English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 1975-1991 DOI: 10.7536/PC180421 前一篇   后一篇

• 综述 •

DNA分子“光开关”含钌多吡啶络合物细胞摄取、胞内分布及毒性机理研究

朱本占1,2*, 肖璇1,2, 巢细娟1,3, 唐苗1,2, 黄蓉1,2, 邵杰1,2   

  1. 1. 中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室 北京 100085;
    2. 中国科学院大学 北京 100049;
    3. 中山大学化学学院 生物无机与合成化学教育部重点实验室 广州 510275
  • 收稿日期:2018-04-12 修回日期:2018-05-28 出版日期:2018-12-15 发布日期:2018-09-26
  • 通讯作者: 朱本占 E-mail:bzhu@rcees.ac.cn
  • 基金资助:
    中国科学院战略性先导科技专项(B类)(No.XDB01020300)和国家自然科学基金项目(No.21836005,21577149,21477139,21621064,21407163)资助

Investigation of the Mechanism of Cellular Uptake, Distribution and Toxicity of the DNA ‘Light-Switch’ Ru(Ⅱ) Polypyridyl Complexes

Benzhan Zhu1,2*, Xuan Xiao1,2, Xijuan Chao1,3, Miao Tang1,2, Rong Huang1,2, Jie Shao1,2   

  1. 1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2018-04-12 Revised:2018-05-28 Online:2018-12-15 Published:2018-09-26
  • Supported by:
    The work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB01020300) and the National Natural Science Foundation of China(No. 21836005, 21577149, 21477139, 21621064, 21407163).
DNA作为遗传信息的载体,了解在细胞核内的组装和结构具有非常重要的意义。目前,使用能够与DNA结合的细胞膜渗透性良好的有机荧光分子作为DNA标记探针是实现这一目标的主要手段。自Barton实验室发现阳离子Ru(Ⅱ)络合物[Ru(bpy)2(dppz)]2+(bpy=2,2'-联吡啶,dppz=多吡啶并吩嗪)能够作为DNA分子"光开关"以来,d6八面体多吡啶金属络合物与DNA的结合特性及相关研究,尤其是对这类金属络合物作为高灵敏度和结构特异性DNA探针的研究,便吸引了人们极大的关注。由于这类物质较低的膜渗透性,先前多数研究都只是局限于细胞外,活细胞内DNA直接显像成功的实例较为少见。本课题组发现五氯酚(PCP)和另外两类结构不相关的生化试剂能促进Ru(Ⅱ)多吡啶络合物的细胞特别是细胞核的摄取,[Ru(bpy)2(dppz)]2+/PCP之间的协同核摄取机理可能是形成了较稳定的亲脂性离子对复合物。Ru(Ⅱ)络合物的两种对映异构体在活细胞内与DNA结合后表现出了明显的手性选择性。这是我们首次发现通过以形成离子对复合物的方式将DNA分子"光开关"Ru(Ⅱ)络合物转入活细胞核内并维持其"光开关"效应,可为研究将其他潜在的具有生物医疗效应的细胞膜不通透金属络合物转入细胞内提供一种全新的方法。
Since the discovery of DNA as the genetic material carrier, the work towards the elucidation of DNA structure within the cell nucleus has become of great importance. Fluorescent microscopy using luminescent and cell membrane permeable organic DNA-binding molecule as probes is a well-established technique towards achieving this goal. Barton's group discovered that the cationic ruthenium complex[Ru(bpy)2(dppz)]2+ (bpy=2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c] phenazine) functions as a molecular ‘light switch’ for DNA. Since then, there has been great attention drawn to the DNA binding properties of polypyridyl complexes of d6 octahedral metal ions, specifically towards the development of highly sensitive and structure-specific DNA probes.Until recently the research has been largely focused on the development of in vitro probes. However, few studies involving direct imaging of DNA in live cells with such systems have had very limited success, with poor membrane permeability still being ascribed as the major limiting factor. We found that not only the cellular, but more interestingly and importantly, the nuclear uptake of[Ru(bpy)2(dppz)]2+ is remarkably enhanced by pentachlorophenol and two other structurally unrelated biochemical agents. Furthermore, enantioselective imaging of live-cell nuclear DNA is observed between the two chiral forms of Ru(Ⅱ) complexes. The underlying molecular mechanism is found to be the formation of novel lipophilic and relatively stable ion-pair complexes. This represents the first report for an unprecedented new method for delivering the DNA ‘light-switching’ Ru(Ⅱ) complexes into the nucleus of living cells via ion-pairing, which could serve as a promising general live-cell delivering method for other potentially bio-medically but cell-impermeable metal complexes.
Contents
1 Introduction
2 Predominant interactions between metal chelates and DNA
2.1 Irreversible binding with DNA
2.2 Reversible binding with DNA
3 Binding with intracellular DNA
3.1 Cellular uptake mechanism
3.2 Potential luminescent probe for intracellular DNA
3.3 Hydrophobicity and cellular uptake regulation
3.4 Appending targeting group for cellular uptake promotion
3.5 Active transport of chelates
3.6 Enhanced cellular uptake of “DNA light switch” Ru(Ⅱ) complex via forming lipophilic ion-pairing complexes
4 Methods for assessing cellular uptake
4.1 Transmission electron microscope
4.2 Raman spectra
4.3 Molecular labeling methods with fluorophore
4.4 Methods for quantitative uptake measurements
5 Cytotoxicity
6 The medical value for Ru(Ⅱ) polypyridyl complexes

中图分类号: 

()
[1] Watson J D, Crick F H C. Nature, 1953, 171(4356):737.
[2] Saegner W. Principles of Nucleic Acid Structure. Springer-Verlag NY:Springer, 1984.
[3] Neidle S. Nucleic Acid Structure and Recognition.Oxford UK:Oxford University Press, 2002.
[4] Kumar C V, Barton J K, Turro N J. J. Am. Chem. Soc., 1985, 107(19):5518.
[5] Zeglis B M, Pierre V C, Barton J K. Chem. Commun., 2007, (44):4565.
[6] Zhang C X, Lippard S J. Curr. Opin. Chem. Biol., 2003, 7(4):481.
[7] Hartinger C G, Dyson P J. Chem. Soc. Rev., 2009, 38(2):391.
[8] Ott I, Gust R. Arch. Pharm., 2007, 340(3):117.
[9] Bruijnincx P C A, Sadler P J. Curr. Opin. Chem. Biol., 2008, 12(2):197.
[10] Jakupec M A, Galanski M, Arion V B, Hartinger C G, Keppler B K. Dalton Trans., 2008, (2):183.
[11] Dyson P J, Sava G. Dalton Trans., 2006, (16):1929.
[12] Allardyce C S, Dyson P J. Platin. Met. Rev., 2001, 45(2):62.
[13] Depenbrock H, Schmelcher S, Peter R, Keppler B K, Weirich G, Block T, Rastetter J, Hanauske A R. Eur. J. Cancer., 1997, 33(14):2404.
[14] Bergamo A, Gava B, Alessio E, Mestroni G, Serli B, Cocchietto M,Zorzet S, Sava G. Int. J. Oncol., 2002, 21(6):1331.
[15] Alessio E, Mestroni G, Bergamo A, Sava G. Curr. Top. Med. Chem., 2004, 4(15):1525.
[16] Hartinger C G, Zorbas-Seifried S,Jakupec M A,Kynast B, Zorbas H, Keppler B K. J. Inorg. Biochem., 2006, 100(5/6):891.
[17] Cohen G L, Bauer W R, Barton J K, Lippard S J. Science, 1979, 203(4384):1014.
[18] Mei H Y, Barton J K. Proc. Natl. Acad. Sci. U.S.A., 1988, 85(5):1339.
[19] Brabec V. Prog. Nucleic. Acid. Re., 2002, 71:1.
[20] Kastan M B, Bartek J. Nature, 2004, 432(7015):316.
[21] Gelasco A, Lippard S J. Biochemistry, 1998, 37(26):9230.
[22] Takahara P M, Rosenzweig A C, Frederick C A, Lippard S J. Nature, 1995, 377(6550):649.
[23] Clarke M J, Zhu F C, Frasca D R. Chem. Rev., 1999, 99(9):2511.
[24] Metcalfe C, Thomas J A. Chem. Soc. Rev., 2003, 32(4):215.
[25] Shi Y, Guo C L, Sun Y J, Liu Z L, Xu F G, Zhang Y, Wen Z W, Li Z A. Biomacromolecules, 2011, 12(3):797.
[26] Erkkila K E, Odom D T, Barton J K. Chem. Rev., 1999, 99(9):2777.
[27] Barton J K, Danishefsky A T, Goldberg J M. J. Am. Chem. Soc., 1984, 106(7):2172.
[28] Barton J K, Goldberg J M, Kumar C V, Turro N J. J. Am. Chem. Soc., 1986, 108(8):2081.
[29] Barton J K, Raphael A L. Proc. Natl. Acad. Sci. U.S.A., 1985, 82(19):6460.
[30] Hudson B P, Barton J K. J. Am. Chem. Soc., 1998, 120(28):6877.
[31] Franklin S J, Barton J K. Biochemistry, 1998, 37(46):16093.
[32] Kielkopf C L, Erkkila K E, Hudson B P, Barton J K, Rees D C. Nat. Struct. Biol., 2000, 7(2):117.
[33] Friedman A E, Chambron J C, Sauvage J P, Turro N J, Barton J K. J. Am. Chem. Soc., 1990, 112(12):4960.
[34] Hartshorn R M, Barton J K. J. Am. Chem. Soc., 1992, 114(15):5919.
[35] Amouyal E, Homsi A, Chambro J C. Sauvage J P. Dalton Trans., 1990, (6):1841.
[36] Turro C, Bossmann S H, Jenkins Y, Barton J K, Turro N J. J. Am. Chem. Soc., 1995, 117(35):9026.
[37] Satyanarayana S, Dabrowiak J C, Chaires J B. Biochemistry, 1993, 32(10):2573.
[38] Coggan D Z M, Haworth I S, Bates P J, Robinson A, Rodger A. Inorg. Chem., 1999, 38(20):4486.
[39] Foley F M, Keene F R, Collins J G. Dalton Trans., 2001, (20):2968.
[40] Pascu G I, Hotze A C, Sanchez-Cano C, Kariuki B M, Hannon M J. Angew. Chemie., 2007, 46(23):4374.
[41] Glasson C R K, Meehan G V, Clegg J K, Lindoy L F, Smith J A, Keene F R, Motti C. Chem. Eur. J., 2008, 14(34):10535.
[42] Gonzalez V, Wilson T, Kurihara I, Imai A, Thomas J A, Otsuki J. Chem. Commun., 2008, (16):1868.
[43] Lutterman D A, Chouai A, Liu Y, Sun Y, Stewart C D, Dunbar K R, Turro C. J. Am. Chem. Soc., 2008, 130(4):1163.
[44] Ghosh A, Das P, Gill M R, Kar P,Walker M G, Thomas J A, Das A. Chem. Eur. J., 2011, 17(7):2089.
[45] Hiort C, Lincoln P, Nordén B. J. Am. Chem. Soc., 1993, 115(9):3448.
[46] Yun B H, Kim J O, Lee B W, Lincoln P, Norden B, Kim J M, Kim S K. J. Phys. Chem. B, 2003, 107(36):9858.
[47] Biver T, Cavazza C, Secco F, Venturini M. J. Inorg. Biochem., 2007, 101(3):461.
[48] McKinley A W, Lincoln P, Tuite E M. Coordi. Chem. Rev., 2011, 255(21/22):2676.
[49] Keene F R, Smith J A, Collins J G. Coordi. Chem. Rev.,2009, 253(15/16):2021.
[50] Gill M R, Thomas J A. Chem. Soc. Rev., 2012, 41(8):3179.
[51] Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell, 5th ed.NY:Garland Science, 2007.
[52] Barton J K, Basile L A, Danishefsky A, Alexandrescu A. Proc. Natl. Acad. Sci. U.S.A., 1984, 81(7):1961.
[53] Jackson B A, Barton J K. Biochemistry, 2000, 39(20):6176.
[54] Junicke H, Hart J R, Kisko J, Glebov O, Kirsch I R, Barton J K. Proc. Natl. Acad. Sci. U.S.A., 2003, 100(7):3737.
[55] Ruba E, Hart J R, Barton J K. Inorg. Chem., 2004, 43(15):4570.
[56] Lim M H, Song H, Olmon E D, Dervan E E, Barton J K. Inorg. Chem., 2009, 48(12):5392.
[57] Pierre V C, Kaiser J T, Barton J K. Proc. Natl. Acad. Sci. U.S.A., 2007, 104(2):429.
[58] Zeglis B M, Pierre V C, Kaiser J T, Barton J K. Biochemistry., 2009, 48(20):4247.
[59] Patterson B T, Collins J G, Foley F M, Keene F R. Dalton Trans., 2002, (23):4343.
[60] Smith J A, Collins J G, Patterson B T, Keene F R. Dalton Trans., 2004, (9):1277.
[61] Smith J A, Keene F R. Chem. Commun., 2006, (24):2583.
[62] Jimenez-Hernandez M E, Orellana G, Montero F, Portoles M T. Photochem. Photobiol., 2000, 72(1):28.
[63] New E J, Parker D, Smith D G, Walton J W. Curr. Opin. Chem. Biol., 2010, 14(2):238.
[64] Fernandez-Moreira V, Thorp-Greenwood F L, Coogan M P. Chem. Commun., 2010, 46(2):186.
[65] Zhao Q, Huang C H, Li F Y. Chem. Soc. Rev., 2011, 40(5):2508.
[66] Onfelt B, Gostring L, Lincoln P, Norden B, Onfelt A. Mutagenesis, 2002, 17(4):317.
[67] Puckett C A, Barton J K. J. Am. Chem. Soc., 2007, 129(1):46.
[68] Puckett C A, Barton J K. Biochemistry, 2008, 47(45):11711.
[69] Rajendiran V, Palaniandavar M, Periasamy V S, Akbarsha M A. J. Inorg. Biochem., 2010, 104(2):217.
[70] Amoroso A J, Coogan M P, Dunne J E, Fernandez-Moreira V, Hess J B, Hayes, A J, Lloyd D, Millet C, Pope S J A, Williams C. Chem. Commun., 2007, (29):3066.
[71] Lo K K W, Lee T K M, Lau J S Y, Poon W L, Cheng S H. Inorg. Chem., 2008, 47(1):200.
[72] Neugebauer U, Pellegrin Y, Devocelle M, Forster R J, Signac W, Morand N, Keyes T E. Chem. Commun., 2008, (42):5307.
[73] Brunner J, Barton J K. Biochemistry, 2006, 45(40):12295.
[74] Puckett C A, Barton J K. J. Am. Chem. Soc., 2009, 131(25):8738.
[75] Svensson F R, Matson M, Li M, Lincoln P. Biophys. Chem., 2010, 149(3):102.
[76] Matson M, Svensson F R, Norden B, Lincoln P. J. Phys. Chem. B, 2011, 115(7):1706.
[77] Svensson F R, Abrahamsson M, Stromberg N, Ewing A G, Lincoln P. J. Phys. Chem. Lett., 2011, 2(5):397.
[78] Puckett C A, Barton J K. Bioorg. Med. Chem., 2010, 18(10):3564.
[79] Gottschaldt M, Schubert U S, Rau S, Yano S, Vos J G, Kroll T, Clement J, Hilger I. ChemBioChem, 2010, 11(5):649.
[80] Gill M R, Garcia-Lara J, Foster S J, Smythe C, Battaglia G, Thomas J A. Nat. Chem., 2009, 1(8):662.
[81] Tian X H, Gill M R, Canton I, Thomas J A, Battaglia G. ChemBioChem, 2011, 12(4):548.
[82] Gill M R, Derrat H, Smythe C G W, Battaglia G, Thomas J A. ChemBioChem, 2011, 12(6):877.
[83] Zhu B Z, Chevion M. Chem-Biol. Interact., 2000, 129:249.
[84] Zhu B Z, Shechtman S, Chevion M. Chemosphere, 200145:463.
[85] Zhu B Z. Chem. Res. Toxicol., 2001, 14:222.
[86] Barbouti A, Doulias P T, Zhu B Z, Frei B, Galaris D. Free Radic. Res., 2005, 39:125.
[87] Levy S, Shechtman S, Zhu B Z, Stadtman E R, Stadler R, Chevion M. Environ. Toxicol. Chem., 2007, 26:218.
[88] 朱本占(Zhu B Z), 范瑞梅(Fan R M), 盛治国(Sheng Z G).科学通报(Chinese Science Bulletin), 2011, 54:1673.
[89] Sheng Z G, Li Y, Fan R M, Chao X J, Zhu B Z. Toxicol. Appl. Pharmacol., 2013, 266:335.
[90] Fan R M, Zhu B Z, Huang C P, Sheng Z G, Mao L, Li M X. Environ. Toxicol., 2016, 1964.
[91] Zhu B Z, Chao X J, Huang C H, Li Y. Chem. Sci., 2016, 7:4016.
[92] Shao B, Mao L, Qu N, Wang Y F, Gao H Y, Li F, Qin L, Shao J, Huang C H, Xu D, Xie L N, Shen C, Zhou X, Zhu B Z. Free. Radic. Biol. Med., 2017, 104:54.
[93] Hoenger A, McIntosh J R. Curr. Opin. Cell. Biol., 2009, 21(1):89.
[94] Van-Rijt S H, Mukherjee A, Pizarro A M, Sadler P J. J. Med. Chem., 2010, 53(2):840.
[95] Sava G, Zorzet S, Turrin C, Vita F, Soranzo M, Zabucchi G, Cocchietto M, Bergamo A, DiGiovine S, Pezzoni G, Sartor L, Garbisa S. Clin. Cancer. Res., 2003, 9(5):1898.
[96] Meister K, Niesel J, Schatzschneider U, Metzler-Nolte N, Schmidt D A, Havenith M. Angew. Chem. Int. Edit., 2010, 49(19):3310.
[97] Cosgrave L, Devocelle M, Forster R J, Keyes T E. Chem. Commun., 2010, 46(1):103.
[98] O'Connor N A, Stevens N, Samaroo D, Solomon M R, Marti A A, Dyer J, Vishwasrao H, Akins D L, Kandel E R, Turro N J. Chem. Commun., 2009, (19):2640.
[99] Schatzschneider U, Niesel J, Ott I, Gust R, Alborzinia H, Wolfl S. Chem. Med. Chem., 2008, 3(7):1104.
[100] Gianferrara T, Bratsos I, Alessio E. Dalton Trans., 2009, (37):7588.
[101] Fink S L, Cookson B T. Infect. Immun., 2005, 73(4):1907.
[102] Lei W H, Zhou Q X, Jiang G Y Zhang B W, Wang X S. Photoch. Photobio. Sci., 2011, 10(6):887.
[103] Foxon S P, Alamiry M A H, Walker M G, Meijer A J H M, Sazanovich I V, Weinstein J A, Thomas J A. J. Phys. Chem. A, 2009, 113(46):12754.
[104] Sun Y J, Joyce L E, Dickson N M, Turro C. Chem. Commun., 2010, 46(14):2426.
[105] Bolhuis A, Hand L, Marshall J E, Richards A D, Rodger A, Aldrich-Wright J. Eur. J. Pharm. Sci., 2011, 42(4):313.
[106] Tan C P, Lai S S, Wu S H, Hu S, Zhou L J, Chen Y, Wang M X, Zhu Y P, Lian W, Peng W L, Ji L N, Xu A L. J. Med. Chem., 2010, 53(21):7613.
[107] Tan C P, Wu S H, Lai S S, Wang M X, Chen Y, Zhou L J, Zhu Y P, Lian W, Peng W L, Ji L N, Xu A L. Dalton Trans., 2011, 40(34):8611.
[108] Pisani M J, Weber D K, Heimann K, Collins J G, Keene F R. Metallomics., 2010, 2(6):393.
[109] Pisani M J, Fromm P D, Mulyana Y, Clarke R J, Korner H, Heimann K, Collins J G, Keene F R. Chem. Med. Chem., 2011, 6(5):848.
[110] Li F F, Mulyana Y, Feterl M, Warner J M, Collins J G, Keene F R. Dalton Trans., 2011, 40(18):5032.
[111] Mulyana Y, Weber D K, Buck D P, Motti C A, Collins J G, Keene F R. Dalton Trans., 2011, 40(7):1510.
[112] Chen T F, Mei W J, Wong Y S, Liu J, Liu Y N, Xie H S, Zheng W J. MedChemComm, 2010, 1(1):73.
[113] Chen T F, Liu Y A, Zheng W J, Liu J, Wong Y S. Inorg. Chem., 2010, 49(14):6366.
[114] Ernst R J, Song H, Barton J K. J. Am. Chem. Soc., 2009, 131(6):2359.
[115] Aguirre J D, Angeles-Boza A M, Chouai A, Pellois J P, Turro C, Dunbar K R. J. Am. Chem. Soc., 2009, 131(32):11353.
[116] Joyce L E, Aguirre J D, Angeles-Boza A M, Chouai A, Fu P K L, Dunbar K R, Turro C. Inorg. Chem., 2010, 49(12):5371.
[117] Poon C T, Chan P S, Man C, Jiang F L, Wong R N S, Mak N K, Kwong D W J, Tsao S W, Wong W K. J. Inorg. Biochem., 2010, 104(1):62.
[118] Milkevitch M, Storrie H, Brauns E, Brewer K J, Shirley B W. Inorg. Chem., 1997, 36(20):4534.
[119] Van-Der-Schilden K, Garcia F, Kooijman H, Spek A L, Haasnoot J G, Reedijk J. Angew. Chem. Int. Edit., 2004, 43(42):5668.
[120] Petitjean A, Barton J K. J. Am. Chem. Soc., 2004, 126(45):14728.
[121] Ruggi A, Beekman C, Wasserberg D, Subramaniam V, Reinhoudt D N, van Leeuwen F W B, Velders A H. Chem. Eur. J., 2011, 17(2):464.
[122] Elmes R B P, Orange K N, Cloonan S M, Williams D C. J. Am. Chem. Soc., 2011, 133(40):15862.
[123] Murphy C J, Barton J K. Metallobiochemistry Part C, 1993, 226:576.
[124] Puckett C A, Ernst R J, Barton J K. Dalton Trans., 2010, 39(5):1159.
[125] Sun Y J, Collins S N, Joyce L E, Turro C. Inorg. Chem., 2010, 49(9):4257.
[126] Shi H J, Chen Y, Gao F, Yu H J, Li G Y, Chao H, Shi X F, Ji L N. J. Mol. Struct., 2008, 892(1/3):485.
[127] Cook N P, Kilpatrick K, Segatori L, Marti A A. J. Am. Chem. Soc., 2012, 134(51):20776.
[128] Cook N P, Torres V, Jain D, Marti A A. J. Am. Chem. Soc., 2011, 133(29):11121.
[129] Aliyan A, Kirby B, Pennington C, Martí A A. J. Am. Chem. Soc., 2016, 138:8686.
[130] Silva D E S, Cali M P, Pazin W M, Lima E C, Trevisan M T S, Venancio T, Miranda M A, Ito A S, Carlos R M. J. Med. Chem., 2016, 59:9215.
[131] Li G Y, Sun L L, Ji L N, Chao H. Dalton Trans., 2016, 45:13261.
[132] Boynton A N, Marcélis L, Barton J K. J.Am. Chem. Soc., 2016, 138:5020.
[133] Boynton A N, Marcelis L, McConnell A J, Barton J K. Inorg. Chem., 2017, 56:8381.
[134] Sun W, Li S Y, Häupler B, Liu J, Jin S B, Steffen W, Schubert U S, Butt B J, Liang X J, Wu S. Adv. Mater., 2017, 29:1.
[135] Shen J L, Kim H C, Wolfram J, Mu C F, Zhang W, Liu H R, Xie Y, Mai J H, Zhang H, Li Z, Guevara M, Mao Z W, Shen H F. Nano Letters, 2017, 17:2913.
[136] Gao M, Yu F, Lv C J, Choo J, Chen L X. Chem. Soc. Rev., 2017, 46:2237.
[1] 张咚咚, 刘敬民, 刘瑶瑶, 党梦, 方国臻, 王硕. 纳米粒子在药物传递中的应用[J]. 化学进展, 2018, 30(12): 1908-1919.
[2] 王晓方, 胡殷, 潘启发, 杨瑞龙, 龙重, 刘柯钊. 铀氮化物晶体结构及电子结构[J]. 化学进展, 2018, 30(12): 1803-1818.
[3] 李春雪, 乔宇, 林雪, 车广波. 量子点@金属有机骨架材料的制备及在光催化降解领域的应用[J]. 化学进展, 2018, 30(9): 1308-1316.
[4] 姚闯, 张希, 黄勇力, 李蕾, 马增胜, 孙长庆. 水的结构和反常物性[J]. 化学进展, 2018, 30(8): 1242-1256.
[5] 倪秀秀, 丁鹤, 张景双, 曾周靓子, 白鹏, 郭翔海*. b轴取向MFI型分子筛膜二次生长合成策略及其应用[J]. 化学进展, 2018, 30(7): 976-988.
[6] 刘禹杉, 李伟, 吴鹏, 刘守新*. 水热炭化制备碳量子点及其应用[J]. 化学进展, 2018, 30(4): 349-364.
[7] 贾潞, 马建中, 高党鸽, 吕斌. 层状双氢氧化物/聚合物纳米复合材料[J]. 化学进展, 2018, 30(2/3): 295-303.
[8] 赵田*, 董茗, 赵熠, 刘跃军*. 纳米金属-有机框架材料的制备及应用[J]. 化学进展, 2017, 29(10): 1252-1259.
[9] 刘瑶瑶, 刘敬民, 方国臻, 张咚咚, 王青华, 王硕. 基于长余辉纳米发光探针的生物传感检测和成像[J]. 化学进展, 2017, 29(6): 667-682.
[10] 方维娜, 鲁爽, 王丽华, 樊春海, 柳华杰. 纳米金三角片的合成及应用[J]. 化学进展, 2017, 29(5): 459-466.
[11] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
[12] 孔龙娟, 李晖*. 衬底调制下的硼墨烯、硅烯、锗烯等单元素二维材料的原子与电子结构[J]. 化学进展, 2017, 29(4): 337-347.
[13] 胡先运, 郭庆生, 刘玉乾, 孙清江, 孟铁宏, 张汝国. 量子点荧光传感器的设计及应用[J]. 化学进展, 2017, 29(2/3): 300-317.
[14] 李超, 范美强, 陈海潮, 陈达, 田光磊, 舒康颖. Li-Mg-N-H体系储氢材料的热力学和动力学调控[J]. 化学进展, 2016, 28(12): 1788-1797.
[15] 唐志姣, 李攻科*, 胡玉玲*. 氮掺杂碳点的制备及在定量分析中的应用[J]. 化学进展, 2016, 28(10): 1455-1461.