English
新闻公告
More
化学进展 2019, Vol. 31 Issue (7): 1044-1055 DOI: 10.7536/PC181113 前一篇   后一篇

• •

热塑性淀粉力学性能的提升途径及作用机理

查东东1, 周文1, 银鹏1, 郭斌1,2,3,**(), 李本刚1, 黄亚男2,3   

  1. 1.南京林业大学理学院 南京 210037
    2.河南省农林产品深加工院士工作站 漯河 462600
    3.南街村集团博士后科研工作站 漯河 462600
  • 收稿日期:2018-11-15 出版日期:2019-07-15 发布日期:2019-04-26
  • 通讯作者: 郭斌
  • 基金资助:
    江苏省政府留学基金、南京林业大学“青年拔尖人才”计划、2019年度江苏省研究生科研与实践创新计划项目(KYCX19_1108); 江苏省自然科学基金青年基金项目资助(BK20140967)

Ways and Mechanism of Improving the Mechanical Properties of Thermoplastic Starch

Dongdong Zha1, Wen Zhou1, Peng Yin1, Bin Guo1,2,3,**(), Bengang Li1, Yanan Huang2,3   

  1. 1.College of Science, Nanjing Forestry University, Nanjing 210037, China
    2.Agricultural and Forest Products Processing Academician Workstation, Luohe 462600, China
    3.Post-Doctoral Research Center of Nanjiecun Group, Luohe 462600, China
  • Received:2018-11-15 Online:2019-07-15 Published:2019-04-26
  • Contact: Bin Guo
  • About author:
    ** E-mail:
  • Supported by:
    Jiangsu Government Scholarship for Overseas Studies, the Nanjing Forestry University Yong Top Talent Program, Postgraduate Research &Practice Innovation Program of Jiangsu Province(KYCX19_1108); Natural Science Foundation of Jiangsu Province(BK20140967)

以可再生资源(如淀粉、纤维素和蛋白质等)为基础发展而来的生物可降解塑料受到人们越来越多的关注,是可降解塑料行业发展的重要方向之一。天然淀粉由于来源广、低成本和可生物降解的特点,广泛用于制备淀粉塑料,并用于农业、食品、医药和包装等行业,有望取代石油基衍生聚合物。淀粉大分子具有结晶结构,所含大量羟基可形成较强的分子间和分子内氢键,使其不能热塑加工,而当加入增塑剂后可破坏其结晶结构,从而用于制备热塑性淀粉。目前,热塑性淀粉的力学性能差,是影响其使用性能的首要问题。近年来国内外开展了大量的研究以试图增强其力学性能。本文主要以不同类型的热塑性淀粉为基础,以淀粉自身改性和外加组分改性两种提高其力学性能的途径为主线,以其力学性能的提升方法和作用机理为重点,系统总结了近年来国内外以提高热塑性淀粉材料的力学性能为目的的研究工作,归纳了影响力学性能的相关因素以及提升途径,并对该领域重点研究的内容进行了总结和展望。

Great attention has been paid to the biodegradable plastics based on renewable resources(such as starch, cellulose and protein), which is one of the important trends in the development of the degradable plastics industry. Due to its wide source, low cost and biodegradability, natural starch is widely used in the preparation of starch plastics and is used in agriculture, food, medicine and packaging industries, which is expected to replace petroleum-based derived polymers. Starch molecules contain a large amount of hydroxyl groups, which easily form intermolecular hydrogen bonds and intermolecular hydrogen bonds, so as to affect their processing. Adding plasticizer to destroy the crystalline structure of starch can produce thermoplastic starch, but the poor mechanical properties of thermoplastic starch are the primary problem affecting its performance. In recent years, extensive research has been carried out at home and abroad in an attempt to enhance its mechanical properties. In this paper, based on the different classification of thermoplastic starch materials, and with the emphasis on the way to improve the mechanical properties and the mechanism, the research work in recent years to improve the mechanical properties of thermoplastic starch materials is summarized. In addition, the related factors affecting mechanical properties and the ways to improve are introduced, and the key research in this field is also summarized and prospected.

()
图1 淀粉和环氧丙烷羟丙基化的机理[17]
Fig. 1 Mechanism of hydroxypropylation of starch with propylene oxide[17]
图2 苯甲酸钠引发光交联的原理[28]
Fig. 2 Mechanism of photocrosslinking initiated by sodium benzoate[28]
[1]
Yu L, Christie G . J.Mater. Sci., 2005,40(1):111.
[2]
Teixeira E D M, Pasquini D, Curvelo A A S, Corradini E, Bel-gacem M N, Dufresne A . Carbohydr. Polym., 2009,78(3):422.
[3]
Lecorre D, Bras J, Dufresne A . J.Nanopart. Res., 2011,13(12):7193.
[4]
Xie F W, Pollet E, Peter J . Luc Avérous H. Prog. Polym. Sci., 2013,38(10/11):1590.
[5]
Li M, Witt T, Xie F, Warren F J, Halley P J, Gilbert R G . Carbohydr. Polym., 2015,122(20):115.
[6]
Gary N, Hamzeh Y, Kaboorani A . Ind. Crops Prod., 2018,115:298.
[7]
Sun S, Liu P, Ji N, Hou H, Dong H . Food Hydrocolloids, 2017,72:81.
[8]
Przybytek A, Sienkiewicz M, Lipka J K, Janik H . Ind. Crops Prod., 2018,122(15):375.
[9]
Fonseca L M, Gonçalves J R, Halal S L M E, Pinto V Z, Dias A R G, Jacques A C, Zavareze E R . LWT-Food Sci. Technol., 2015,60(2):714.
[10]
El Halal S L, Colussi R, Pinto V Z, Bartz J, Radunz M, Carreño N L V, Dias A R G, Zavarezea E R . Food Chem., 2015,168(1):247.
[11]
Zhang Y R, Wang X L, Zhao G M, Wang Y Z . Carbohydr. Polym., 2013,96(1):358.
[12]
Fiedorowicz M, Para A . Carbohydr. Polym., 2006,63(3):360.
[13]
Klein B, Vanier N L, Moomand K, Pinto V Z, Colussi R, Zavareze E R, Dias A R G . Food Chem., 2014,155(10):167.
[14]
Colussi R, Pinto V Z, Halal S L E, Biduski B, Prietto L, Castihos D D, Zavareze E R, Dias A R G . Food Chem., 2016,221:1614.
[15]
Larotonda F D S, Matsui K N, Soldi V, Laurindo J B . Braz. Arch. Biol. Technol., 2004,47(3):477.
[16]
Bergel B F, Osorio S D, Luz L M D, Santana R M C . Carbohydrate Polymers, 2018,200(7):106.
[17]
Woggum T, Sirivongpaisal P, Wittaya T . Food Hydrocolloids, 2015,50:54.
[18]
Lee H L, Yoo B . LWT-Food Sci. Technol., 2011,44(3):765.
[19]
Kim H Y, Jane J L, Lamsal B . Ind. Crops Prod., 2017,95:175.
[20]
Qiu L, Hu F, Peng Y . Carbohydr. Polym., 2013,91(2):590.
[21]
Gutiérrez T J, Tapia M S, Pérez E, Famá L . Food Hydrocolloids, 2015,45:211.
[22]
薛灿(Xue C), 银鹏(Yin P), 姜子邓牙(Jiang Z D Y), 郭斌(Guo B), 李盘欣(Li P X) . 塑料 (Plastics), 2017,46(5):46.
[23]
Yeh J T, Hou Y J, Cheng L, Wang Y Z, Yang L, Wang C K . Carbohydr. Polym., 2015,127:135.
[24]
Shah U, Naqash F, Gani A, Masoodi F A . Compre. Rev. Food Sci. Food Saf., 2016,15(3):568.
[25]
Colivet J, Carvalho R A . Ind. Crops Prod., 2017,95:599.
[26]
Sun S, Liu P, Ji N, Hou H, Dong H . Food Hydrocolloids, 2018,77:964.
[27]
Khan B, Niazi M B K, Jahan Z, Farooq W, Naqvi S R, Ali M, Ahmed I, Hussain A . Food Packag. Shelf Life. 2018,6.
[28]
Niazi M B K, Broekhuis A A . Eur. Polym. J., 2015,64:229.
[29]
Zain A H M, Wahab M K A, Ismail H . Polym. Bull., 2018,75(8):3341.
[30]
唐皞(Tang H), 郭斌(Guo B), 薛岚(Xue L), 李盘欣(Li P X), 黄亚男(Huang Y N), 张齐生(Zhang Q S) . 塑料工业 (China Plastics Industry), 2012,40(7):1.
[31]
Ivanič F, Jochec-Mošková D, Janigová I, Chodák I . Eur. Polym. J., 2017,93:843.
[32]
Guzmán M, Murillo E A . Polym. Eng. Sci., 2015,55(11):2526.
[33]
Yan Q, Hou H, Guo P, Dong H . Carbohydr. Polym., 2012,87(1):707.
[34]
Turhan K N, Sahbaz F . J.Food Eng., 2004,61(3):459.
[35]
Chang Y P, Karim A A, Seow C C . Food Hydrocolloids, 2006,20(1):1.
[36]
Zullo R, Iannace S . Carbohydr. Polym., 2009,77(2):376.
[37]
Avérous L, Pollet E . Biofuels Bioprod. Biorefin., 2010,3(3):329.
[38]
Nguyen Vu H P, Lumdubwong N . Carbohydr. Polym., 2016,154:112.
[39]
Wang J L, Cheng F, Zhu P X . Carbohydr. Polym., 2014,101:1109.
[40]
Bendaoud A, Chalamet Y . Carbohydr. Polym., 2013,97(2):665.
[41]
Zhang B, Xie F, Zhang T, Chen L, Li X, Truss R W, Halley P J, Shamshina J L, McNally T, Rogers R D . Carbohydr. Polym., 2016,146:67.
[42]
Zhang K, Cheng F, Lin Y, Zhou M, Zhu P X . Carbohydr. Polym., 2018,195:107.
[43]
Guzmán M, Giraldo D, Murillo E . Polímeros, 2017,27(1):1.
[44]
Müller C M, Laurindo J B, Yamashita F . Carbohydr. Polym., 2012,89(2):504.
[45]
Wilpiszewska K, Antosik A K, Spychaj T . Carbohydr. Polym., 2015,128:82.
[46]
Kaewtatip K, Tanrattanakul V . Mater. Des., 2012,37:423.
[47]
López O, Castillo L, Zaritzky N, Barbosa S, Villar M, Garcia M A . Procedia Mater. Sci., 2015,8:338.
[48]
Castillo L A, López O V, Ghilardi J, Villar M A, Barbosa S E, Garcia M A . Food Hydrocolloids, 2015,51(2):432.
[49]
Ostafińska A, Mikešová J, Krejčíková S, Nevoralová M, Šturcová A, Zhigunov A, Michálková D, Šlouf M . Int. J. Biol. Macromol., 2017,101:273.
[50]
Oleyaei S A, Zahedi Y, Ghanbarzadeh B, Moayedi A A . Int. J. Biol. Macromol., 2016,89:256.
[51]
Cao Z, Daly M, Geever L M, Major I, Higginbotham C L, Devine D M . Composites Part B, 2016,94:312.
[52]
Shanmugam N, Hussein I A, Badghaish A, Shuaib A N, Furquan, S A, Al-Mehthel M H . Polym. Degrad. STab., 2015,112:94.
[53]
Sundum T, Szécsényi K M, Kaewtatip K . Carbohydr. Polym., 2018,191:198.
[54]
Javanbakht S, Namazi H . Carbohydr. Polym., 2017,176:220.
[55]
Ma T, Chang P R, Zheng P, Ma X . Carbohydr. Polym., 2013,94(1):63.
[56]
Ferreira W H, Andrade C T . Ind. Crops Prod., 2015,77:684.
[57]
Bénézet J C, Stanojlovic-davidovic A, Bergeret A, Ferry L, Crespy A . Ind. Crops Prod., 2012,37(1):435.
[58]
Prabhakar M N, Rehman Shah A U, Song J I . Carbohydr. Polym., 2017,168:201.
[59]
Prachayawarakorn J, Chaiwatyothin S, Mueangta S, Hanchana A . Mater. Des., 2013,47:309.
[60]
Prachayawarakorn J, Ruttanabus P, Boonsom P . J.Polym. Environ., 2011,19(1):274.
[61]
Johar N, Ahmad I, Dufresne A . Ind. Crops Prod., 2012,37(1):93.
[62]
Kargarzadeh H, Johar N, Ahmad I . Compos. Sci. Tech., 2017,151:147.
[63]
唐皞(Tang H), 姜海天(Jiang H T), 王礼建(Wang L J), 范磊(Fan L), 郭斌(Guo B), 李盘欣(Li P X), 张齐生(Zhang Q S) . 塑料工业 (China Plastics Industry), 2013,41(9):110.
[64]
Guo B, Wang L J, Yin P, Li B G, Li P X . J.Thermoplast. Compos. Mater., 2017,30(4):564.
[65]
郭斌(Guo B), 查东东(Zha D D), 薛灿(Xue C), 银鹏(Yin P), 李盘欣(Li P X) . 功能高分子学报 (Journal of Functional Polymers), 2018. 31(2):68.
[66]
Lin S P, Han J L, Yeh J T, Chang F C, Hsiehab K H . Eur. Polym. J., 2007,43(3):996.
[67]
Jantanasakulwong K, Leksawasdi N, Seesuriyachan P, Wongsuriyasak S, Techapun C, Ougizawa, T . Eur. Polym. J., 2016,84:292.
[68]
Mendes J F, Paschoalin R T, Carmona V B, Sena Neto A R, Marques A C P, Marconcini J M, Mattoso L H C, Medeiros E S, Oliveira J E . Carbohydr. Polym., 2016,137:452.
[69]
Bof M J, Bordagaray V C, Locaso D E, Garcia M A . Food Hydrocolloids, 2015,51:281.
[70]
Ren L, Yan X, Zhou J, Tong J, Su X . Int. J. Biol. Macromol., 2017,105(3):1636.
[71]
Zamudio-Flores P B, Torres A V, Salgado-Delgado R, Bello-Pérez L A . J.Appl. Polym. Sci., 2010,115(2):991.
[72]
Chinma C E, Ariahu C C, Abu J O . Int. J. Food Sci. Technol., 2012,47(2):383.
[73]
García L, Cova A, Sandoval A J, Müller A J, Carrasquel L M . Carbohydr. Polym., 2012,87(2):1375.
[74]
Sun Q, Sun C, Xiong L . Carbohydr. Polym., 2013,98(1):630.
[75]
Azevedo V M, Borges S V, Marconcini J M, Yoshida M I, Sena Neto A R, Pereira T C, Pereira C F G . Carbohydr. Polym., 2016,157:971.
[76]
Tihminlioglu F, Atik I D, Özen B . J.Appl. Polym. Sci., 2010,119(1):235.
[77]
Qiu C, Li X, Ji N, Qin Y, Sun Q, Xiong L . Food Hydrocolloids, 2015,48:1.
[78]
Gao P, Wang F, Gu F, Ning J, Liang J, Li N, Ludescher R D . Carbohydr. Polym., 2017,157:1254.
[79]
Rhim J W, Wang L F . Carbohydr. Polym., 2013,96(1):71.
[80]
Jumaidin R, Sapuan S M, Jawaid M, Ishak M R, Sahari J . Int. J. Biol. Macromol., 2016,89:575.
[81]
Wu Y, Geng F, Chang P, Yu J, Ma X . Carbohydr. Polym., 2009,76(2):299.
[82]
Cao X, Chang P R, Huneault M A . Carbohydr. Polym., 2008,71(1):119.
[83]
Yu L, Dean K, Li L . Prog. Polym. Sci., 2006,31(6):576.
[84]
Ortega-Toro R, Contreras J, Talens P, Chiralt A . Food Packag. Shelf Life, 2015,5:10.
[85]
Correa A C, Carmona V B, Simão J A, Mattoso L H C, Marconcini J M . Carbohydr. Polym., 2017,167:177.
[86]
Koh J J, Zhang X, He C . Int. J. Biol. Macromol., 2018,109:99.
[87]
Müller C M O, Pires A T N, Yamashita F . J.Braz. Chem. Soc., 2012,23(3):426.
[88]
Moghaddam M R A, Razavi S M A, Jahani Y . J.Polym. Environ., 2018: 1.
[89]
He Y S, Zeng J B, Li S L, Wang Y Z . Thermochim. Acta, 2012,529(1):80.
[90]
Li J, Luo X, Lin X, Zhou Y . Starch-Stärke, 2013,65(9/10):831.
[91]
Liu D, Qi Z, Zhang Y, Xu J, Guo B . Starch-Stärke, 2015,67(9/10):802.
[92]
Zeng J B, Jiao L, Li Y D, Srinivasan M, Li T, Wang Y Z . Carbohydr. Polym., 2011,83(2):762.
[93]
Jiang X, Li H, Luo Y, Zhao Y, Hou L . Int. J. Biol. Macro-mol., 2016,82:223.
[94]
Tian H, Yan J, Rajulu A V, Xiang A, Luo X . Int. J. Biol. Macromol., 2017,96:518.
[95]
Xu P, Zeng Q, Ying C, Ma P, Dong W, Chen M . Carbohydr. Polym., 2017,174:716.
[96]
Reddy C S K, Ghai R, Rashmi, Kalia V C . Bioresour. Technol., 2003,87(2):137.
[97]
Thire R M S M, Ribeiro T A A, Andrade C T . J.Appl. Polym. Sci., 2010,100(6):4338.
[98]
Rivera-Briso A L, Serrano-Aroca Á . Polym., 2018,10, 732
[99]
Malmir S, Montero B, Rico M, Barral L, Bouza R, Farrag Y . Carbohydr. Polym., 2018,194:357.
[100]
Ramsay B A, Langlade V, Carreau P J, Ramsay J A . Appl. Environ. Microbiol., 1993,59(4):1242.
[101]
Olivato J B, Marini J, Pollet E, Yamashita F, Grossmann M V E, Avérousc L . Carbohydr. Polym., 2015,118:250.
[102]
Nunes M A B S, Marinho V A D, Falcão G A M, Canedo E L, Bardi M A G, Carvalho L H . Polym. Test. 2018,70, 281.
[103]
Fourati Y, Tarrés Q, Mutjé P, Boufi S . Carbohydr. Polym. 2018,199:51.
[104]
Sabetzadeh M, Bagheri R, Masoomi M . J.Appl. Polym. Sci., 2012,126(S1):E63
[105]
Raee E, Kaffashi B . J.Appl. Polym. Sci., 2017,135(4):45740.
[106]
Gutiérrez T J, Alvarez V A . React. Funct. Polym., 2017,112:33.
[107]
Oromiehie A R, Lari T T, Rabiee A . J.Appl. Polym. Sci., 2012,127(2):1128.
[108]
Martins A B, Santana R M . Carbohydr. Polym., 2016,135:79.
[109]
Schlemmer D, Oliveira E R D, Sales M J A . J. Therm. Anal. Calorim., 2007,87(3):635. http://link.springer.com/10.1007/s10973-006-7776-y

doi: 10.1007/s10973-006-7776-y     URL    
[110]
Berruezo M, Ludueña, L N, Rodriguez E, Alvarez, V A . J. Plast. Film Sheeting, 2014,30(2):141.
[111]
孙晓巍(Sun X W), 台立民(Tai L M) . 中国塑料 (China Plastics), 2008,( 10):38.
[1] 周文, 张鑫, 马宏鹏, 许杰, 郭斌, 李盘欣. 热塑性淀粉制备的化学与物理机制及方法[J]. 化学进展, 2021, 33(11): 1972-1982.
[2] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[3] 查东东, 郭斌, 李本刚, 银鹏, 李盘欣. 热塑性淀粉耐水性的化学与物理作用机制[J]. 化学进展, 2019, 31(1): 156-166.
[4] 刘新, 吴川, 吴锋, 白莹. 轻金属配位氢化物储氢体系[J]. 化学进展, 2015, 27(9): 1167-1181.
[5] 宋利锋, 赵瑾, 袁晓燕. 多糖多肽水凝胶的增强研究[J]. 化学进展, 2014, 26(0203): 385-393.
[6] 马梦佳, 陈玉云, 闫志强, 丁剑, 何丹农*, 钟建*. 原子力显微镜在纳米生物材料研究中的应用[J]. 化学进展, 2013, 25(01): 135-144.