English
新闻公告
More
化学进展 2018, Vol. 30 Issue (2/3): 295-303 DOI: 10.7536/PC170738 前一篇   后一篇

• 综述 •

层状双氢氧化物/聚合物纳米复合材料

贾潞1,2,3, 马建中1,2,3*, 高党鸽1,2,3*, 吕斌1,2,3   

  1. 1. 陕西科技大学轻工科学与工程学院 西安 710021;
    2. 中国轻工业皮革清洁生产重点实验室 西安 710021;
    3. 北京化工大学 化工资源有效利用国家重点实验室 北京 100029
  • 收稿日期:2017-07-24 修回日期:2017-11-15 出版日期:2018-02-15 发布日期:2017-12-11
  • 通讯作者: 马建中,majz@sust.edu.cn;高党鸽,dangge2000@126.com E-mail:majz@sust.edu.cn;dangge2000@126.com
  • 基金资助:
    化工资源有效利用国家重点实验室开放课题(No.CRE-2017-C-106)和陕西科技大学科研创新团队建设项目(No.TD12-03)资助

Layered Double Hydroxides/Polymer Nanocomposites

Lu Jia1,2,3, Jianzhong Ma1,2,3*, Dangge Gao1,2,3*, Bin Lv1,2,3   

  1. 1. College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China;
    2. Key Laboratory of Leather Cleaner Production, China National Light Industry, Xi'an 710021, China;
    3. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2017-07-24 Revised:2017-11-15 Online:2018-02-15 Published:2017-12-11
  • Supported by:
    The work was supported by the State Key Laboratory of Chemical Resource Engineering(No.CRE-2017-C-106) and the Scientific Research Group Building Program of Shaanxi University of Science and Technology(No.TD12-03).
层状双氢氧化物(LDH)是一类由带负电荷的阴离子和带正电荷的金属氢氧化物所构成的层状化合物。将LDH作为前驱体引入聚合物基体中,获得LDH/聚合物纳米复合材料,从而改善或加强聚合物基体的功能性,在许多领域展现出优异性能及巨大的发展潜力。本文对LDH/聚合物纳米复合材料的制备方法进行介绍,主要包括共混法、插层复合法、原位聚合法、剥离/重组法和层层自组装法等,并对其在阻燃、气体阻隔、红外吸收、缓释和吸附等方向的研究进行综述。最后对该类材料的研究方向和研究领域的发展趋势进行了展望。
Layered double hydroxides(LDH) are a class of ionic lamellar compounds made up of positively charged layered hydroxides with an interlayer region containing charge compensating anions. LDH can be introduced as precursor into polymer matrix to prepare LDH/polymer nanocomposites. The properties of the polymer matrix can be strengthened as the addition of LDH, and nanocomposites have shown excellent performances and development potentials in many fields. In this paper, the preparation methods of LDH/polymer nanocomposites are reviewed, such as blending, intercalation, in-situ, exfoliation/adsorption, layer-by-layer(LBL) assembly. Then the applications of the LDH/polymer nanocomposites are also summarized, such as flame retardant, gas barrier, infrared absorption, controlled release, adsorption. Finally, development trends of research direction and research field of the LDH/polymer nanocomposites are prospected.
Contents
1 Introduction
2 Structure and properties of LDH
2.1 Structure of LDH
2.2 Properties of LDH
3 Preparation methods of LDH/polymer nanocomposite
3.1 Blending method
3.2 Intercalation method
3.3 In-situ method
3.4 Exfoliation/adsorption method
3.5 Reconstruction method
3.6 Layer-by-layer(LbL) assembly
3.7 Spin-coating method
4 The applications of LDH/polymer nanocomposite
4.1 Flame retardant material
4.2 Ultraviolet and infrared absorption material
4.3 Biomedical material
4.4 Water treatment material
4.5 Gas barrier material
4.6 Luminescent material
4.7 Energy storage materials
5 Conclusion

中图分类号: 

()
[1] 赵维(Zhao W), 齐暑华(Qi S H). 涂料工业(Paint & Coatings Industry), 2008, 38(2):43.
[2] Rives V. Layered Double Hydroxides Present and Future. NY:Nova Science Publishers Inc, 2001. 23.
[3] Vaccari A. Catal. Today, 1998, 41:53.
[4] Khan A I, Ragavan A, Fong B, Markland C, O' Brien M, Dunbar T G, Williams G R, O'Hare D. Ind. Eng. Chem. Res., 2009, 48:10196.
[5] Benito P, Herrero M, Labajos F M, Rives V. Appl. Clay Sci., 2010, 48:218.
[6] Yu J, Wang Q, O' Hare D, Sun L. Chem. Soc. Rev., 2017, 46:5950.
[7] 杨杰(Yang J), 谢光银(Xie G Y). 合成纤维(Synthetic Fiber in China), 2014, 43(6):41.
[8] McKenzie A L, Fishel C T, Davis R J. J. Catal., 1992, 138:547.
[9] 任玲玲(Ren L L), 何静(He J), 段雪(Duan X). 化学通报(Chemistry Bulletin), 2001, 64:686.
[10] Meyn M, Beneke K, Lagaly G. Inorg. Chem., 1990, 29:5201.
[11] Mokhtar M, Basahel S N, Al-Angary Y O. J. Alloys Compd., 2009, 493:376.
[12] Arai Y, Ogawa M. Appl. Clay Sci., 2009, 42:601.
[13] Chagas L H, De Carvalho G S G, Do Carmo W R, San Gil R A S, Chiaro S S X, Leitao A A, Diniz R, De Sena L A, Achete C A. Mater. Res. Bull., 2015, 64:207.
[14] 邓欣(Deng X), 曾虹燕(Zeng H Y), 冯震(Feng Z), 冯波(Feng B). 功能材料(Journal of Functional Materials), 2008, 39(2):341.
[15] Li C M, Wei M, Evans D G, Duan X. Small, 2014, 10:4469.
[16] Ma S L, Huang L, Ma L J, Shim Y, Islsm S M, Wang P L, Zhao L D, Wang S C, Sun G B, Yang X J, Kanatzidis M G. J. Am. Chem. Soc., 2015, 137:3670.
[17] Fu L L, Qi G G, Shekhah O, Belmabkhout Y, Estevez L, Eddaoudi M, Giannelis E P. ChemSusChem, 2014, 7:1035.
[18] Mousty C, Prévot V. Anal. Bioanal. Chem., 2013, 405:3513.
[19] Rives V, Arco M D, Martín C. Appl. Clay Sci., 2014, 88/89:239.
[20] Wang Q, O'Hare D. Chem. Rev., 2012, 112:4124.
[21] Kovanda F, Jindova E, Dousova B, Kolousek D, Plestil J, Sedlakova Z. Acta Geodyn. Geomater., 2009, 6:111.
[22] Solomon M J, Almusallam A S, Seefeldt K F, Somwangthanaroj A, Varadan P. Macromolecules, 2001, 34:1864.
[23] Kornmann X, Lindberg H, Berglund L A. Polymer, 2001, 42:4493.
[24] 徐建华(Xu J H), 郝建薇(Hao J W), 赵芸(Zhao Y), 段雪(Duan X).现代化工(Modern Chemical Industry), 2002, 22:34.
[25] Nyambo C, Wilkie C A. Polym. Degrad. Stabil., 2009, 94:506.
[26] Lonkar S P, Morlat-Therias S, Caperaa N, Leroux F, Gardette J L, Singh R P. Polymer, 2009, 50:1505.
[27] Kutlu B, Meinl J, Leuteritz A, Brünig H, Heinrich G. Polymer, 2013, 54:5712.
[28] Wang Q, Undrell J P, Gao Y S, Cai G P, Buffet J C, Wilkie C A, O'Hare D. Macromolecules, 2013, 46:6145.
[29] Wang Q, O'Hare D. Chem. Commun., 2013, 49:6301.
[30] Wang Q, Zhang X, Zhu J, Guo Z H, O'Hare D. Chem. Commun., 2012, 48:7450.
[31] Nagendra B, Mohan K, Gowd E B. ACS Appl. Mater. Interfaces, 2015, 7:12399.
[32] Liao H, Jia Y Q, Wang L M, Yin Q, Han J B, Sun X L, Wei M. ACS Omega, 2017, 2:4253.
[33] Chen W, Qu B J. J. Mater. Chem., 2004, 14:1705.
[34] Liu J, Chen G M, Yang J P. Polymer, 2008, 49:3923.
[35] Bubniak G A, Schreiner W H, Mattoso N, Wypych F. Langmuir, 2002, 18:5967.
[36] Du L C, Qu B J. J. Mater. Chem., 2006, 16:1549.
[37] Du L C, Qu B J, Zhang M. Polym. Degrad. Stabil., 2007, 92:497.
[38] Ding P, Qu B J. Polym. Eng. Sci., 2006, 46:1153.
[39] Shouldice G T D, Choi P Y, Koene B E, Nazar L F, Rudin A. J. Polym. Sci. Pol. Chem., 1995, 33:1409.
[40] Wang G A, Wang C C, Chen C Y. Polymer, 2005, 46:5065.
[41] Lennerová D, Kovanda F, Brozek J. Appl. Clay Sci., 2015, 114:265.
[42] Carmo D M, Oliveira M G, Soares B G. Appl. Clay Sci., 2014, 101:128.
[43] Wilson O C, Olorunyolemi T, Jaworski A, Boruma L, Younga D, Siriwata A, Dickensb E, Oriakhic C, Lernerc M. Appl. Clay Sci., 1999, 15:265.
[44] Yu J F, Sims J E, Sun L Y. J. Mater. Sci., 2017, 52:6647.
[45] Chen W, Feng L, Qu B J. Solid State Commun., 2004, 130:259.
[46] Li B G, Hu Y, Liu J, Chen Z Y, Fan W C. Colloid Polym. Sci., 2003, 281:998.
[47] Yuan Y, Zhang Y, Shi W F. Appl. Clay Sci., 2011, 53:608.
[48] 段雪(Duan X), 张法智(Zhang F Z). 无机超分子材料的插层组装化学(Intercalation of Inorganic Supramolecular Materials). 北京:科学出版社(Beijing:Science Press), 2009. 68.
[49] Letoux F, Besse J P. Chem. Mater., 2001, 13:3507.
[50] Guo X X, Zhang F Z, Evans D G, Duan X. Chem. Commun., 2010, 46:5197.
[51] Liu Z P, Ma R Z, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T. J. Am. Chem. Soc., 2006, 128:4872.
[52] Yan D P, Lu J, Wei M, Han J B, Ma J, Li F, Evans D G, Duan X. Angew. Chem. Int. Ed., 2009, 121:3119.
[53] Yan D P, Lu J, Ma J, Wei M, Wang X R, Evans D G, Duan X. Langmuir, 2010, 26:7007.
[54] Chen D, Wang X Y, Liu T X, Wang X D, Li J. ACS Appl. Mater. Interfaces, 2010, 2:2005.
[55] 王东(Wang D), 刘红缨(Liu H Y), 贺军辉(He J H), 刘林林(Liu L L). 影像科学与光化学(Photographic Science and Photochemistry), 2012, 30(2):91.
[56] Pan T, Xu S M, Dou Y B, Liu X X, Li Z Z, Han J B, Yan H, Wei M. J. Mater. Chem. A, 2015, 3:12350.
[57] Wang L M, Dou Y B, Wang J J, Han J B, Liu L, Wei M. Compos. Part A Applied Science & Manufacturing, 2017,102:314.
[58] Camino G, Maffezzoli A, Braglia M, Lazzaro M D, Zammarano M. Polym. Degrad. Stabil., 2001, 74:457.
[59] Chattopadhyay D K, Raju K V S N. Prog. Polym. Sci., 2007, 32:352.
[60] Kaul P K, Samson A J, Selvan G T, Enoch IVMV, Selvakumar P M. Appl. Clay Sci., 2016, 135:234.
[61] Manzi-Nshuti C, Hossenlopp J M, Wilkie C A. Polym. Degrad. Stabil., 2008, 93:1855.
[62] Cai J, Heng H M, Hu X P, Xu Q K, Miao F. Polym. Degrad. Stabil., 2016, 126:47.
[63] Zhao C X, Liu Y, Wang D Y, Wang D L, Wang Y Z. Polym. Degrad. Stabil., 2008, 93:1323.
[64] Xu Z P, Saha S K, Braterman P S, D'Souza N. Polym. Degrad. Stabil., 2006, 91:3237.
[65] Wang W, Pan H F, Shi Y Q, Pan Y, Yang W, Liew K M, Song L, Hu Y. Compos. Part A-Appl. Sci. Manufacturing, 2016, 80:259.
[66] 矫庆泽(Jiao Q Z), 赵芸(Zhao Y), 谢晖(Xie H), Evans D G, 段雪(Duan X). 应用化学(Chinese Journal of Applied Chemistry), 2002, 19(10):1011.
[67] 许国志(Xu G Z), 郭灿雄(Guo C X), 段雪(Duan X). 应用化学(Chinese Journal of Applied Chemistry), 1999, 16(3):45.
[68] Wang L J, Xu X Y, Evans D G, Duan X, Li D Q. J. Solid State Chem., 2010, 183:1114.
[69] Wang L J, Wang L R, Feng Y J, Feng J T, Li D Q. Appl. Clay Sci., 2011, 53:592.
[70] Gao Y S, Zhao Y F, Qiu L, Guo Z H, O'Hare D, Wang Q. Polym. Composite., 2015, 38(9):1937.
[71] Choy J H, Jung J S, Oh J M, Park M, Jeong J, Kang Y K, Han O J. Biomaterials, 2004, 25:3059.
[72] Xu Z P, Niebert M, Porazik K, Walker T L, Cooper H M, Middelberg A P, Gray P P, Bartlett P F, Lu G Q. J. Control. Release, 2008, 130:86.
[73] Xu Z P, Gu Z, Cheng X, Rasoul F, Whittaker A K, Lu G Q M. J. Nanopart. Res., 2011, 13:1253.
[74] Mahkam M, Davatgar M, Rezvani Z, Nejati K. Int. J. Polym. Mater., 2013, 62:57.
[75] Hu H, Xiu K M, Xu S L, Yang W T, Xu F J. Bioconjug. Chem., 2013, 24:968.
[76] Hibino T. Appl. Clay Sci., 2014, 87:150.
[77] Li B, Zhang Y X, Zhou X B, Liu Z L, Liu Q Z, Li X H. J. Alloys Compd., 2016, 673:265.
[78] Yan L G, Yang K, Shan R R, Yan T, Wei J, Yu S J, Yu H Q, Du B. J. Colloid Interface Sci. 2015, 448:508.
[79] Tian L, Zhao Y F, He S, Wei M, Duan X. Chem. Eng. J., 2012, 184:261.
[80] Shao M F, Han J B, Wei M, Evans D G, Duan X. Chem. Eng. J., 2011, 168:519.
[81] Dou Y B, Zhou A W, Pan T, Han J B, Wei M, Evans D G, Duan X. Chem. Commun., 2014, 50:7136.
[82] Dou Y B, Pan T, Xu S M, Yan H, Han J B, Wei M, Evans D G, Duan, X. Angew. Chem. Int. Ed., 2015, 54(33):9673.
[83] Cho S, Kwag J, Jeong S, Baek Y, Kim S. Chem. Mater., 2013, 25:1071.
[84] Qin Y M, Lu J, Li S D, Li Z, Zheng S F. J. Phys. Chem. C, 2014, 118:20538.
[85] Liu X X, Zhou A W, Dou Y B, Pan T, Shao M F, Han J B, Wei M. Nanoscale, 2015, 7:17088.
[86] Zhao J W, Shao M F, Yan D P, Zhang S T, Lu Z Z, Li Z X, Gao X Z, Wang B Y, Wei M, Evans D G, Duan X. J. Mater. Chem. A, 2013, 1:5840.
[87] Zhao J W, Xu S M, Tschulik K, Compton R G, Wei M, O'Hare D, Evans D G, Duan X. Adv. Funct. Mater., 2015, 25:2745.
[88] Han J B, Dou Y B, Zhao J W, Wei M, Evans D G, Duan X. Small, 2013, 9:98.
[89] Song Y, Cai X, Xu X X, Liu X X. J. Mater. Chem. A, 2015, 3(28):14712.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[4] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[5] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[6] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[7] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[8] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[9] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[10] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[11] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[12] 付素芊, 汪英, 刘凯, 贺军辉. 微纳多孔聚合物薄膜的制备与应用[J]. 化学进展, 2022, 34(2): 241-258.
[13] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[14] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[15] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.