English
新闻公告
More
化学进展 2015, Vol. 27 Issue (1): 47-58 DOI: 10.7536/PC140908 前一篇   后一篇

• 综述与评论 •

聚烯烃共价键接枝纳米材料及其聚烯烃纳米复合材料

张勇杰1,2, 李化毅*1, 董金勇*1, 胡友良1   

  1. 1. 中国科学院化学研究所 北京 100190;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2014-09-01 修回日期:2014-10-01 出版日期:2015-01-15 发布日期:2014-11-24
  • 通讯作者: 李化毅, 董金勇 E-mail:lihuayi@iccas.ac.cn;jydong@iccas.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.51403216)资助

Polyolefin Covalently Grafted Nanomaterials and Polyolefin Nanocomposites Derived Thereof

Zhang Yongjie1,2, Li Huayi*1, Dong Jin-Yong*1, Hu Youliang1   

  1. 1. Insistute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2014-09-01 Revised:2014-10-01 Online:2015-01-15 Published:2014-11-24
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.51403216).

聚烯烃纳米复合材料为聚烯烃材料带来广阔的性能提升空间,其研究开发工作引起了人们的广泛关注。聚烯烃共价键接枝纳米材料在制备高性能聚烯烃纳米复合材料方面有重要应用。接枝聚烯烃提高了纳米材料与聚烯烃基体之间的相容性,提供良好的界面作用力,从而有效促进纳米材料在聚烯烃基体中均匀分散、极大提高了聚烯烃纳米复合材料的相关性能。三种途径可以用来制备聚烯烃共价键接枝纳米材料:Graft-onto、Graft-from、Graft-through。Graft-onto方法是端基或侧基功能化聚烯烃与纳米材料表面活性基团或碳结构进行接枝反应的过程。由于功能化聚烯烃具有高度反应活性且方便得到,Graft-onto方法占据了制备聚烯烃共价键接枝纳米材料的主流。Graft-from和Graft-through方法中聚烯烃接枝过程即为烯烃聚合过程,实施较为困难,因而文献报道相对较少。本文对聚烯烃共价键接枝纳米材料的制备及其相应的聚烯烃纳米复合材料的最新研究进展进行了综述,着重讨论了聚烯烃接枝对聚烯烃纳米复合材料性能的影响。所涉及纳米材料包括二氧化硅(零维)、碳纳米管(一维)和石墨烯(二维)。

Over the past few decades, much effort has been devoted to the generation of polyolefin nanocomposites, which offers substantial improvements to polyolefin properties with minimal nanofiller mass (0.1 wt%~5 wt%). Nanomaterials covalently grafted with polyolefin show great potential in developing high performance polyolefin nanocomposites. Grafted polyolefin chains generally provide high compatibility and good interfacial interactions between nanomaterials and polyolefin matrix, and thus promote homogeneous dispersion of nanomaterials into polyolefin matrix and enhance mechanical, thermal (and other) properties of polyolefin nanocomposites. Three strategies employed to covalently graft polyolefin to nanomaterials include: graft-onto, graft-from and graft-through. The high availability and reactivity of functionalized polyolefin, together with the difficulties encountered in the latter two approaches, renders “grafting-onto” approach as the mainstream of surface grafting polyolefin to nanomaterials. Both chain end functionalized polyolefin and side group functionalized polyolefin (mainly maleic-anhydride-grafted polyolefin and its derivatives) have been extensively applied in surface grafting polyolefin to nanomaterials via “grafting-onto” approach while reports on “graft-from” and “graft-through” approaches are limited. Here we review recent progress on polyolefin covalently grafted nanomaterials (silica, zero dimensional; carbon nanotube, one dimensional; graphene (oxide), two dimensional) with a focus on the properties of polyolefin nanocomposites derived thereof.

Contents
1 Introduction
2 Graft-onto approach
2.1 Chain end functionalized polyolefin
2.2 Side group functionalized polyolefin
3 Graft-from approach
4 Graft-through approach
5 Conclusion and outlook

中图分类号: 

()

[1] Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O. J. Mater. Res., 1993, 8: 1179.
[2] Zou H, Wu S, Shen J. Chem. Rev., 2008, 108: 3893.
[3] Potts J R, Dreyer D R, Bielawski C W, Ruoff R S. Polymer, 2011, 52: 5.
[4] Kim H, Abdala A A, Macosko C W. Macromolecules, 2010, 43: 6515.
[5] Panaitescu D, Ciuprina F, Iorga M, Frone A, Radovici C, Ghiurea M, Sever S, Plesa I. J. Appl. Polym. Sci., 2011, 122: 1921.
[6] Beyou E, Akbar S, Chaumont P, Cassagnau P. Syntheses and Applications of Carbon Nanotubes and Their Composites (Ed. Satoru S). InTech, 2013. 78.
[7] Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J. Macromol. Rapid Commun., 2002, 23: 761.
[8] Barus S, Zanetti M, Bracco P, Musso S, Chiodoni A, Tagliaferro A. Polym. Degrad. Stabil., 2010, 95: 756.
[9] Lisunova M O, Mamunya Y P, Lebovka N I, Melezhyk A V. Eur. Polym. J., 2007, 43: 949.
[10] Kim H, Kobayashi S, AbdurRahim M A, Zhang M J, Khusainova A, Hillmyer M A, AbdalaA A, Macosko C W. Polymer, 2011, 52: 1837.
[11] Huang Y, Qin Y, Zhou Y, Niu H, Yu Z Z, Dong J Y. Chem. Mater., 2010, 22: 4096.
[12] Qin Y, Wang N, Zhou Y, Huang Y, Niu H, Dong J Y. Macromol. Rapid Commun., 2011, 32: 1052.
[13] Zapata P A, Palza H, Delgado K, Rabagliati F M. J. Polym. Sci. Part A: Polym. Chem., 2012, 50: 4055.
[14] Zapata P A, Tamayo L, Páez M, Cerda E, Azócar I, Rabagliati FM. Eur. Polym. J., 2011, 47: 1541.
[15] Zapata P A, Palza H, Cruz L S, Lieberwirth I, Catalina F, Corrales T, Rabagliati F M. Polymer, 2013, 54: 2690.
[16] Zapata P, Quijada R, Benavente R. J. Appl. Polym. Sci., 2011, 119: 1771.
[17] Guo N, DiBenedetto S A, Kwon D K, Wang L, Russell M T, Lanagan M T, Facchetti A, Marks T J. J. Am. Chem. Soc., 2007, 129: 766.
[18] Tong X, Liu C, Cheng H M, Zhao H, Yang F, Zhang X. J. Appl. Polym. Sci., 2004, 92: 3697.
[19] Li Z, Fredin L A, Tewari P, DiBenedetto S A, Lanagan M T, Ratner M A, Marks T J. Chem. Mater., 2010, 22: 5154.
[20] Ma W Z, Gong F H, Liu C L, Tao G L, Xu J P, Jiang B B. J. Appl. Polym. Sci., 2014, 131: 39891.
[21] Jain S, Goossens H, Picchioni F, Magusin P, Mezari B, van Duin M. Polymer, 2005, 46: 6666.
[22] Qian J, Zhang H G, Cheng G C, Huang Z J, Dang S Y, Xu Y S. J. Sol-Gel Sci. Technol., 2010, 56: 300.
[23] Ma W S, Li J, Deng B J, Zhao X S. J. Mater. Sci., 2013, 48: 156.
[24] Yang X, Mei T, Yang J, Zhang C, Lv M, Wang X. Appl. Surf. Sci., 2014, 305: 725.
[25] Bailly M, Kontopoulou M. Polymer, 2009, 50: 2472.
[26] Yang X, Wang X, Yang J, Li J, Wan L. Chem. Phys. Lett., 2013, 570: 125.
[27] Chen Y H, Hsu H C, Yu Y F, Hsiou Y F. Polym. Eng. Sci., 2011, 51: 434.
[28] Stojanovic D, Uskokovic P S, Balac I, Radojevic V, Aleksic R. Research Trends in Contemporary Materials Science (Eds. Uskokovic D P, Milonjic S K, Rakovic D I). Stafa-Zurich: Trans Tech Publications Ltd., 2007. 479.
[29] Dorigato A, D'Amato M, Pegoretti A. J. Polym. Res., 2012, 19: 11.
[30] Ma D, Hugener T A, Siegel R W, Christerson A, Mårtensson E, Önneby C, Schadler L S. Nanotechnology, 2005, 16: 724.
[31] Costantino U, Gallipoli A, Nocchetti M, Camino G, Bellucci F, Frache A. Polym. Degrad. Stabil., 2005, 90: 586.
[32] Zheng J Z, Zhou X P, Xie X L, Mai Y W. Nanoscale, 2010, 2: 2269.
[33] Kumar S K, Jouault N, Benicewicz B, Neely T. Macromolecules, 2013, 46: 3199.
[34] Nebhani L, Barner-Kowollik C. Adv. Mater., 2009, 21: 3442.
[35] Li N, Binder W H. J. Mater. Chem., 2011, 21: 16717.
[36] Feng C, Li Y, Yang D, Hu J, Zhang X, Huang X. Chem. Soc. Rev., 2011, 40: 1282.
[37] Minko S. Polymer Surfaces and Interfaces (Ed. Stamm M). Berlin Heidelberg: Springer, 2008. 215.
[38] Bieligmeyer M, Taheri S M, German I, Boisson C, Probst C, Milius W, Altstädt V, Breu J, Schmidt H W, D'Agosto F, Förster S. J. Am. Chem. Soc., 2012, 134: 18157.
[39] Kalluru S H, Cochran E W. Macromolecules, 2013, 46: 9324.
[40] 张勇杰(Zhang Y J),李化毅(Li H Y), 董金勇(Dong J Y), 胡友良(Hu Y L). 化学进展(Progress in Chemistry), 2014, 26: 110.
[41] Terao H, Ishii S I, Saito J, Matsuura S, Mitani M, Nagai N, Tanaka H, Fujita T. Macromolecules, 2006, 39: 8584.
[42] Mazzolini J, Espinosa E, D'Agosto F, Boisson C. Polym. Chem., 2010, 1: 793.
[43] Zhang Y, Li H, Dong J Y, Hu Y. Polym. Chem., 2014, 5: 105.
[44] Mazzolini J, Boyron O, Monteil V, Gigmes D, Bertin D, D'Agosto F. Macromolecules, 2011, 44: 3381.
[45] Lin B, Lawler D, McGovern G P, Bradley C A, Hobbs C E. Tetrahedron Lett., 2013, 54: 970.
[46] Huang H, Zhang C, Qin Y, Niu H, Dong J Y. Chin. J. Polym. Sci., 2013, 31: 550.
[47] 陈健壮(Chen J Z),崔崑(Cui K),张淑媛( Zhang S Y),马志(Ma Z). 化学进展 (Progress in Chemistry), 2008, 20: 1740.
[48] Shea K J. Chem. Eur. J., 2000, 6: 1113.
[49] Mazzolini J, Mokthari I, Briquel R, Boyron O, Delolme F, Monteil V, Bertin D, Gigmes D, D'Agosto F, Boisson C. Macromolecules, 2010, 43: 7495.
[50] Briquel R, Mazzolini J, Le Bris T, Boyron O, Boisson F, Delolme F, D'Agosto F, Boisson C, Spitz R. Angew. Chem. Int. Ed., 2008, 47: 9311.
[51] Akbar S, Beyou E, Chaumont P, Mazzolini J, Espinosa E, D'Agosto F, Boisson C. J. Polym. Sci. Part A: Polym. Chem., 2011, 49: 957.
[52] Guimont A, Beyou E, Cassagnau P, Martin G, Sonntag P, D'Agosto F, Boisson C. Polym. Chem., 2013, 4: 2828.
[53] Castelaín M, Martínez G, Marco C, Ellis G, Salavagione H J. Macromolecules, 2013, 46: 8980.
[54] Castelaín M, Martinez G, Ellis G, Salavagione H J. Chem. Commun., 2013, 49: 8967.
[55] Fukuyama Y, Kawai T, Kuroda S, Toyonaga M, Taniike T, Terano M. J. Therm. Anal. Calorim., 2013, 113: 1511.
[56] Taniike T, Toyonaga M, Terano M. Polymer, 2014, 55: 1012.
[57] Umemori M, Taniike T, Terano M. Polym. Bull., 2012, 68: 1093.
[58] Song P, Liu L, Huang G, Fu S, Yu Y, Guo Q. Ind. Eng. Chem. Res., 2013, 52: 14384.
[59] Li Y, Xie X M, Guo B H. Polymer, 2001, 42: 3419.
[60] Moad G. Prog. Polym. Sci., 1999, 24: 81.
[61] Zhou H J, Rong M Z, Zhang M Q, Ruan W H, Friedrich K. Polym. Eng. Sci., 2007, 47: 499.
[62] Chen J H, Rong M Z, Ruan W H, Mai Y L, Zhang M Q. Macromol. Chem. Phys., 2008, 209: 1826.
[63] Akbar S, Beyou E, Cassagnau P, Chaumont P, Farzi G. Polymer, 2009, 50: 2535.
[64] Guimont A, Beyou E, Alcouffe P, Cassagnau P, Serghei A, Martin G, Sonntag P. Polymer, 2014, 55: 22.
[65] Stojanovi D? D B, Orlovi D? A, Zrili D? M, Bala D? I, Tang C Y, Uskokovi D? P S, Aleksi D? R. Polym. Compos., 2013, 34: 1710.
[66] 谢存毅(Xie C Y). 物理(Physics), 2001, 30: 432.
[67] Yang B X, Pramoda K P, Xu G Q, Goh S H. Adv. Funct. Mater., 2007, 17: 2062.
[68] Yang B X, Shi J H, Pramoda K P, Goh S H. Compos. Sci. Technol., 2008, 68: 2490.
[69] Causin V, Yang B X, Marega C, Goh S H, Marigo A. Eur. Polym. J., 2009, 45: 2155.
[70] Li C, Zhao Q, Deng H, Chen C, Wang K, Zhang Q, Chen F, Fu Q. Polym. Int., 2011, 60: 1629.
[71] Li C, Deng H, Wang K, Zhang Q, Chen F, Fu Q. J. Appl. Polym. Sci., 2011, 121: 2104.
[72] Chen C, Pang H, Liu Z, Li Y B, Chen Y H, Zhang W Q, Ji X, Tang J H. J. Appl. Polym. Sci., 2013, 130: 961.
[73] Hermann A, Chaudhuri T, Spagnol P. Int. J. Hydrogen Energ., 2005, 30: 1297.
[74] Hsiao M C, Liao S H, Lin Y F, Weng C C, Tsai H M, Ma C C M, Lee S H, Yen M Y, Liu P I. Energ. Environ. Sci., 2011, 4: 543.
[75] Liao S H, Yen C Y, Hung C H, Weng C C, Tsai M C, Lin Y F, Ma C C M, Pan C, Su A. J. Mater. Chem., 2008, 18: 3993.
[76] Munteanu D. Reactive Modifiers for Polymers (Ed. Al-Malaika S). Netherlands: Springer, 1997. 196.
[77] Kuan C F, Kuan H C, Ma C C M, Chen C H, Wu H L. Mater. Lett., 2007, 61: 2744.
[78] Chen D, Feng H, Li J. Chem. Rev., 2012, 112: 6027.
[79] Lin Y, Jin J, Song M J. Mater. Chem., 2011, 21: 3455.
[80] Hsiao M C, Liao S H, Lin Y F, Wang C A, Pu N W, Tsai H M, Ma C C. Nanoscale, 2011, 3: 1516.
[81] Ryu S H, Shanmugharaj A M. Mater. Chem. Phys., 2014, 146: 478.
[82] Kim J, Cote L J, Huang J. Acc. Chem. Res., 2012, 45: 1356.
[83] Cao Y, Feng J, Wu P. J. Mater. Chem., 2012, 22: 14997.
[84] Yuan B, Bao C, Song L, Hong N, Liew K M, Hu Y. Chem. Eng. J., 2014, 237: 411.
[85] Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H A. Chem. Rev., 2009, 109: 5437.
[86] Brittain W J, Minko S. J. Polym. Sci. Part A: Polym. Chem., 2007, 45: 3505.
[87] Olivier A, Meyer F, Raquez J M, Damman P, Dubois P. Prog. Polym. Sci., 2012, 37: 157.
[88] Tuberquia J C, Nizamidin N, Jennings G K. Langmuir, 2010, 26: 14039.
[89] Ye Z, Xu L, Dong Z, Xiang P. Chem. Commun., 2013, 49: 6235.
[90] Zhang Y, Ye Z. Macromolecules, 2008, 41: 6331.
[91] Xiang P, Petrie K, Kontopoulou M, Ye Z, Subramanian R. Polym. Chem., 2013, 4: 1381.
[92] Zheng J, Wang Y, Ye L, Lin Y, Tang T, Zhang J. Macromol. Rapid Commun., 2014, 35: 1198.
[93] 陈立谊(Chen L Y), 杨海健(Yang H J), 孙文华(Sun W H). 化学进展(Progress in Chemistry), 2003, 15: 401.
[94] Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H, Chen R, Xu C. Chem. Phys. Lett., 2010, 484: 247.
[95] Mittal V. Polymer Nanocomposites by Emulsion and Suspension Polymerization. (Ed. Mittal V). Cambridge: The Royal Society of Chemistry, 2011. 1.
[96] Monteil V, Stumbaum J, Thomann R, Mecking S. Macromolecules, 2006, 39: 2056.
[97] Li S Y, Chen H, Bi W G, Zhou J J, Wang Y H, Li J Z, Cheng W X, Li M Y, Li L, Tang T. J. Polym. Sci. Part A: Polym. Chem., 2007, 45: 5459.
[98] Tang J J, Li S Y, Wang Y H, Tang T. Chin. J. Polym. Sci., 2013, 31: 1329.

[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[3] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[4] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[5] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[6] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[7] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[8] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[9] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[10] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[11] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[12] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[13] 杨世迎, 刘俊琴, 李乾风, 李阳. 机械球磨改性零价铝的作用机制[J]. 化学进展, 2021, 33(10): 1741-1755.
[14] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[15] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.