English
新闻公告
More
化学进展 2017, Vol. 29 Issue (6): 667-682 DOI: 10.7536/PC170301 前一篇   后一篇

• 综述 •

基于长余辉纳米发光探针的生物传感检测和成像

刘瑶瑶1, 刘敬民1,2,3, 方国臻1, 张咚咚1, 王青华1, 王硕1,2,3*   

  1. 1. 天津科技大学食品营养与安全教育部重点实验室 天津 300457;
    2. 南开大学医学院 天津 300071;
    3. 北京工商大学北京食品营养与人类健康高精尖创新中心 北京 100048
  • 收稿日期:2017-03-02 修回日期:2017-05-18 出版日期:2017-06-15 发布日期:2017-06-06
  • 通讯作者: 王硕,e-mail:s.wang@tust.edu.cn E-mail:s.wang@tust.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.31430068)资助

Biosensor Detection and Imaging Based on Persistence Luminescence Nanoprobe

Yaoyao Li1, Jingmin Liu1,2,3, Guozhen Fang1, Dongdong Zhang1, Qinghua Wang1, Shuo Wang1,2,3*   

  1. 1. Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China;
    2. School of Medicine, Nankai University, Tianjin 300071, China;
    3. Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
  • Received:2017-03-02 Revised:2017-05-18 Online:2017-06-15 Published:2017-06-06
  • Contact: 10.7536/PC170301 E-mail:s.wang@tust.edu.cn
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 31430068).
长余辉纳米粒子由于其特殊的发光现象、超长的余辉寿命、可实现免原位激发以及光谱发射区域可被调控至“生物光学透明窗口”内等特征而被广泛应用于光学传感检测和生物医学成像领域。近年来,长余辉纳米发光探针的合成和应用吸引了光谱学、声子学、光化学、材料科学领域的极大关注。本文对长余辉纳米分子探针的合成方法、颗粒表面功能化及其作为靶向探针在体内和体外进行传感检测及活体成像的应用进行深入探讨。本文主要讨论Mn2+和Cr3+掺杂的红色-近红外发光纳米材料,特别是镓锗酸盐,其具有强烈的近红外持续发光,超过两周的余辉寿命更适合于生物成像的应用。功能化的红色近红外长余辉纳米材料为长期实时监测体内生理学过程和疾病的诊断提供有前景的技术平台。最后本文对长余辉材料应用面临的挑战和未来的发展趋势进行了展望。
Owing to the unique luminescence phenomenon and the super long afterglow life, the persistent luminescence nanomaterials (PLNPs) can achieve in vitro excitation and the spectral emission regions can be regulated into the “biological transparent window”, which were widely used in optics sensor detection and bioimaging field of disease targeted diagnosis and treatment. In recent years, the syntheses and applications of PLNPs nanoprobe have attracted great attention in the areas of spectroscopy, photonics, photochemistry and materials science. This paper reviews the synthesis methods and surface modification of PLNPs molecular nanoprobe as well as their application in detection and bioimaging in vivo and in vitro. This paper focused on Mn2+ and Cr3+ doped nanostructures, particularly gallogermanates which are able to give intense red-near infrared persistent emission with a longer afterglow lifetime for more than two weeks and therefore are suitable for bioimaging application. The functionalized red-near infrared persistent luminescence nanomaterials provide a promising technology platform for long-term real-time detection of physiological processes and disease diagnosis in vivo. Finally, the challenges of PLNPs are described.

Contents
1 Introduction
2 Synthesis methods of PLNPs
2.1 Solid-State reaction
2.2 Sol-Gel method
2.3 Hydrothermal method
2.4 Co-Precipitation
2.5 Template method
2.6 Combustion method
2.7 Other methods
3 Application of PLNPs Nanoprobes in biomedicine
3.1 PLNPs based Biosensing and detection
3.2 PLNPs based Bioimaging
3.3 Multimodal Imaging of PLNPs
4 Conclusion and outlook

中图分类号: 

()
[1] Luker G D, Luker K E. J. Nucl. Med., 2008, 49:1.
[2] Ntziachristos V, Yoo J S, van Dam G M. J. Biomed. Opt., 2010, 15:066024.
[3] Kunjachan S, Gremse F, Theek B, Koczera P, Pola R, Pechar M, Etrych T, Ulbrich K, Storm G, Kiessling F, Lammers T. ACS Nano, 2013, 7:252.
[4] Alford R, Ogawa M, Choyke P L, Kobayashi H. Mol. BioSyst., 2009, 5:1279.
[5] Koo H, Huh M S, Ryu J H, Lee D E, Sun I C, Choi K, Kim K, Kwon I C. Nano Today, 2011, 6:204.
[6] Geoghegan K F, Rosner P J, Hoth L R. Bioconjugate Chem., 2000, 11:71.
[7] Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Chem. Soc. Rev., 2014, 43:4243.
[8] Liu X, Swihart M T. Chem. Soc. Rev., 2014, 43:3908.
[9] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Science, 2005, 307:538.
[10] Gammon D. Nat. Nano, 2012, 7:621.
[11] Smith A M, Nie S M. Nat. Biotechnol., 2009, 27:732.
[12] Pinaud F, Clarke S, Sittner A, Dahan M. Nat. Meth., 2010, 7:275.
[13] Hong H, Yang K, Zhang Y, Engle J W, Feng L Z, Yang Y N, Nayak T R, Goel S, Bean J, Theuer C P, Barnhart T E, Liu Z, Cai W B. ACS Nano, 2012, 6:2361.
[14] Qian J, Wang D, Cai F H, Xi W, Peng L, Zhu Z F, He H, Hu M L, He S. Angew. Chem. Int. Ed., 2012, 51:10570.
[15] Sreejith S, Ma X, Zhao Y L. J. Am. Chem. Soc., 2012, 134:17346.
[16] Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Angew. Chem. Int. Ed., 2013, 52:3953..
[17] Nienhaus K, Ulrich Nienhaus G, Chem. Soc. Rev., 2014, 43:1088.
[18] Day R N, Davidson M W. Chem. Soc. Rev., 2009, 38:2887.
[19] Liu C L, Wu H T, Hsiao Y H, Lai C W, Shih C W, Peng Y K, Tang K C, Chang H W, Chien Y C, Hsiao J K, Cheng J T, Chou P T. Angew. Chem. Int. Ed., 2011, 50:7056.
[20] Lourdu Xavier P, Chaudhari K, Baksi A, Pradeep T. Nano. Reviews & Experiments, 2012, 3.
[21] Chen H Y, Li S L, Li B W, Ren X Y, Li S N, Mahounga D M, Cui S S, Gu Y Q, Achilefu S. Nanoscale, 2012, 4:6050.
[22] Shang L, Dong S J, Nienhaus G U. Nano. Today, 2011, 6:401.
[23] Cheng Z, Levi J, Xiong Z M, Gheysens O, Keren S, Chen X Y, Gambhir S S. Bioconjugate Chem., 2006, 17:662.
[24] Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, Wiedenmann B, Grotzinger C. Nat. Biotech., 2001, 19:327.
[25] Wagnieres G A, Star W M, Wilson B C. Photochem. Photobiol., 1998, 68, 603.
[26] Baumes J M, Gassensmith J J, Giblin J, Lee J J, White A G, Culligan W J, Leevy W M, Kuno M, Smith B D. Nat. Chem., 2010, 2:1025.
[27] Weissleder R. Nat. Biotech., 2001, 19:316.
[28] Bashkatov A N, Genina E A, Kochubey V I, Tuchin V V. J. Phys. D Appl. Phys., 2005, 38:2543.
[29] Welsher K, Sherlock S P, Dai H J. Proc. Natl. Acad. Sci., 2011, 108:8943.
[30] He X X, Wang K M, Cheng Z. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology, 2010, 2:349.
[31] Alt?noglu E I, Adair J H. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology, 2010, 2:461.
[32] Singh S K, RSC Adv., 2014, 4:58674.
[33] Mader H S, Kele P, Saleh S M, Wolfbeis O S. Curr. Opin. Chem. Biol., 2010, 14:582.
[34] Chen G Y, Shen J, Ohulchanskyy T Y, Patel N J, Kutikov A, Li Z, Song J, Pandey R K, Ågren H, Prasad P N, Han G. ACS Nano., 2012, 6:8280.
[35] Chen G Y, Qiu H L, Prasad P N, Chen X Y. Chem. Rev., 2014, 114:5161.
[36] Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G. Analyst, 2010, 135:1839.
[37] Yadav R, Singh S K, Verma R K, Rai S B. Chem. Phys. Lett., 2014, 599:122.
[38] Singh S K, Singh A K, Rai S B. Nanotechnology, 2011, 22:275703.
[39] Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H, Liu X G. Nature, 2010, 463:1061.
[40] Wang F, Liu X G. Chem. Soc. Rev., 2009, 38:976
[41] Heer S, K mpe K, Güdel H U, Haase M. Adv. Mater., 2004, 16:2102.
[42] Maldiney T, Bessière A, Seguin J, Teston E, Sharma S K, Viana B, Bos A J J, Dorenbos P, Bessodes M, Gourier D, Scherman D, Richard C. Nat. Mater., 2014, 13:418.
[43] Pan Z, Lu Y Y, Liu F. Nat. Mater., 2012, 11:58.
[44] Li Y, Gecevicius M, Qiu J R. Chem. Soc. Rev., 2016, 45:2090.
[45] Van den Eeckhout K, Poelman D, Smet P. Materials, 2013, 6:2789.
[46] Xu J, Tanabe S, Sontakke A D, Ueda J. Appl. Phys. Lett. 2015, 107:1.
[47] Kanno H, Noda K, Matsui K. Chem. Phys. Lett., 2013, 580:103.
[48] Lim J H, Kim B N, KimY, Kang S, Xie R J, Chong I S, Morita K, Yoshida H, Hiraga K. Appl. Phys. Lett., 2013, 102:031104.
[49] Jin L, Zhang H Y, Pan R Q, Xu P, Han J C, Zhang X H, Yuan Q, Zhang Z H, Wang X J, Wang Y, Song B. Nano. Lett., 2015, 15:6575.
[50] Mackenzie J D, Bescher E P. Acc. Chem. Res., 2007, 40:810.
[51] Gluchowski P, Strek W, Lastusaari M, Holsa J. Phys. Chem. Chem. Phys., 2015, 17:17246.
[52] Basavaraju N, Priolkar K R, Gourier D, Bessiere A, Viana B. Phys. Chem. Chem. Phys., 2015, 17:10993.
[53] Abdukayum A, Chen J T, Zhao Q, Yan X P. J. Am. Chem. Soc., 2013, 135:14125.
[54] le Masne de Chermont Q, Chanéac C, Seguin J, Pellé F, Maîtrejean S, Jolivet J P, Gourier D, Bessodes M, Scherman D. P. Natl. Acad. Sci. USA, 2007, 104:9266.
[55] Milde M, Dembski S, Osvet A, Batentschuk M, Winnacker A, Sextl G. Mater. Chem. Phys., 2014, 148:1055.
[56] Bessiere A, Lecointre A, Priolkar K R, Gourier D. J. Mater. Chem., 2012, 22:19039.
[57] Lu Y Y, Liu F, Gu Z, Pan Z. J. Lumin., 2011, 131:2784.
[58] Wei D L, Qin L, Huang Y L, Seo H J. Ceram. Int., 2013, 39:2383.
[59] Fu X Y, Liu C L, Shi J P, Man H Z, Xu J, Zhang H W. Opt. Mater., 2014, 36:1792.
[60] Huang P, Zhang Q C, Cui C E, Li J. Opt. Mater., 2011, 33:1252.
[61] Tian Y M, Zhang P, Zheng Z T, Chai Y S. Mater. Lett., 2012, 73:157.
[62] Kong J T, Zheng W, Liu Y S, Li R F, Ma E, Zhu H M, Chen X Y. Nanoscale, 2015, 7:11048.
[63] Rodríguez Burbano D C, Sharma S K, Dorenbos P, Viana B, Capobianco J A. Adv. Opt. Mater., 2015, 3:551.
[64] Xu Y F, Ma D K, Guan M L, Chen X A, Pan Q Q, Huang S M. J. Alloy. Compd., 2010, 502:38.
[65] Liu D, Cui C E, Huang P, Wang L, Jiang G W. J. Alloy. Compd., 2014, 583:530.
[66] Li Z J, Zhang Y W, Wu X, Huang L, Li D S, Fan W, Han G. J. Am. Chem. Soc., 2015, 137:5304.
[67] Cheng B C, Liu H J, Fang M, Xiao Y H, Lei S J, Zhang L D. Chem. Commun., 2009, 8:944.
[68] Liu Y D, Goebl J, Yin Y D. Chem. Soc. Rev., 2013, 42:2610.
[69] Li Z J, Zhang Y W, Wu X, Wu X Q, Maudgal R, Zhang H W, Han G. Advanced Science, 2015, 2:1500001. DOI:10.1002/advs.201500001.
[70] Li Z J, Shi J P, Zhang H W, Sun M. Opt. Express, 2014, 22:10509.
[71] Li Z J, Zhang Y J, Zhang H W, Fu H X. Microporous Mesoporous Mater., 2013, 176:48.
[72] Xu Z K, Duan G T, Zhang H W, Wang Y Y, Xu L, Cai W P. Nanoscale, 2015, 7:14264.
[73] Mukasyan A S, Epstein P, Dinka P. P. Combust.Inst., 2007, 31:1789.
[74] Cheng B C, Zhang Z D, Han Z H, Xiao Y H, Lei S J. CrystEngComm, 2011, 13:3545.
[75] Xin S Y, Wang Y H, Dong P Y, Zeng W, Zhang J. J. Mater. Chem. C, 2013, 1:8156.
[76] Yan S C, Wang J J, Gao H L, Wang N Y, Yu H, Li Z S, Zhou Y, Zou Z G. Adv. Funct. Mater., 2013, 23:1839.
[77] Li H H, Yin S, Sato T. Res. Chem. Intermediat, 2013, 39:1501.
[78] Elsagh M, Rajabi M, Amini E. J. Mater. Sci-Mater El., 2014, 25:1612.
[79] Dong G P, Xiao X D, Zhang L L, Ma Z J, Bao X, Peng M Y, Zhang Q Y, Qiu J R. J. Mater. Chem., 2011, 21:2194.
[80] Li N, Diao W, Han Y, Pan W, Zhang T, Tang B. Chem. -Eur. J., 2014, 20:16488
[81] Tang Y R, Song H J, Su Y Y, Lv Y. Anal. Chem., 2013, 85:11876.
[82] Wu B Y, Wang H F, Chen J T, Yan X P. J. Am. Chem. Soc., 2011, 133:686.
[83] Li N, Li Y H, Han Y Y, Pan W, Zhang T T, Tang B. Anal. Chem., 2014, 86:3924.
[84] Niu J Y, Wang X, Lv J Z, Li Y, Tang B. Trac-Trends Anal. Chem., 2014, 58:112.
[85] Zhang L, Lei J P, Liu J T, Ma F J, Ju H X. Biomaterials, 2015, 67:323.
[86] Paterson A S, Raja B, Garvey G, Kolhatkar A, Hagstr m A E V, Kourentzi K, Lee T R, Willson R C. Anal. Chem., 2014, 86:9481.
[87] Naczynski D J, Tan M C, Zevon M, Wall B, Kohl J, Kulesa A, Chen S, Roth C M., Riman R E, Moghe P V. Nature Communications, 2013, 4:2199.
[88] Wang R, Zhang F. J. Mater. Chem. B, 2014, 2, 2422.
[89] Bünzli J C G, Eliseeva S V. J. Rare Earth., 2010, 28:824.
[90] Ueda J, Shinoda T, Tanabe S. Opt. Mater. Express, 2013, 3:787.
[91] Yu N Y, Liu F, Li X F, Pan Z W. Appl. Phys. Lett. 2009, 95:231110.
[92] Wang X J, Jia D, Yen W M. J. Lumin., 2003, 102:34.
[93] Maldiney T, Richard C, Seguin J, Wattier N, Bessodes M, Scherman D. ACS Nano, 2011, 5:854.
[94] Maldiney T, Kaikkonen M U, Seguin J, le Masne de Chermont Q, Bessodes M, Airenne K J, Ylä-Herttuala S, Scherman D, Richard C. Bioconjugate Chem., 2012, 23:472.
[95] Maldiney T, Byk G, Wattier N, Seguin J, Khandadash R, Bessodes M, Richard C, Scherman D. Int. J. Pharm., 2012, 423:102.
[96] Maldiney T, Lecointre A, Viana B, Bessière A, Bessodes M, Gourier D, Richard C, Scherman D. J. Am. Chem. Soc., 2011, 133:11810.
[97] Li Y, Li Y Y, Sharafudeen K, Dong G P, Zhou S F, Ma Z, Peng M Y, Qiu J R. J. Mater. Chem. C, 2014, 2:2019.
[98] Bessière A, Jacquart S, Priolkar K, Lecointre A, Viana B, Gourier D. Opt. Express, 2011, 19:10131.
[99] Bessière A, Sharma S K, Basavaraju N, Priolkar K R, Binet L, Viana B, Bos A J J, Maldiney T, Richard C, Scherman D, Gourier D. Chem. Mater., 2014, 26:1365.
[100] Sharma S K, Bessière A, Basavaraju N, Priolkar K R, Binet L, Viana B, Gourier D. J. Lumin., 2014, 155:251.
[101] Zhuang Y X, Ueda J, Tanabe S, Dorenbos P. J. Mater. Chem. C, 2014, 2:5502.
[102] Li Y, Zhou S F, Dong G P, Peng M Y, Wondraczek L, Qiu J. Sci. Rep., 2014, 4:4059.
[103] Li Y, Zhou S F, Li Y Y, Sharafudeen K, Ma Z J, Dong G P, Peng M Y, Qiu J R. J. Mater. Chem. C, 2014, 2:2657.
[104] Allix M, Chenu S, Véron E, Poumeyrol T, Kouadri-Boudjelthia E A, Alahraché S, Porcher F, Massiot D, Fayon F. Chem. Mater., 2013, 25:1600.
[105] Li Y J, Yan X P. Nanoscale, 2016, 8:14965.
[106] Abdurahman R, Yang C X, Yan X P. Chem. Commun., 2016, 52:13303.
[107] Chen L J, Sun S K, Wang Y, Yang C X, Wu S Q, Yan X P. ACS Appl. Mater. Inter., 2016, 8:32667.
[108] Wu S Q, Chi C W, Yang C X, Yan X P. Anal. Chem., 2016, 88, 4114.
[109] Wu S Q, Yang C X, Yan X P. Adv. Funct. Mater., 2017, 27.
[110] Wang X S, Wan M H, Wang Y, Zhao H, Hu Z F, Li H L. Spectrosc. Spectral Anal., 2013, 33:2921.
[111] Basavaraju N, Sharma S, Bessière A, Viana B, Gourier D, Priolkar K R. J. Phys. D-Appl. Phys., 2013, 46:375401
[112] Xu J, Chen D, Yu Y, Zhu W, Zhou J, Wang Y. Chem-Asian. J., 2014, 9:1020.
[113] Yan W Z, Liu F, Lu Y Y, Wang X J, Yin M, Pan Z W. Opt. Express, 2010, 18:20215.
[114] Jia D, Lewis A L, Wang X J. Electrochem. Solid.State. ST., 2010, 13:J32.
[115] Luitel H N, Watari T, Torikai T, Yada M. Opt. Mater., 2009, 31:1200.
[116] Abdukayum A, Yang C X, Zhao Q, Chen J T, Dong L X, Yan X P. Anal. Chem., 2014, 86:4096.
[117] Reddy L H, Arias J L, Nicolas J, Couvreur P. Chem. Rev., 2012, 112:5818.
[118] Liu J M, Liu Y Y, Zhang D D, Fang G Z, Wang S, ACS Appl. Mater. Inter., 2016, 8:29939.
[119] Maldiney T, Ballet B, Bessodes M, Scherman D, Richard C. Nanoscale, 2014, 6:13970.
[120] Li J L, Shi J P, Shen J S, Man H Z, Wang M X, Zhang H W. Nano-Micro Lett., 2015, 7:138.
[121] Wu B Y, Yan X P. Chem. Commun., 2015, 51:3903.
[122] Chen D Q, Chen Y, Lu H W, Ji Z G. Inorg. Chem., 2014, 53:8638.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[4] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[5] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[6] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[7] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[8] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[9] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.
[10] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[11] 张继东, 刘阿晨, 陈娇, 袁光辉, 金华峰. 基于生物素的荧光有机小分子及其应用[J]. 化学进展, 2020, 32(5): 594-603.
[12] 王阳, 黄楚森, 贾能勤. 监测细胞微环境及活性分子的有机小分子荧光探针[J]. 化学进展, 2020, 32(2/3): 204-218.
[13] 苏喜, 葛闯, 陈李, 徐溢. 基于水凝胶的细菌传感检测[J]. 化学进展, 2020, 32(12): 1908-1916.
[14] 杜曼, 霍宝龙, 刘杰民*, 李梦文, 房乐秋, 杨运旭*. 基于硅杂蒽类染料的荧光探针及其应用[J]. 化学进展, 2018, 30(6): 809-830.
[15] 邱康强, 朱宏翊, 计亮年, 巢晖. 金属配合物用于细胞内动态实时荧光示踪研究[J]. 化学进展, 2018, 30(10): 1524-1533.