[2] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[3] 杨世迎, 刘俊琴, 李乾风, 李阳. 机械球磨改性零价铝的作用机制[J]. 化学进展, 2021, 33(10): 1741-1755.
[4] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[5] 查东东, 郭斌, 李本刚, 银鹏, 李盘欣. 热塑性淀粉耐水性的化学与物理作用机制[J]. 化学进展, 2019, 31(1): 156-166.
[6] 慈吉良, 康宏亮, 刘晨光, 贺爱华, 刘瑞刚. 两性离子聚合物的抗蛋白质吸附机理及其应用[J]. 化学进展, 2015, 27(9): 1198-1212.
[7] 杨皓程, 陈一夫, 叶辰, 万灵书, 徐志康. 有机-无机复合多孔膜制备与应用[J]. 化学进展, 2015, 27(8): 1014-1024.
[8] 刘天辉, 常刚, 曹瑞军, 孟令杰. 超顺磁性Fe3O4纳米粒子在磁共振造影中的应用[J]. 化学进展, 2015, 27(5): 601-613.
[9] 刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性中的应用[J]. 化学进展, 2015, 27(2/3): 212-219.
[10] 张勇杰, 李化毅, 董金勇, 胡友良. 聚烯烃共价键接枝纳米材料及其聚烯烃纳米复合材料[J]. 化学进展, 2015, 27(1): 47-58.
[11] 屈阳, 李建波*, 任杰*. 温度敏感性药物载体及其在肿瘤热化疗中的应用[J]. 化学进展, 2013, 25(05): 785-798.
[12] 刘涛, 孙丽宁, 刘政, 仇衍楠, 施利毅. 稀土上转换发光纳米材料的应用[J]. 化学进展, 2012, 24(0203): 304-317.
[13] 王兆翔, 陈立泉, 黄学杰. 锂离子电池正极材料的结构设计与改性[J]. 化学进展, 2011, 23(0203): 284-301.
[14] 何淑漫 周健. 抗凝血生物材料*[J]. 化学进展, 2010, 22(04): 760-772.
[15] 郭贵全 武利民 汪长春 方军锋. 自由基反应修饰碳纳米管[J]. 化学进展, 2009, 21(10): 2084-2092.