English
新闻公告
More
化学进展 2017, Vol. 29 Issue (10): 1252-1259 DOI: 10.7536/PC170541 前一篇   后一篇

• 综述 •

纳米金属-有机框架材料的制备及应用

赵田*, 董茗, 赵熠, 刘跃军*   

  1. 湖南工业大学包装与材料工程学院 株洲 412007
  • 收稿日期:2017-05-18 修回日期:2017-07-21 出版日期:2017-10-15 发布日期:2017-08-29
  • 通讯作者: 赵田,e-mail:tian_zhao@hut.edu.cn;刘跃军,e-mail:yjliu_2005@126.com E-mail:tian_zhao@hut.edu.cn;yjliu_2005@126.com
  • 基金资助:
    国家自然科学基金项目(No.11372108)资助

Preparation and Application of Nano-Sized Metal-Organic Frameworks

Tian Zhao*, Ming Dong, Yi Zhao, Yuejun Liu*   

  1. School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
  • Received:2017-05-18 Revised:2017-07-21 Online:2017-10-15 Published:2017-08-29
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 11372108).
金属-有机框架材料(MOFs)自发现以来备受关注,其独特的高孔隙率结构特性、孔径可调以及可官能化等特点,在许多领域都有潜在的应用,如储气、分离、催化和热能转化等。纳米金属-有机框架材料(NMOFs)因具有纳米尺寸,既拥有传统块状MOFs的性质,也具备特殊的物理/化学特性,表现出更为优异的性能。本文介绍了MOFs的发展,及几种经典的MOFs结构及其应用;重点论述了近年来一些重要的纳米MOFs的制备方法和应用,并对纳米MOFs在新型材料领域中的应用及其发展方向进行了展望。
Metal-organic frameworks (MOFs) receive great attention, due to their high porosity which promises applications in gas storage, separations, catalysis and heat transformation etc. Nano metal-organic framework materials (NMOFs) combined the bulk phase properties of the MOFs together with the additional physical/chemical properties derived from nano-sized particles, which can display improved properties. This review generally introduces the development of MOFs, several classical prototypical MOFs structures and their applications. Meanwhile, the preparation methods of some special important NMOFs and their applications are discussed. Finally, we present the trend and future prospects of novel materials based on NMOFs.
Contents
1 Introduction
2 Metal-organic frameworks
3 Preparation and application of nano metal-organic framework materials
3.1 Preparation of nano-sized classical MOFs
3.2 Applications of classical nano-MOFs
3.3 Preparation and application of other nano-MOFs
4 Conclusion

中图分类号: 

()
[1] Kitagawa S, Kitaura R, Noro S i. Angew. Chem. Int. Ed., 2004, 43:2334.
[2] Long J R, Yaghi O M. Chem. Soc. Rev., 2009, 38:1213.
[3] Zhao T, Heering C, Boldog I, Domasevitch K V, Janiak C. CrystEngComm, 2017, 19:776.
[4] Spokoyny A M, Kim D, Sumrein A, Mirkin C A. Chem. Soc. Rev., 2009, 38:1218.
[5] Meek S T, Greathouse J A, Allendorf M D. Adv. Mater., 2011, 23:249.
[6] Jiang H L, Xu Q. Chem. Commun., 2011, 47:3351.
[7] Sakata Y, Furukawa S, Kondo M, Hirai K, Horike N, Takashima Y, Uehara H, Louvain N, Meilikhov M, Tsuruoka T, Isoda S, Kosaka W, Sakata O, Kitagawa S. Science, 2013, 339:193.
[8] Tranchemontagne D J, Mendoza-Cortes J L, O'Keeffe M, Yaghi O M. Chem. Soc. Rev., 2009, 38:1257.
[9] Perry Iv J J, Perman J A, Zaworotko M J. Chem. Soc. Rev., 2009, 38:1400.
[10] Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A Ö, Snurr R Q, O'Keeffe M, Kim J, Yaghi O M. Science, 2010, 329:424.
[11] Farha O K, Yazayd?n A Ö, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T. Nat. Chem., 2010, 2:944.
[12] Farha O K, Eryazici I, Jeong N C, Hauser B G, Wilmer C E, Sarjeant A A, Snurr R Q, Nguyen S T, Yazayd?n A Ö, Hupp J T. J. Am. Chem. Soc., 2012, 134:15016.
[13] Murray L J, Dinca M, Long J R. Chem. Soc. Rev., 2009, 38:1294.
[14] Zhao X, Xiao B, Fletcher A J, Thomas K M, Bradshaw D, Rosseinsky M J. Science, 2004, 306:1012.
[15] Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R. Chem. Rev., 2011, 112:724.
[16] Yanai N, Kitayama K, Hijikata Y, Sato H, Matsuda R, Kubota Y, Takata M, Mizuno M, Uemura T, Kitagawa S. Nat. Mater., 2011, 10:787.
[17] Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Chem. Rev., 2011, 112:1105.
[18] Achmann S, Hagen G, Kita J, Malkowsky I, Kiener C, Moos R. Sensors, 2009, 9:1574.
[19] Yamada T, Otsubo K, Makiura R, Kitagawa H. Chem. Soc. Rev., 2013, 42:6655.
[20] Taylor J M, Mah R K, Moudrakovski I L, Ratcliffe C I, Vaidhyanathan R, Shimizu G K. J. Am. Chem. Soc., 2010, 132:14055.
[21] Sadakiyo M, Okawa H, Shigematsu A, Ohba M, Yamada T, Kitagawa H. J. Am. Chem. Soc., 2012, 134:5472.
[22] Horcajada P, Gref R, Baati T, Allan P K, Maurin G, Couvreur P, Férey G, Morris R E, Serre C. Chem. Rev., 2011, 112:1232.
[23] Rocca J D, Liu D, Lin W. Acc. Chem. Res., 2011, 44:957.
[24] Taylor-Pashow K M, Rocca J D, Xie Z, Tran S, Lin W. J. Am. Chem. Soc., 2009, 131:14261.
[25] Rocha J, Carlos L D, Paz F A A, Ananias D. Chem. Soc. Rev., 2011, 40:926.
[26] Schubert U. Chem. Soc. Rev., 2011, 40:575.
[27] Ma L, Abney C, Lin W. Chem. Soc. Rev., 2009, 38:1248.
[28] Carné A, Carbonell C, Imaz I, Maspoch D. Chem. Soc. Rev., 2011, 40:291.
[29] Yaghi O M, Li G, Li H. Nature, 1995, 378:703.
[30] Yaghi O M, Li H. J. Am. Chem. Soc., 1995, 117:10401.
[31] Batten S R, Champness N R, Chen X M, Garcia-Martinez J, Kitagawa S, Öhrström L, O'Keeffe M, Suh M P, Reedijk J. CrystEngComm, 2012, 14:3001.
[32] Batten S R, Champness N R, Chen X M, Garcia-Martinez J, Kitagawa S, Öhrström L, O'Keeffe M, Suh M P, Reedijk J. Pure Appl. Chem., 2013, 85:1715.
[33] Janiak C. Dalton Trans., 2003, (14):2781.
[34] Férey G. J. Solid State Chem., 2000, 152:37.
[35] Surble S, Millange F, Serre C, Férey G, Walton R I. Chem. Commun., 2006, (14):1518.
[36] Park K S, Ni Z, Côté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M.PNAS, 2006, 103:10186.
[37] Chui S S, Lo S M F, Charmant J P H, Orpen A G, Williams I D. Science, 1999, 283:1148.
[38] Kim M K, Jo V, Lee D W, Shim I W, Ok K M. CrystEngComm, 2010, 12:1481.
[39] Klein N, Senkovska I, Gedrich K, Stoeck U, Henschel A, Mueller U, Kaskel S. Angew. Chem. Int. Ed., 2009, 48:9954.
[40] Katz M J, Brown Z J, Colón Y J, Siu P W, Scheidt K A, Snurr R Q, Hupp J T, Farha O K. Chem. Commun., 2013, 49:9449.
[41] Furukawa H, Cordova K, O'Keeffe M, Yaghi O. Science, 2013, 341:1230444.
[42] Li H, Eddaoudi M, Groy T L, O'Keeffe M, Yaghi O M. Nature, 1999, 402:276.
[43] O'Keeffe M. Chem. Soc. Rev., 2009, 38:1215.
[44] Horcajada P, Surblé S, Serre C, Hong D Y, Seo Y K, Chang J S, Grenèche J M, Margiolaki I, Férey G. Chem. Commun., 2007:2820.
[45] Gangu K, Maddila S, Mukkamala S, Jonnalagadda S. Inorg. Chim. Acta, 2016, 466:61.
[46] 胡一平(Hu Y P), 陕多亮(Shan D L), 卢小泉(Lu X Q). 高等学校化学学报(Chem. J. Chin. Univ.), 2016, 37(6):1082.
[47] Zhan G, Zeng H. Coord. Chem. Rev., 2016, 320:181.
[48] Zhang S, Yang Q, Liu X, Qu X, Wei Q, Xie G, Chen S, Gao S. Coord. Chem. Rev., 2016, 307:5107.
[49] Wang C, Liu X, Demir N, Chen J, Li K. Chem. Soc. Rev., 2016, 45, 5107.
[50] Bigdeli M, Morsali A. Ultrason. Sonochem., 2015, 27:416.
[51] Zheng Y, Liu K, Sun X, Guan R, Su H, You H, Qi C. Crystengcomm, 2016, 18(6):1078.
[52] Hermes S, Witte T, Hikov T, Zacher D, Bahnmüller S, Langstein G, Huber K, Fischer R. J. Am. Chem. Soc., 2007, 129:5324.
[53] Lai D, Li D, Wang J, Yang J. Plast. Rubber Compos., 2015, 44(9):376.
[54] Lykourinou V, Chen Y, Wang X, Meng L, Hoang T, Ming L, Musselman R, Ma S. J. Am. Chem. Soc., 2011, 133:10382.
[55] Kreno L, Hupp J, Van Duyne R. Anal. Chem., 2010, 82:8042.
[56] Yang S, Choi J, Chae H, Cho J, Nahm K, Park C. Chem. Mater., 2009, 21:1893.
[57] Na L, Hua R, Ning G, Ou X. Chem. Res. Chinese U, 2012, 28(4):555.
[58] Wee L H, Lohe M R, Janssens N, Kaskel S, Martens J A. J. Mater. Chem., 2012, 22:13742.
[59] Xin C, Zhan H, Huang X, Li H, Zhao N, Xiao F, Wei W, Sun Y. RSC Adv., 2015, 5:27901.
[60] Liu Q, Yang J, Jin L, Sun W. CrystEngComm, 2016, 22:4127.
[61] Xin Z, Bai J, Pan Y, Zaworotko M J. Chem.-Eur. J., 2010, 16:13049.
[62] Ma M, Zacher D, Zhang X, Fischer R A, Metzler-Nolte N. Cryst. Growth Des., 2011, 11:185.
[63] Yang J, Liu Q, Sun W. J. Solid State Chem., 2014, 218:50.
[64] Yang J, Liu Q, Sun W. Microporous Mesoporous Mater., 2014, 190:26.
[65] Serre C, Millange F, Surble S, Férey G. Angew. Chem. Int. Ed., 2004, 43:6285.
[66] Serre C, Millange F, Thouvenot C, Nogues M, Marsolier G, Louer D, Férey G. J. Am. Chem. Soc., 2002, 124:13519.
[67] Millange F, Guillou N, Walton R I, Greneche J M, Margiolaki I, Férey G. Chem. Commun., 2008:4732.
[68] Bauer S, Serre C, Devic T, Horcajada P, Marrot J, Férey G, Stock N. Inorg. Chem., 2008, 47:7568.
[69] Zhang F, Zou X, Sun F, Ren H, Jiang Y, Zhu G. CrystEngComm, 2012, 14(17):5487.
[70] Chin J M, Chen E Y, Menon A G, Tan H Y, Hor A T S, Schreyer M K, Xu J. CrystEngComm, 2013, 15:654.
[71] Akhbari K, Morsali A. Mater. Lett., 2015, 141:315.
[72] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309(5743):2040.
[73] Zhao T, Jeremias F, Boldog I, Nguyen B, Henninger S, Janiak C. Dalton Trans., 2015, 44:16791.
[74] Khan N A, Kang I J, Seok H Y, Jhung S H. Chem. Eng. J., 2011, 166:1152.
[75] Jhung S H, Lee J H, Yoon J W, Serre C, Férey G, Chang J S. Adv. Mater., 2007, 19:121.
[76] Jiang D, Burrows A D, Edler K J. CrystEngComm, 2011, 13:6916.
[77] Zhao P, Cao N, Luo W, Cheng G. J. Mater. Chem. A, 2015, 3:12468.
[78] Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. J. Am. Chem. Soc., 2008, 130:13850.
[79] Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. Chem. -Eur. J., 2011, 17:6643.
[80] Tai S, Zhang W, Zhang J, Luo G, Jia Y, Deng M, Ling Y. Microporous Mesoporous Mater., 2016, 220:148.
[81] Trinh D X, Tran T P N, Taniike T. Sep. Purif. Technol., 2017, 117:249.
[82] Huang X C, Lin Y Y, Zhang J P, Chen X M. Angew. Chem. Int. Ed., 2006, 45:1557.
[83] Tsai C-W, Langner E H G. Microporous Mesoporous Mater., 2016, 221:8.
[84] Sun W, Zhai X, Zhao L. Chem. Eng. J., 2016, 289:59.
[85] Rafiee E, Nobakht N. Acta Chim. Slov., 2016, 63:309.
[86] Vu T V, Kosslick H, Schulz A, Harloff J, Paetzold E, Lund H, Kragl U, Schneider M, Fulda G. Microporous Mesoporous Mater., 2012, 154:100.
[87] Cheng S, Shang N, Feng C, Gao S, Wang C, Wang Z. Catal. Commun., 2017, 89:91.
[88] Kim S N, Yang S T, Kim J, Park J E, Ahn W S. CrystEngComm, 2012, 14:4142.
[89] Wen M, Mori K, Kamegawa T, Yamashita H. Chem. Commun., 2014, 50:11645.
[90] Wu F, Qiu L G, Ke F, Jiang X. Inorg. Chem. Commun., 2013, 32:5.
[91] Saikia M, Bhuyan D, Saikia L. New J. Chem., 2015, 39:64.
[92] Tu J, Zeng X, Xu F, Wu X, Tian Y, Houa X, Long Z. Chem. Commun., 2017, 53:3361.
[93] Zhang Y, Dai T, Zhang F, Zhang J, Chu G, Quan C. Chin. J. Catal., 2016, 37:2106.
[94] Wang Y, Hou C, Zhang Y, He F, Liu M, Li X. J. Mater. Chem. B, 2016, 4:3695.
[95] Samadi-Maybodi A, Ghasemi S, Ghaffari-Rad H. J. Power Sources, 2016, 303:379.
[96] Li P, Zeng H C. ACS Appl. Mater. Interfaces, 2016, 8(43):29551.
[97] Gu Z, Chen S, Fu W, Zheng Q, Zhang J. ACS Appl. Mater. Interfaces, 2017, 9(8):7259.
[98] Tanh Jeazet H B, Staudt C, Janiak C. Chem. Commun., 2012, 48:2140.
[99] Tanh Jeazet H B, Koschine T, Staudt C, Raetzke K, Janiak C. Membranes, 2013, 3:331.
[100] Basu S, Balakrishnan M. Sep. Purif. Technol., 2017, 179:118.
[101] Lai L S, Yeong Y F, Lau K K, Shariff A M. J. Chem. Technol. Biotechnol., 2017, 92:420.
[102] Dou R, Zhang J, Chen Y, Feng S. Environ. Sci. Pollut. Res., 2017, 24:8778.
[103] Taheri A, Babakhani E, Towfighi J. J. Nat. Gas Sci. Eng., 2017, 38:272.
[104] Kim S I, Yoon T U, Kim M B, Lee S J, Hwang Y K, Chang J S, Kim H J,Lee H N, Lee U H, Bae Y S. Chem. Eng. J., 2016, 286:467.
[105] Ma J, Guo X, Ying Y, Liu D, Zhong C. Chem. Eng. J., 2017, 313:890.
[106] Lashkari E, Wang H, Liu L, Li J, Yam K. Food Chem., 2017, 221:926.
[107] Li Y, Li X, Guan Q, Zhang C, Xu T, Dong Y, Bai X, Zhang W. Int. J. Nanomed., 2017, 12:1465.
[108] Wuttke S, Braig S, Preiß T, Zimpel A, Sicklinger J, Bellomo C, Rädler J O, Vollmar A M, Bein T. Chem. Commun., 2015, 51:15752.
[109] Xia W, Zhu J, Guo W, An L, Xia D, Zou R. J. Mater. Chem. A, 2014, 2:11606.
[110] Lá?nez J, Zornoza B, Mayoral Á, Berenguer-Murcia Á, Cazorla-Amorós D, Télleza C, Coronas J. J. Mater. Chem. A, 2015, 3:6549.
[111] Li P, Klet R C, Moon S Y, Wang T C, Deria P, Peters A W, Klahr B M, Park H J, Al-Juaid S S, Hupp J T, Farha O K. Chem. Commun., 2015, 51:10925.
[112] Ge D, Peng J, Qu G, Geng H, Deng Y, Wu Junjie, Cao X, Zheng J, Gu H. New J. Chem., 2016, 40:9238.
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[5] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[6] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[7] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[8] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[9] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[10] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[15] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.