English
新闻公告
More
化学进展 2017, Vol. 29 Issue (2/3): 300-317 DOI: 10.7536/PC160929 前一篇   后一篇

• 综述 •

量子点荧光传感器的设计及应用

胡先运1,2*, 郭庆生1, 刘玉乾1, 孙清江1*, 孟铁宏2, 张汝国2   

  1. 1. 东南大学生物科学与医学工程学院 生物电子学国家重点实验室 南京 210096;
    2. 黔南民族医学高等专科学校 都匀 558000
  • 收稿日期:2016-09-27 修回日期:2016-12-21 出版日期:2017-02-15 发布日期:2017-02-27
  • 通讯作者: 胡先运, 孙清江 E-mail:huxianyun2004@163.com;sunqj@seu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21545006,21375015)、贵州省自然科学基金项目(No.2015GZ48861,2016GZ13752)、中央高校基本科研业务费专项资金项目(No.KYLX0187)、黔南科技计划项目(黔南科合工字[2016]12号)以及黔南民族医专科研基金项目(No.QNYZ201601)资助

Design Strategies and Applications of Quantum Dots Fluorescent Sensing

Xianyun Hu1,2*, Qingsheng Guo1, Yuqian Liu1, Qingjiang Sun1*, Tiehong Meng2, Ruguo Zhang2   

  1. 1. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
    2. Qiannan Medical College for Nationalities, Duyun 558000, China
  • Received:2016-09-27 Revised:2016-12-21 Online:2017-02-15 Published:2017-02-27
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (No. 21545006,21375015), the National Science Foundation of Guizhou Province (No. 2015GZ48861, 2016GZ13752), the Fundamental Research Funds for the Central Universities (No. KYLX0187) and the Scientific Research fund of Qiannan Medical College for Nationalities (No.QNYZ201601).
量子点(quantum dots,QDs)是一种新型的纳米荧光材料,具有优良的光电性质,已广泛应用于荧光传感及可视化检测,可实现对靶标分子高灵敏、高特异性分析。本文主要论述了量子点的表面化学修饰,以及量子点传感的作用原理,如荧光共振能量转移、电荷转移、直接荧光传感、生物发光共振能量转移、化学发光共振能量转移以及电化学发光,利用这些原理设计出不同的荧光传感器,并应用于不同分子或离子的可视化检测。同时对量子点的荧光传感存在的问题及挑战进行了总结,并提出量子点荧光传感将向生物相容性好、细胞或生物体内实时可视化检测、复杂体系中进行多靶标同时检测以及量子点的逻辑运算等方向发展。
Quantum dots (QDs), as novel fluorescent nanomaterials, have been widely used in fluorescent sensing and visual detection with high sensitivity and specificity analysis of target, owing to their excellent optical and electrical properties. The review addresses the surface functionalization of QDs that able to the use of sensing, and discusses different sensing mechanism including fluorescence resonance energy transfer (FRET), electron transfer (CT), direct fluorescent sensing, bioluminescence resonance energy transfer (BRET), chemiluminescence resonance energy transfer (CRET) and electrochemiluminescence (ECL), being applied in the different sensing systems. The challenges and existing problems of QDs fluorescent sensing application are summarized. Meanwhile fluorescent sensing of QDs will develop in the field of the good biocompatibility, real time visualization of sensing in cells or in vivo, multiplexed detection in complex systems and the function of sensing with logic-gate operations in the future.

Contents
1 Introduction
2 Photo-properties of quantum dots
3 Surface chemistry and conjugates of quantum dots
4 Mechanisms and design strategies of quantum dots fluorescence sensing
4.1 Fluorescence resonance energy transfer
4.2 Electron transfer
4.3 Direct fluorescent sensing
4.4 Bioluminescence resonance energy transfer
4.5 Chemiluminescence resonance energy transfer
4.6 Electrochemiluminescence
5 Conclusion

中图分类号: 

()
[1] Biju V, Itoh T, Ishikawa M. Chem. Soc. Rev., 2010, 39:3031.
[2] Alivisatos A P. Science, 1996, 271:933.
[3] Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Nature, 2000, 404:59.
[4] Burda C, Chen X B, Narayanan R, El-Sayed M A. Chem. Rev., 2005, 105:1025.
[5] Chaudhuri R G, Paria S. Chem. Rev., 2012, 112:2373.
[6] Klostrane J M, Chan W C W. Adv. Mater., 2006, 18:1953.
[7] Rosenthal S J, Chang J C, Kovtun O, McBride J R, Tomlinson I D. Chem. Biol., 2011, 18:10.
[8] Alivisatos A P, Gu W W, Larabell C. Annu. Rev. Biomed. Eng., 2005, 7:55.
[9] Probst C E, Zrazhevskiy P, Bagalkot V, Gao X H. Adv. Drug Deliv. Rev., 2013, 65:703.
[10] Fu A H, Gu W W, Larabell C, Alivisatos A P. Curr. Opin. Neurobiol., 2005, 15:568.
[11] Zrazhevskiy P, Sena M, Gao X H. Chem. Soc. Rev., 2010, 39:4326.
[12] Walling M A, Novak J A, Shepard J R E. Int. J. Mol. Sci., 2009, 10:441.
[13] Sun J J, Goldys E M. J. Phys. Chem. C, 2008, 112:9261.
[14] Yu W W, Qu L H, Guo W Z, Peng X G. Chem. Mater., 2003, 15:2854.
[15] Baird G S, Zacharias D A, Tsien R Y. Proc. Natl. Acad. Sci., 2000, 97:11984.
[16] Medintz I L, Tetsuouyeda H, Goldman E R, Mattoussi H. Nat. Mater., 2005, 4:435.
[17] Wu X, Liu H, Liu J, Haley K, Treadway J, Larson J, Ge N, Peale F, Bruchez M. Nat. Biotechnol., 2003, 21:41.
[18] Bruchez J M, Moronne M, Gin P, Weiss S, Alivisatos A P. Science, 1998, 281:2013.
[19] Chan W C W, Nie S. Science, 1998, 281:2016.
[20] Sing M N, Masilamany K, Ramaier N. RSC Adv., 2016, 6:21624.
[21] Zhang C, Yeh H, Kuroki M, Wang T. Nat. Mater., 2005, 4:826.
[23] Timothy T, Ruckh C G, Skipwith W C, Alexander W, Senko V B, Polina O, Heather A C. ACS Nano, 2016, 10:4020.
[24] Richard M G, Ryan C B. Anal. Chem., 2016, 88:431.
[25] Sharon E, Freeman R, Willner I. Anal. Chem., 2010, 82:7073.
[26] Dong H F, Gao W C, Yan F, Ji H X, Ju H X. Anal. Chem., 2010, 82:5511.
[27] Vasudevanpillai B, Tamitake I, Mitsuru I. Chem. Soc. Rev., 2010, 39:3031.
[28] Gao X, Cui Y, Levenson R, Chung L, Nie S. Nat. Biotechnol., 2004, 22:969.
[29] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Science, 2005, 307:538.
[30] Somers R C, Bawendi M G, Nocera D G. Chem. Soc. Rev., 2007, 36:579.
[31] Sun Q J, Guru S, Dai L M, Michael C, Angela C, Rajesh N, James G, Wang Y Q. ACS Nano, 2009, 3:737.
[32] Carey G H, Abdelhady A L, Ning Z, Thon S M, Bakr O M, Sargent E H. Chem. Rev., 2015, 115:12732.
[33] Kim M R, Ma D. J. Phys. Chem. Lett., 2015, 6:85.
[34] Sun Q J, Wang Y A, Li L S, Wang D, Zhu T, Xu J, Yang C, Li Y. Nat. Photonics, 2007, 1:717.
[35] Talapin D V, Lee J S, Kovalenko M V, Shevchenko E V. Chem. Rev., 2010, 110:389.
[36] Algar W R, Tavares A J, Krull U J. Anal. Chim. Acta, 2010, 673:1.
[37] Mattoussi H, Mauro J M, Goldman E R, Anderson G P, Sundar V C, Mikulec F V, Bawendi M G. J. Am. Chem. Soc., 2000, 122:12142.
[38] Breus V V, Heyes C D, Tron K, Nienhaus G U. ACS Nano, 2009, 3:2573.
[39] Liu W, Choi H S, Zimmer J P, Tanaka E, Frangioni J V, Bawendi M. J. Am. Chem. Soc., 2007, 129:14530.
[40] Dif A, Boulmedais F, Pinot M, Roullier V, Baudy M, Coquelle F M, Clarke S, Neveu P, Vignaux F, Le Borgne R, Dahan M, Gueroui Z, Marchi-Artzner V. J. Am. Chem. Soc., 2009, 131:14738.
[41] Susumu K, Uyeda H T, Medintz I L, Pons T. J. Am. Chem. Soc., 2007, 129:13987.
[42] Mei B C, Susumu K, Medintz I L, Delehanty J B, Mountziaris T J, Mattoussi H. J. Mater. Chem., 2008, 18:4949.
[43] Liu W, Howarth M, Greytak A B, Zheng Y, Nocera D G, Ting A Y, Bawendi M G. J. Am. Chem. Soc., 2008, 130:1274.
[44] Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach A L, Keller S, Radler J, Natile G, Parak W J. Nano Lett., 2004, 4:703.
[45] Valencia P M, Basto P A, Zhang L, Rhee M, Langer R, Farokhzad O C, Karnik R. ACS Nano, 2010, 4:1671.
[46] Liu W, Greytak A B, Lee J, Wong C R, Park J, Marshall L F, Jiang W, Curtin P N, Ting A Y, Nocera D G, Fukumura D, Jain R K, Bawendi M G. J. Am. Chem. Soc., 2010, 132:472.
[47] Pons T, Uyeda H T, Medintz I L, Mattoussi H. J. Phys. Chem. B, 2006, 110:20308.
[48] Wu P, He Y, Wang H F, Yan X P. Anal. Chem., 2010, 82:1427.
[49] Ji X, Zheng J, Xu J, Rastogi V K, Chen T C, De Frank J J, Leblanc R M. J. Phys. Chem. B, 2005, 109:3793.
[50] Goldman E R, Medintz I L, Whitley J L, Hayhurst A, Clapp A R, Uyeda H T, Deschamps J R, Lassman M E, Mattoussi H. J. Am. Chem. Soc., 2005, 127:6744.
[51] Wei Q, Lee M, Yu X, Lee E K, Seong G H, Choo J, Cho Y W. Anal. Biochem., 2006, 358:31.
[52] Pathak S, Davidson M C, Silva G A. Nano Lett., 2007, 7:1839.
[53] Mattoussi H, Mauro J M, Goldman E R, Anderson G P, Sundar V C, Mikulec F V, Bawendi M G. J. Am. Chem. Soc., 2000, 122:12142.
[54] Tang B, Cao L, Xu K, Zhuo L, Ge J, Li Q, Yu L. Chem. Eur. J., 2008, 14:3637.
[55] Deng Z, Samanta A, Nangreave J, Yan H, Liu Y. J. Am. Chem. Soc., 2012, 134:17424.
[56] Prokup A, Deiters A. Angew. Chem., Int. Ed., 2014, 53:13192.
[57] Pei H, Liang L, Yao G, Li J, Huang Q, Fan C. Angew. Chem. Int. Ed., 2012, 51:9020.
[58] Shlyahovsky B, Li Y, Lioubashevski O, Elbaz J, Willner I. ACS Nano, 2009, 3:1831.
[59] Wu C, Wan S, Hou W, Zhang L, Xu J, Cui C, Wang Y, Hu J, Tan W. Chem. Commun., 2015, 51:3723.
[60] Pu F, Ren J, Qu X. Adv. Mater., 2014, 26:5742.
[61] Jung C, Ellington A D. Acc. Chem. Res., 2014, 47:1825.
[62] Seelig G, Soloveichik D, Zhang D Y, Winfree E. Science, 2006, 314:1585.
[63] Goldman E R, Balighian E D, Mattoussi H, Kuno M K, Mauro J M, Tran P T, Anderson G P. J. Am. Chem. Soc., 2002, 124:6378.
[64] Yao H, Zhang Y, Xiao F, Xia Z Y, Rao J. Angew. Chem., Int. Ed., 2007, 46:4346.
[65] Barat B, Sirk S J, Mc Cable K E, Li J, Lepin E J, Remenyi R, Koh A L, Olafsen T, Gambhir S S, Weiss S, Wu A M. Bioconjug. Chem., 2009, 20:1474.
[66] Fernández-Argüelles M T, Costa-Fernández J M, Pereiro R, Sanz-Medel A. Analyst, 2008, 133:444.
[67] Goldman E R, Balighian E D, Mattoussi H, Kuno M K, Mauro J M, Tran P T, Anderson G P. J. Am. Chem. Soc., 2002, 124:6378.
[68] Vu T Q, Maddipati R, Blute T A, Nehilla B J, Nusblat L, Desai T A. Nano Lett., 2005, 5:603.
[69] Lidke D S, Nagy P, Heintzmann R, Arndt-Jovin D J, Post J N, Grecco H E, Jares-Erijman E A, Jovin T M. Nat. Biotechnol., 2004, 22:198.
[70] Levy M, Cater S F, Ellington A D. Chem. Biol. Chem., 2005, 6:2163.
[71] Souvik C, Tan L P, Yao S Q. Nat. Protocol., 2006, 1:2386.
[72] Pan Z, Mora-Seró I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong X, Bisquert J. J. Am. Chem. Soc., 2014, 136:9203.
[73] Hines D A, Kamat P V. ACS Appl. Mater. Inter., 2014, 6:3041.
[74] Achermann M, Petruska M A, Crooker S A, Klimov V I. J. Phys. Chem. B, 2003, 107:13782.
[75] Steigermald M L, Brus L E. Acc. Chem. Res., 1990, 23:183.
[76] Freeman R, Willner B, Willner I. J. Phys. Chem. Lett., 2011, 2:2667.
[77] Stanisavljevic M, Krizkova S, Vaculovicova M, Kizek R, Adam V. Biosens. Bioelectron., 2015, 74:562.
[78] Curutchet C, Franceschetti A, Zunger A, Scholes G D. J. Phys. Chem. C, 2008, 112:13336.
[79] Yuan L, Lin W Y, Zheng K B, Zhu S S. Acc. Chem. Res., 2013, 46:1462.
[80] Frasco M F, Chaniotakis N. Anal. Bioanal. Chem., 2010, 396:229.
[81] Freeman R, Girsh J, Willner I. ACS Appl. Mater. Inter., 2013, 5:2815.
[82] Su S, Fan J, Xue B, Yuwen L, Liu X, Pan D, Fan C, Wang L. ACS Appl. Mater. Inter., 2014, 6:1152.
[83] Freeman R, Liu X, Willner I. Nano Lett., 2011, 11:4456.
[84] Kim J H, Chaudhary S, Ozkan M. Nanotechnology, 2007, 18:195105.
[85] Kim J H, Morikis D, Ozkan M. Sens. Actuat. B, 2004, 102:315.
[86] Cady N C, Strickland A D, Batt C A. Mol. Cell. Probe., 2007, 21:116.
[87] Jiang G, Susha A S, Lutich A A, Stefani F D, Feldmann J, Rogach A L. ACS Nano, 2009, 3:4127.
[88] Liao Y, Zhou X, Xing D. ACS Appl. Mater. Inter., 2014, 6:9988.
[89] Liu Y, Dong X, Chen P. Chem. Soc. Rev., 2012, 41:2283.
[90] Lu C H, Yang H H, Zhu C L, Chen X, Chen G N. Angew. Chem., Int. Ed., 2009, 48:4785.
[91] He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C. Adv. Funct. Mater., 2010, 20:453.
[92] Zhang C, Xu J, Zhang S, Ji X, He Z. Chem. Eur. J. 2012, 18:8296.
[93] Medintz I L, Clapp A R, Brunel F M, Teiefenbrunn T, Uyeda H T, Chang E L, Deschamps J R, Dawson P E, Mattoussi H. Nat. Mater., 2006, 5:581.
[94] Levy M, Cater S F, Ellington A D. ChemBioChem, 2005, 6:2163.
[95] Chi C W, Lao Y H, Li Y S, Chen L C. Biosens. Bioelectron., 2011, 26:3346.
[96] Tyrakowski C M, Snee P T. Anal. Chem., 2014, 86:2380.
[97] 高桂园(Gao G Y),刘璐(Liu L),付璇(Fu X),杨冉(Yang R),屈凌波(Qu L B). 发光学报(Chin. J. Lumin.), 2012,33:911.
[98] Cheng A K, Su H, Wang Y A, Yu H Z. Anal. Chem., 2009, 81:6130.
[99] Medintz I L, Clapp A R, Mattoussi H, Goldman E R, Fisher B, Mauro J M. Nat. Mater., 2003, 2:630.
[100] Shi Y P, Pan Y, Zhang H, Zhang Z M, Li M J, Yi C Q, Yang M S. Biosens. Bioelectron., 2014, 56:39.
[101] Hu B, Zhang L P, Chen M L, Wang J H. Biosens. Bioelectron., 2012, 32:82.
[102] Wang Y H, Gao D Y, Zhang P F, Gong P, Chen C, Gao G H, Cai L T. Chem. Commun., 2014, 50:811.
[103] Zhang Y M, Yang X J, Gao Z Q. RSC Adv., 2015, 5:21675.
[104] Heger Z, Cernei N, Krizkova S, Masarik M, Kopel P, Hodek P, Zitka O, Adam V, Kizek R. Sci. Rep., 2015, 5:1.
[105] Tang B, Cao L H, Xu K H, Zhuo L H, Ge J H, Li Q F, Yu L J. Chem. Eur. J., 2008, 14:3637.
[106] Revesz E, Lai E P C, De Rosa M C. J. Biomol. Struct. Dyn., 2007, 24:645.
[107] Xia Y S, Song L, Zhu C Q. Anal. Chem., 2011, 83:1401.
[108] Zhang K, Mei Q S, Guan G J, Liu B H, Wang S H, Zhang Z P. Anal. Chem., 2010, 82:9579.
[109] Guo J J, Zhang Y, Luo Y L, Shen F, Sun C Y. Talanta, 2014, 125:385.
[110] Wang X, Sheng P T, Zhou L P, Tong X, Shi L, Cai Q Y. Biosens. Bioelectron., 2014, 60:52.
[111] Hu B, Hu L L, Chen M L, Wang J H. Biosens. Bioelectron., 2013, 49:499.
[112] Page L E, Zhang X, Jawaid A M, Snee P T. Chem. Commun., 2011, 47:7773.
[113] Liu B Y, Zeng F, Wu G F, Wu S Z. Analyst, 2012, 137:3717.
[114] Wu L, Guo Q, Liu Y, Sun Q. Anal. Chem., 2015, 87:5318.
[115] Wu C S, Oo M K K, Fan X D. ACS Nano, 2010, 4:5897.
[116] Freeman R, Willner I. Chem. Soc. Rev., 2012, 41:4067.
[117] 梁佳然(Liang J R), 钟文英(Zhong W Y), 于俊生(Yu J S). 化学进展(Progress in Chemistry), 2008, 20:1385.
[118] 晋卫军(Jin W J). 化学传感器(Chemical Sensors), 2014, 34:1.
[119] 戚丽(Qi L), 张宝华(Zhang B H), 吴芳英(Wu F Y). 化学进展(Progress in Chemistry), 2010, 22:1077.
[120] Hu X Y, Zhu K, Guo Q, Liu Y, Ye M, Sun Q J. Anal. Chim. Acta, 2014, 812:191.
[121] Liu Y, Ye M, Ge Q, Qu X, Guo Q, Hu X Y, Sun Q J. Anal. Chem., 2016, 88:1768.
[122] Zhu K, Hu X Y, Ge Q, Sun Q J. Anal. Chim. Acta, 2014, 812:199.
[123] Zhang L, Zhu K, Ding T, Hu X Y, Sun Q J, Xu C. Analyst, 2013, 138:887.
[124] Medintz I L, Pons T, Trammell S A, Grimes A F, English D S, Blanco-Canosa J B, Dawson P E, Mattoussi H. J. Am. Chem. Soc., 2008, 130:16745.
[125] Raichlin S, Sharon E, Freeman R, Tzfati Y, Willner I. Biosens. Bioelectron., 2011, 26:4681.
[126] 黎舒怀(Li S H),陶慧林(Tao H L),徐铭泽(Xu M Z),覃亚福(Qin Y F). 分析化学(Chinese J. Anal. Chem.), 2012, 40:1450.
[127] Jessica V, Zhou X Y, Ma X D, Flessau S, Lin H, Schmittel M, Mews A. Angew. Chem., Int. Ed., 2010, 49:6865.
[128] Ruedas-Rama M J, Hall E A H. Anal. Chem., 2008, 80:8260.
[129] Cayuela A, Soriano M L, Carrión M C, Valcárcel M. Anal. Chim. Acta, 2014, 820:133.
[130] Malgorzata G M, Gilles C, Janina L. Journal of Luminescence, 2012, 132:987.
[131] Jin W J, Fernández-Argüelles M T, Costa-Fernández J M. Chem. Comm., 2005, 7:883.
[132] Liu X, Zhang N, Bing T, Shangguan D. Anal. Chem., 2014, 86:2289.
[133] 高楼军(Gao L J),赵艳(Zhao Y),孙雪花(Sun X H),柴红梅(Chai H M),陈露(Chen L). 分析试验室(Chinese Journal of Analysis Laboratory), 2012, 31:59.
[134] 申晨凡(Shen C F),张直峰(Zhang Z F),郭瑜桉(Guo Y A),闫桂琴(Yan G Q). 分析测试学报(Journal of Instrumental Analysis), 2016, 35:949.
[135] Liang J G, Ai X P, He Z K, Pang D W. Analyst, 2004, 129:619.
[136] 甘婷婷(Gan T T),张玉钧(Zhang Y J),赵南京(Zhao N J),肖雪(Xiao X),殷高方(Yin G F),石朝毅(Shi C Y). 光学学报(Acta Optica Sinica), 2013, 12:183.
[137] Zhang Y, Zhang Z, Yin D, Li J, Xie R, Yang W. ACS Appl. Mater. Inter., 2013, 5:9709.
[138] 汪乐余(Wang L Y),朱英贵(Zhu Y G),朱昌青(Zhu C Q),王伦(Wang L),宋海燕(Song H Y),李世珍(Li S Z),李兴江(Li X J). 分析化学(Chinese J. Anal. Chem.), 2002, 30:1352.
[139] Boute N, Jockers R, Issad T. Trends Pharmacol. Sci., 2002, 23:351.
[140] Huang X, Li L, Qian H, Dong C, Ren J. Angew. Chem., Int. Ed., 2006, 45:5140.
[141] 李雅林(Li Y L),白波(Bai B),陈京(Chen J). 中国生物化学与分子生物学报(Chinese Journal of Biochemistry and Molecular Biology), 2009, 25:1077.
[142] Xia Z, Rao J. Curr. Opin. Biotechnol., 2009, 20:37.
[143] Dacres H, Dumancic M M, Horne I, Trowell S C. Anal. Biochem., 2009, 385:194.
[144] Kumar M, Zhang D, Broyles D, Deo S K. Biosens. Bioelectron., 2011, 30:133.
[145] So M K, Xu C, Loening A M, Gambhir S S, Rao J. Nat. Biotechnol., 2006, 24:339.
[146] Xia Z, Xing Y, So M K, Koh A L, Sinclair R, Rao J. Anal. Chem., 2008, 80:8649.
[147] Yao H, Zhang Y, Xiao F, Xia Z, Rao J. Angew. Chem., Int. Ed., 2007, 46:4346.
[148] Huang X, Ren J. Trac-trend. Anal. Chem., 2012, 40:77.
[149] Wang H Q, Li Y Q, Wang J H, Xu Q, Li X Q, Zhao Y D. Anal. Chim. Acta, 2008, 610:68.
[150] Huang X, Li L, Qian H, Dong C, Ren J. Angew. Chem., Int. Ed., 2006, 45:5140.
[151] Freeman R, Liu X, Willner I. J. Am. Chem. Soc., 2011, 133:11597.
[152] Richter M M. Chem. Rev., 2004, 104:3003.
[153] Miao W. Chem. Rev., 2008, 108:2506.
[154] Zhou J, Yang Y, Zhang C. Chem. Rev., 2015, 115:11669.
[155] Wu P, Hou X, Xu J, Chen H Y. Chem. Rev., 2014, 114:11027.
[156] Yang S, Liang J, Luo S, Liu C, Tang Y. Anal. Chem., 2013, 85:7720.
[157] Liu X, Jiang H, Lei J, Ju H. Anal. Chem., 2007, 79:8055.
[158] Wang X, Zhou Y, Xu J, Chen H. Adv. Funct. Mater., 2009, 19:1444.
[159] Zhou H, Han T, Wei Q, Zhang S. Anal. Chem., 2016, 88:2976.
[160] Zhou H, Liu J, Xu J, Chen H. Anal. Chem., 2011, 83:8320.
[161] Jie G, Wang L, Yuan J, Zhang S. Anal. Chem., 2011, 83:3873.
[162] Niu W, Zhu R, Cosnier S, Zhang X, Shan D. Anal. Chem. 2015, 87:11150.
[163] 石星波(Shi X B), 温超(Wen C), 符招弟(Fu Z D), 邓放明(Deng F M), 郑舒(Zheng S), 刘秋云(Liu Q Y). 化学进展(Progress in Chemistry), 2014, 26:1781.
[164] Wu P, Yan X P. Chem. Soc. Rev., 2013, 42:5489.
[1] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[2] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[3] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[4] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[5] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[6] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[7] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[8] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[9] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[10] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[11] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[12] 吴星辰, 梁文慧, 蔡称心. 碳量子点的荧光发射机制[J]. 化学进展, 2021, 33(7): 1059-1073.
[13] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[14] 任春平, 聂雯, 冷俊强, 刘振波. 反应型次氯酸荧光探针[J]. 化学进展, 2021, 33(6): 942-957.
[15] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.
阅读次数
全文


摘要

量子点荧光传感器的设计及应用