English
新闻公告
More
化学进展 2018, Vol. 30 Issue (9): 1308-1316 DOI: 10.7536/PC180136 前一篇   后一篇

• 综述 •

量子点@金属有机骨架材料的制备及在光催化降解领域的应用

李春雪1,2, 乔宇1,2*, 林雪1,2, 车广波1*   

  1. 1. 吉林师范大学环境友好材料制备与应用教育部重点实验室 长春 130103;
    2. 吉林师范大学化学学院 四平 136000
  • 收稿日期:2018-01-30 修回日期:2018-03-24 出版日期:2018-09-15 发布日期:2018-05-16
  • 通讯作者: 乔宇, 车广波 E-mail:qiaoyu200@126.com;guangboche@jlnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21576112)和吉林省自然科学基金项目(No.20180623042TC,20180101181JC,20150623024TC-19)资助

Preparation of Quantum Dots@Metal-Organic Frameworks and Its Application in the Field of Photocatalytic Degradation

Chunxue Li1,2, Yu Qiao1,2*, Xue Lin1,2, Guangbo Che1*   

  1. 1. Key Laboratory of Preparation and Application of Environmentally Friendly Materials of Ministry of Education, Jilin Normal University, Changchun 130103, China;
    2. College of Chemistry, Jilin Normal University, Siping 136000, China
  • Received:2018-01-30 Revised:2018-03-24 Online:2018-09-15 Published:2018-05-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21576112) and the Natural Science Foundation Project of Jilin Province (No. 20180623042TC, 20180101181JC, 20150623024TC-19).
金属有机骨架(Metal-organic Frameworks,MOFs)材料与传统的多孔材料相比,具有结构有序且多样、可调控的孔径尺寸和超高的比表面积等特点,使其在光催化领域得到了广泛的关注。同时,纳米荧光材料量子点(Quantum Dots,QDs)具有良好的光学特性且能够将近红外光转换为可见光,进而可以促进对占太阳光谱较大比例的可见光的吸收,它的出现也推动了光催化领域的发展。但二者作为单一相催化剂本身都存在缺点,限制了其作为光催化剂的进一步应用与发展。近年来,研究者发现将QDs和MOFs材料有效结合形成复合型光催化剂是提高单一相催化剂光催化性能的途径之一,并进行了初步研究,结果表明其催化性能大大提高,在解决环境问题方面有着广阔的应用前景。本文综合国内外现状,围绕QDs@MOFs复合型光催化剂的制备及在光催化降解领域的应用及发展进行了综述。本文还提出了在研究QDs@MOFs复合型光催化剂过程中应注意的关键性问题以及对未来的发展趋势进行了展望。
Metal-organic frameworks (MOFs) materials have attracted much attention in the field of photocatalysis, as compared with conventional porous materials, which are structurally ordered and diverse, with adjustable pore size and ultra-high specific surface area. At the same time, quantum dots (Quantum Dots, QDs) of nano-fluorescent materials have good optical properties and can convert near-infrared light into visible light, which can promote the absorption of visible light, which accounts for a large proportion of the solar spectrum, and the emergence of QDs has also contributed to the development of photocatalysis. But as a single phase catalyst, they have autologous shortcomings, limiting their use as a photocatalyst for future application and development. In recent years, researchers have found that the effective combination of QDs and MOFs materials to form a composite photocatalyst is one of the ways to improve the photocatalytic performance of single phase catalysts, and a preliminary study has been carried out. The results show that catalytic performance is greatly improved and it has broad application prospect in solving environmental problems. This paper combines the status quo at home and abroad, and a series of studies on the preparation of QDs@MOFs composite photocatalyst as well as its application and development in the field of photocatalytic degradation are reviewed. This paper also puts forward the key problems that should be paid attention to in the process of QDs@MOFs composite photocatalyst and the future development trend.
Contents
1 Introduction
2 Preparation of QDs@MOFs materials
2.1 The method of ship in the bottle
2.2 The method of bottle around the ship
2.3 The method of photochemical deposition
2.4 The method of direct surface functionalization
2.5 Other methods
3 Application of QDs@MOFs materials in the field of photocatalytic degradation
3.1 Application of MOFs materials in the field of photocatalytic degradation
3.2 Application of QDs in the field of photocatalytic degradation
3.3 Application of QDs@MOFs materials in the field of photocatalytic degradation
4 Conclusion and outlook

中图分类号: 

()
[1] Hou W B, Cronin S B. Adv. Funct. Mater., 2013, 23:1612.
[2] Zhang H, Fan X F, Quan X, Chen S, Yu H T. Environ. Sci. Technol., 2011, 45:5731.
[3] Solís-Casados D A, Escobar-Alarcón L, Gómez-Oliván L M, Haro-Poniatowski E, Klimova T. Fuel, 2017, 198:3.
[4] Zhao W, Li J H, Wei Z B, Wang S M, He H, Sun C, Yang S G. Appl. Catal. B-Environ., 2015, 179:9.
[5] Zhou W J, Liu H, Wang J Y, Liu D, Du G J, Cui J J. ACS Appl. Mater. Inter., 2010, 2:2385.
[6] Zhu Q L, Xu Q. Chem. Soc. Rev., 2014, 43:5468.
[7] Zhang W H, Kozachuk O, Medishetty R, Schneemann A, Wagner R, Khaletskaya K, Epp K, Fischer R A. Eur. J. Inorg.Chem., 2015, 2015:3913.
[8] Mao Y Y, Chen D K, Hu P, Guo Y, Ying Y L, Ying W, Peng X S. Chem. Eur. J., 2015, 21:15127.
[9] Liang Z J, Marshall M, Chaffee A L. Energ. Fuel, 2009, 23:2785.
[10] Cao F, Zhang C J, Xiao Y L, Huang H L, Zhang W J, Liu D H, Zhong C L, Yang Q Y, Yang Z H, Lu X H. Ind. Eng. Chem. Res., 2012, 51:11274.
[11] Zhao M T, Deng K, He L C, Liu Y, Li G D, Zhao H J, Tang Z Y. J. Am. Chem. Soc., 2014, 136:1738.
[12] Yang C, You X, Cheng J H, Zheng H D, Chen Y C. Appl. Catal. B-Environ., 2017, 200:673.
[13] Liu Y Y, Zhang W N, Li S Z, Cui C L, Wu J, Chen H Y, Huo F W. Chem. Mater., 2014, 26:1119.
[14] Gole B, Sanyal U, Banerjee R, Mukherjee P S. Inorg. Chem., 2016, 55:2345.
[15] Li Y, Xu H, Ouyang S X, Ye J H. Phys. Chem. Chem. Phys., 2016, 18:7563.
[16] Fujita M, Kwon Y J, Washizu S, Ogura K. J. Am. Chem. Soc., 1994, 116:1151.
[17] Corma A, García H, Llabrés i Xamena F X. Chem. Rev., 2010, 110:4606.
[18] Lee J K, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38:1450.
[19] Gao J K, Miao J W, Li P Z, Teng W Y, Yang L, Zhao Y L, Liu B, Zhang Q C. Chem. Commun., 2014, 50:3786.
[20] Junghans U, Suttkus C, Lincke J, Lassig D, Krautscheid H, Glaser R. Micropor. Mesopor. Mat., 2015, 216:151.
[21] Seo J S, Whang D, Lee H, Jun S I, Oh J, Jeon Y J, Kim K. Nature, 2000, 404:982.
[22] Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S. J. Am. Chem. Soc., 2007, 129:2607.
[23] Meilikhov M, Yusenko K, Esken D, Turner S, Tendeloo G V, Fischer R A. Eur. J. Inorg. Chem., 2010, 2010:3701.
[24] Arnanz A, Pintado-Sierra M, Corma A, Iglesias M, Sánchez F. Adv. Synth. Catal., 2012, 354:1347.
[25] Bhattacharjee S, Lee Y R, Puthiaraj P, Cho S M, Ahn W S. Catal. Surv. Asia, 2015, 19:203.
[26] 邱健豪(Qiu J H), 何明(He M), 贾明民(Jia M M), 姚建峰(Yao J F). 化学进展(Progress in Chemistry), 2016, 28(7):1016.
[27] Kim J, Cho H Y, Ahn W S. Catal. Surv. Asia, 2012, 16:106.
[28] Wang D K, Huang R K, Liu W J, Sun D R, Li Z H. ACS Catal., 2014, 4:4254.
[29] Wu Y P, Wu X Q, Wang J F, Zhao J, Dong W W, Li D S, Zhang Q C. Cryst. Growth Des., 2016, 16:2309.
[30] Wang C C, Du X D, Li J, Guo X X, Wang P, Zhang J. Appl. Catal. B-Environ., 2016, 193:198.
[31] Ge L, Zhou W, Rudolph V, Zhu Z H. J. Mater. Chem. A, 2013, 1:6350.
[32] Sun Q, Liu M, Li K Y, Zuo Y, Han Y T, Wang J H, Song C S, Zhang G L, Guo X W. CrystEngComm, 2015, 17:7160.
[33] Liu X C, Zhou Y Y, Zhang J C, Tang L, Luo L, Zeng G M. ACS Appl. Mater. Inter., 2017, 9:20255.
[34] Aijaz A, Karkamkar A, Choi Y J, Tsumori N, Rönnebro E, Autrey T, Shioyama H, Xu Q. J. Am. Chem. Soc., 2012, 134:13926.
[35] Nelson A P, Farha O K, Mulfort K L, Hupp J T. J. Am. Chem. Soc., 2009, 131:458.
[36] Wang R, Gu L N, Zhou J J, Liu X L, Teng F, Li C H, Shen Y H, Yuan Y P. Adv. Mater. Interfaces, 2015, 2:1500037.
[37] Derfus A M, Chan W C W, Bhatia S N. Nano Lett., 2004, 4:11.
[38] Wang W J, Yu J C, Shen Z R, Chan D K L, Gu T. Chem. Commun., 2014, 50:10148.
[39] Zhan Y, Liu Z M, Liu Q Q, Huang D, Wei Y, Hu Y C, Lian X J, Hu C F. New J. Chem., 2017, 41:3930.
[40] Zhang X D, Wang H X, Wang H, Zhang Q, Xie J F, Tian Y P, Wang J, Xie Y. Adv. Mater., 2014, 26:4438.
[41] Kaur R, Rana A, Singh R K, Chhabra V A, Kim K H, Deep A. RSC Adv., 2017, 7:29015.
[42] Aguilera-Sigalat J, Bradshaw D. Coordin. Chem. Rev., 2016, 307:267.
[43] 胡先运(Hu X Y), 郭庆生(Guo Q S), 刘玉乾(Liu Y Q), 孙清江(Sun Q J), 孟铁宏(Meng T H), 张汝国(Zhang R G). 化学进展(Progress in Chemistry), 2017, 29(2/3):300.
[44] 王娇娇(Wang J J), 冯苗(Feng M), 詹红兵(Zhan H B). 化学进展(Progress in Chemistry), 2013, 25(1):86.
[45] Lipovskii A, Kolobkova E, Petrikov V, Kang I, Olkhovets A, Krauss T, Thomas M, Sicox J, Wise F, Shen Q, Kycia S. Appl. Phys. Lett., 1997, 71:3406.
[46] Pang X H, Bian H J, Wang W J, Liu C, Khan M S, Wang Q, Qi J N, Wei Q, Du B. Biosens. Bioelectron., 2017, 91:456.
[47] Zhang Q, Quan X, Wang H, Chen S, Su Y, Li Z L. Sci. Rep., 2017, 7:3128.
[48] Hao X Q, Jin Z L, Yang H, Lu G X, Bi Y P. Appl. Catal. B-Environ., 2017, 210:45.
[49] 徐海娥(Xu H E), 闫翠娥(Yan C E). 化学进展(Progress in Chemistry), 2005, 17(5):800.
[50] Luo Z M, Yang D L, Yang C, Wu X Y, Hu Y L, Zhang Y, Yuwen L H, Yeow E K L, Weng L X, Huang W, Wang L H. Appl. Surf. Sci., 2018, 434:155.
[51] Zhao D, Wan X Y, Song H J, Hao L Y, Su Y Y, Lv Y. Sensor Actuat. B-Chem., 2014, 197:50.
[52] Xu S J, Li D, Wu P Y. Adv. Funct. Mater., 2015, 25:1127.
[53] Liu Q Q, Hu C F, Wang X M. RSC Adv., 2016, 6:25605.
[54] 石星波(Shi X B), 温超(Wen C),符招弟(Fu Z D), 邓放明(Deng F M), 郑舒(Zheng S), 刘秋云(Liu Q Y). 化学进展(Progress in Chemistry), 2014, 26(11):1781.
[55] 唐永安(Tang Y A), 胡军(Hu J), 杨祥良(Yang X L), 徐辉碧(Xu H B). 化学进展(Progress in Chemistry), 2014, 26(10):1731.
[56] 牛晶晶(Niu J J), 高辉(Gao H), 田万发(Tian W F). 化学进展(Progress in Chemistry), 2014, 26(2/3):270.
[57] Bandyopadhyay A, Ghosh D, Kaley N M, Pati S K. J. Phys. Chem. C, 2017, 121:1982.
[58] Li Y H, Lv K L, Ho W K, Dong F, Wu X F, Xia Y. Appl. Catal. B-Environ., 2017, 202:611.
[59] Fernando K A S, Sahu S, Liu Y M, Lewis W K, Guliants E A, Jafariyan A, Wang P, Bunker C E, Sun Y P. ACS Appl. Mater. Inter., 2015, 7:8363.
[60] Liu J, Strachan D M, Thallapally P K. Chem. Commun., 2014, 50:466.
[61] Houk R J T, Jacobs B W, Gabaly F E, Chang N N, Talin A A, Graham D D, House S D, Robertson L M, Allendorf M D. Nano Lett., 2009, 9:3413.
[62] Nunzio M R d, Agostoni V, Cohen B, Gref R, Douhal A. J. Med. Chem., 2014, 57:411.
[63] Liu S N, Zhou J, Cai Z Y, Fang G Z, Cai Y S, Pan A Q, Liang S Q. J. Mater. Chem. A, 2016, 4:17838.
[64] Bai Y, Dou Y B, Xie L H, Rutledge W, Li J R, Zhou H C. Chem. Soc. Rev., 2016, 45:2327.
[65] Ji M, Lan X, Han Z P, Hao C, Qiu J S. Inorg. Chem., 2012, 51:12389.
[66] Schlichte K, Kratzke T, Kaskel S. Micropor. Mesopor. Mat., 2004, 73:81.
[67] Gallis D F S, Parkes M V, Greathouse J A, Zhang X Y, Nenoff T M. Chem. Mater., 2015, 27:2018.
[68] Wang H H, Yang J, Liu Y Y, Song S Y, Ma J F. Cryst. Growth Des., 2015, 15:4986.
[69] Choi K M, Kim D, Rungtaweevoranit B, Trickett C A, Barmanbek J T D, Yang P D, Yaghi O M. J. Am. Chem. Soc., 2017, 139:356.
[70] Shen L J, Huang L J, Liang S J, Liang R W, Qin N, Wu L. RSC Adv., 2014, 4:2546.
[71] Kornienko N, Zhao Y B, Kley C S, Zhu C H, Kim D, Lin S, Chang C J, Yaghi O M, Yang P D. J. Am. Chem. Soc., 2015, 137:14129.
[72] Wang J L, Wang C, Lin W B. ACS Catal., 2012, 2:2630.
[73] Meng Q G, Xin X L, Zhang L L, Dai F N, Wang R M, Sun D F. J. Mater. Chem. A, 2015, 3:24016.
[74] Wu Z B, Yuan X Z, Zhang J, Wang H, Jiang L B, Zeng G M. ChemCatChem, 2017, 9:41.
[75] Liu C B, Sun H Y, Li X Y, Bai H Y, Cong Y, Ren A, Che G B. Inorg. Chem. Commun., 2014, 47:80.
[76] Wang C C, Li J R, Lv X L, Zhang Y Q, Guo G S. Energ. Environ. Sci., 2014, 7:2831.
[77] Du J J, Yuan Y P, Sun J X, Peng F M, Jiang X, Qiu L G, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 190:945.
[78] Liu C B, Cong Y, Sun H Y, Che G B. Inorg. Chem. Commun., 2014, 47:71.
[79] Xu W T, Ma L, Ke F, Peng F M, Xu G S, Shen Y H, Zhu J F, Qiu L G, Yuan Y P. Dalton T., 2014, 43:3792.
[80] Qiao Y, Zhou Y F, Guan W S, Liu L H, Liu B, Che G B, Liu C B, Lin X, Zhu E W. Inorg. Chim. Acta, 2017, 466:291.
[81] Freeman R, Willner I. Chem. Soc. Rev., 2012, 41:4067.
[82] Zhou J, Yang Y, Zhang C Y. Chem. Commun., 2013, 49:8605.
[83] 黄启同(Huang Q T), 林小凤(Lin X F), 李飞明(Li F M), 翁文(Weng W), 林丽萍(Lin L P), 胡世荣(Hu S R). 化学进展(Progress in Chemistry), 2015, 27(11):1604.
[84] Zolfaghari-Isavandi Z, Shariatinia Z. J. Alloy. Compd., 2018, 737:99.
[85] Lin X, Xu D, Zhao R, Xi Y, Zhao L N, Song M S, Zhai H J, Che G B, Chang L M. Sep. Purif. Technol., 2017, 178:163.
[86] Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H A, Yang X B, Lee S T. Angew. Chem. Int. Ed., 2010, 49:4430.
[87] Zhuo S J, Shao M W, Lee S T. ACS Nano, 2012, 6:1059.
[88] Lin X, Xu D, Zheng J, Song M S, Che G B, Wang Y S, Yang Y, Liu C, Zhao L N, Chang L M. J. Alloy. Compd., 2016, 688:891.
[89] Zhang H C, Huang H, Ming H, Li H T, Zhang L L, Liu Y, Kang Z H. J. Mater. Chem., 2012, 22:10501.
[90] Lin X, Wang Y S, Zheng J, Liu C, Yang Y, Che G B. Dalton T., 2015, 44:19185.
[91] Xu T T, Hu J L, Yang Y W, Que W X, Yin X T, Wu H J, Chen L X. J. Alloy. Compd., 2018, 734:196.
[92] Kaur R, Vellingiri K, Kim K H, Paul A K, Deep A. Chemosphere, 2016, 154:620.
[93] Esken D, Turner S, Wiktor C, Kalidindi S B, Tendeloo G V, Fischer R A. J. Am. Chem. Soc., 2011, 133:16370.
[94] Wakaoka T, Hirai K, Murayama K, Takano Y, Takagi H, Furukawa S, Kitagawa S. J. Mater. Chem. C, 2014, 2:7173.
[95] Kaur R, Sharma A L, Kim K H, Deep A. J. Ind. Eng. Chem., 2017, 53:77.
[96] Jin S Y, Son H J, Farha O K, Wiederrecht G P, Hupp J T. J. Am. Chem. Soc., 2013, 135:955.
[97] He J, Yan Z Y, Wang J Q, Xie J, Jiang L, Shi Y M, Yuan F G, Yu F, Sun Y J. Chem. Commun., 2013, 49:6761.
[98] Wen M C, Mori K, Kamegawa T, Yamashita H. Chem. Commun., 2014, 50:11645.
[99] Gan H J, Wang Z, Li H M, Wang Y R, Sun L P, Li Y F. RSC Adv., 2016, 6:5192.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 张辉, 王珊珊, 余金山. 低对称性二维ReS2及其异质结的化学气相沉积法制备及性质[J]. 化学进展, 2022, 34(6): 1440-1452.
[6] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[7] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[8] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[9] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[10] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[11] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[12] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[13] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[14] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[15] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.