English
新闻公告
More
化学进展 2016, Vol. 28 Issue (10): 1455-1461 DOI: 10.7536/PC160504 前一篇   后一篇

• 综述与评论 •

氮掺杂碳点的制备及在定量分析中的应用

唐志姣, 李攻科*, 胡玉玲*   

  1. 中山大学 化学学院 广州 510275
  • 收稿日期:2016-05-01 修回日期:2016-06-01 出版日期:2016-10-15 发布日期:2016-11-05
  • 通讯作者: 李攻科, 胡玉玲 E-mail:cesgkl@mail.sysu.edu.cn;ceshyl@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21675178,21475153,21575168)、广东省自然科学基金重点项目(No.2015A030311020)、广东省公益研究与能力建设专项(No.2015A030401036)和广州市科技计划项目(No.201604020165)资助

Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots

Tang Zhijiao, Li Gongke*, Hu Yuling*   

  1. School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2016-05-01 Revised:2016-06-01 Online:2016-10-15 Published:2016-11-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21675178, 21575168, 21475153), the Guangdong Provincial Natural Science Foundation of China (No. 2015A030311020), the Special Funds for Public Welfare Research and Capacity Building in Guangdong Province of China (No. 2015A030401036) and the Guangzhou Science and Technology Program of China(No. 201604020165).
碳点具有化学稳定性好、毒性低、易于功能化等突出优势而备受关注,然而其仍存在荧光量子产率低、活性位点少等不足。氮掺杂碳点因N的钝化效应表现出更为优异的光电性能,在很大程度上弥补了碳点的这些缺陷,因而在生化传感、环境检测等诸多领域中得到了广泛应用。经过近五年来的发展,氮掺杂已成为碳点改性的主要方法之一,制备方法逐渐多样化,合成过程更加绿色、简便,但其形成机制仍没有明确的统一解释。为了更好地研究氮掺杂碳点的形成机理及扩展其应用领域,本文简述了氮掺杂碳点的发展历程、制备方法及光学特性,重点介绍了氮掺杂碳点在定量分析中的应用,并展望了其发展和应用前景,以期为氮掺杂碳点在分析化学中的发展提供一定的参考。
Fluorescent carbon dots (CDs) are inspiring intensive research interests because of their high chemical stability, low toxicity and customizable surface functionalization. However, there are still some limitations such as low quantum yield, less active sites and so on. As research continues, nitrogen-doped carbon dots (N-CDs) have recently become of great interest because it addresses the above problems of CDs to achieve promising applications for them in biochemical sensing, environmental detection and other fields. In the past five years, doping CDs with nitrogen as a principle way to tune the intrinsic properties of CDs has been considered as an effective strategy, and the procedures for preparing N-CDs have become increasingly green and facile. But the formation mechanism of N-CDs is still not clarified. To easily understand the mechanism and expand its application fields, we reviewed the discovery history, preparation methods and optical properties of N-CDs, especially in latest developments of analytical and bioanalytical applications in quantitative analysis. We also give perspectives on future opportunities and promising applications, which would provide the reference for the development of N-CDs in analytical chemistry.

Contents
1 Introduction
2 Preparation and properties of nitrogen-doped carbon dots
2.1 Preparation of nitrogen-doped carbon dots
2.2 Properties of nitrogen-doped carbon dots
3 Applications in Quantitative analysis of nitrogen-doped carbon dots
3.1 Detection of ions
3.2 Detection of molecules
4 Conclusion and outlook

中图分类号: 

()
[1] Yao J, Yang M, Duan Y. Chem. Rev., 2014, 114(12):6130.
[2] Howes P D, Chandrawati R, Stevens M M. Science, 2014, 346(6205):1247390.
[3] Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P G, Yang H, Kose M E, Chen B, Veca L M, Xie S Y. J. Am. Chem. Soc., 2006, 128(24):7756.
[4] Cao L, Wang X, Meziani M J, Lu F S, Wang H F, Luo P G, Lin Y, Harruff B A, Veca L M, Murray D, Xie S Y, Sun Y P. J. Am. Chem. Soc., 2007, 129(37):11318.
[5] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K. Science, 2008, 320(18):356.
[6] Pan D Y, Zhang J C, Li Z, Wu M H. Adv. Mater., 2010, 22(6):734.
[7] Benítez-Martínez S, Valcárcel M. Trends Anal. Chem., 2015, 72:93.
[8] 黄启同(Huang Q T), 林小凤(Lin X F),李飞明(Li F M),翁文(Weng W),林丽萍(Lin L P),胡世荣(Hu S R).化学进展(Progress in Chemistry), 2015, 27(11):1604.
[9] Niu W J, Li Y, Zhu R H, Shan D, Fan Y R, Zhang X J. Sensor. Actuat. B, 2015, 218:229.
[10] Lim S Y, Shen W, Gao Z Q. Chem. Soc. Rev., 2015, 44(1):362.
[11] 姚秋虹(Yao Q H), 林丽萍(Lin L P),赵婷婷(Zhao T T), 陈曦(Chen X). 化学进展(Progress in Chemistry), 2015, 27(11):1523.
[12] Norris D J, Efros A L, Erwin S C. Science, 2008, 319(5871):1776.
[13] Wang X W, Sun G Z, Routh P, Kim D H, Huang W, Chen P. Chem. Soc. Rev., 2014, 43(20):7067.
[14] Du Y, Guo S J. Nanoscale, 2016, 8(5):2532.
[15] Li Y, Zhao Y, Cheng H H, Hu Y, Shi G Q, Dai L M, Qu L T. J. Am. Chem. Soc., 2012, 134(1):15.
[16] 唐志姣(Tang Z J),李攻科(Li G K),胡玉玲(Hu Y L). 分析测试学报(J. Instrum. Anal.), 2015, 34(8):970.
[17] Dong Y Q, Pang H C, Yang H B, Guo C X, Shao J W, Chi Y W, Li C M, Yu T. Angew. Chem. Int. Ed., 2013, 52(30):7800.
[18] Bourlinos A B, Trivizas G, Karakassides M A, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, Papagiannouli I, Aloukos P, Couris S. Carbon, 2015, 83:173.
[19] Sun H J, Ji H W, Ju E G, Guan Y J, Ren J S, Qu X G. Chem. Eur. J., 2015, 21(9):3791.
[20] Gong Y Q, Yu B, Yang W, Zhang X L. Biosens. Bioelectron., 2016, 79:822.
[21] Li F, Liu C J, Yang J, Wang Z, Liu W G, Tian F. RSC Adv., 2014, 4(7):3201.
[22] Wu W T, Zhan L Y, Fan W Y, Song J Z, Li X M, Li Z T, Wang R Q, Zhang J Q, Zheng J T, Wu M B, Zeng H B. Angew. Chem. Int. Ed., 2015, 54(22):6540.
[23] Kundu S, Yadav R M, Narayanan T N, Shelke M V, Vajtai R, Ajayan P M, Pillai V K. Nanoscale, 2015, 7(27):11515.
[24] Arcudi F, Ðor?evi D? L, Prato M. Angew. Chem. Int. Ed., 2016, 55(6):2107.
[25] Ju J, Chen W. Biosens. Bioelectron., 2014, 58:219.
[26] Zhang B X, Gao H, Li X L. New J. Chem., 2014, 38(9):4615.
[27] Wang J Q, Zhang P F, Huang C, Liu G, Leung K C, Wang Y X J. Langmuir, 2015, 31(29):8063.
[28] Hao Y N, Guo H L, Tian L, Kang X F. RSC Adv., 2015, 5(54):43750.
[29] Sarkar S, Sudolská M, Dubeck Dý M, Reckmeier C J, Rogach A L, Zbo?il R, Otyepka M. J. Phys. Chem. C, 2016, 120(2):1303.
[30] Dai Y Q, Long H, Wang X T, Wang Y M, Gu Q, Jiang W, Wang Y C, Li C C, Zeng T Y H, Sun Y M, Zeng J. Part. Part. Syst. Charact., 2014, 31(5):597.
[31] Ding H, Yu S B, Wei J S, Xiong H M. ACS Nano, 2016, 10(1):484
[32] Qu D, Zheng M, Zhang L G, Zhao H F, Xie Z G, Jing X B, Haddad R E, Fan H Y, Sun Z C. Sci. Rep., 2014, 4:5294.
[33] Liu Q, Guo B D, Rao Z Y, Zhang B H, Gong J R. Nano Lett., 2013, 13(6):2436.
[34] Guo Y M, Zhang L F, Zhang S S, Yang Y, Chen X H, Zhang M C. Biosens. Bioelectron., 2015, 63:61.
[35] Shi B F, Zhang L L, Lan C Q, Zhao J J, Su Y B, Zhao S L. Talanta, 2015, 142:131.
[36] Zhao D, Chen C X, Lu L X, Yang F, Yang X R. Analyst, 2015, 140(24):8157.
[37] Cai Z W, Li F M, Wu P, Ji L J, Zhang H, Cai C X, Gervasio D F. Anal. Chem., 2015, 87(23):11803.
[38] Deng J H, Lu Q J, Hou Y X, Liu M L, Li H T, Zhang Y Y, Yao S Z. Anal. Chem., 2015, 87(4):2195.
[39] Zhang H J, Chen Y L, Liang M J, Xu L F, Qi S D, Chen H L, Chen X G. Anal. Chem., 2014, 86(19):9846.
[40] Liu Y, Liu Y N, Park S J, Zhang Y F, Kim T, Chae S, Park M, Kim H. J. Mater. Chem. A, 2015, 3(34):17747.
[41] Zhao A D, Zhao C Q, Li M, Ren J S, Qu X G. Anal. Chim. Acta, 2014, 809:128.
[42] Yang T T, Cai F, Zhang X D, Huang Y M. RSC Adv., 2015, 5(130):107340.
[43] Wang H, Wang Y, Guo J, Su Y, Sun C, Zhao J, Luo H M, Dai X, Zou G F. RSC Adv., 2015, 5(17):13036.
[44] Lin L P, Song X H, Chen Y Y, Rong M C, Zhao T T, Jiang Y Q, Wang Y R, Chen X. Nanoscale, 2015, 7(37):10307.
[45] Zhang L, Peng D, Liang R P, Qiu J D. Anal. Chem., 2015, 87(21):10894.
[46] Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, Al-Youbi A O, Sun X P. Adv. Mater., 2012, 24(15):2037.
[47] Wang Z, Lu Y X, Yuan H, Ren Z H, Xu C, Chen J. Nanoscale, 2015, 7(48):20743.
[48] Tabaraki R, Nateghi A. J. Fluoresc., 2016, 26(1):297.
[49] Cai F, Liu X D, Liu S, Liu H, Huang Y M. RSC Adv., 2014, 4(94):52016.
[50] Wang C X, Xu Z Z, Cheng H, Lin H H, Humphrey M G, Zhang C. Carbon, 2015, 82:87.
[51] Chen S F, Song Y, Li Y, Liu Y L, Su X G, Ma Q. New J. Chem., 2015, 39(10):8114.
[52] Yuan H, Yu J, Feng S L, Gong Y J. RSC Adv., 2016, 6(18):15192.
[53] Yuan H R, Li D N, Liu Y, Xu X Z, Xiong C X. Analyst, 2015, 140(5):1428.
[54] Lin L P, Rong M C, Lu S S, Song X H, Zhong Y X, Yan J W, Wang Y R, Chen X. Nanoscale, 2015, 7(5):1872.
[55] Shi B F, Su Y B, Zhao J J, Liu R J, Zhao Y, Zhao S L. Nanoscale, 2015, 7(41):17350.
[56] Wang C Q, Qian J, Wang K, Hua M J, Liu Q, Hao N, You T Y, Huang X Y. ACS Appl. Mater. Interfaces, 2015, 7(48):26865.
[57] Liu Y, Yan K, Okoth O K, Zhang J D. Biosens. Bioelectron., 2015, 74:1016.
[58] Ju J, Zhang R Z, He S J, Chen W. RSC Adv., 2014, 4(94):52583.
[59] Zhu X H, Zhao T B, Nie Z, Miao Z, Liu Y, Yao S Z. Nanoscale, 2016, 8(4):2205.
[60] Li H, Kong W Q, Liu J, Liu N Y, Huang H, Liu Y, Kang Z H. Carbon, 2015, 91:66.
[61] Li X, Zhu S J, Xu B, Ma K, Zhang J H, Yang B, Tian W J. Nanoscale, 2013, 5(17):7776.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[3] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[4] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[5] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[6] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[7] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[8] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[9] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[10] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[11] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
[12] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[13] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[14] 王俊莲, 刘新宇, 谢美英, 王化军. 体离子印迹材料的制备方法[J]. 化学进展, 2018, 30(7): 989-1012.
[15] 张成江, 袁晓艳, 袁泽利, 钟永科, 张卓旻, 李攻科. 基于席夫碱反应的共价有机骨架材料[J]. 化学进展, 2018, 30(4): 365-382.