English
新闻公告
More
化学进展 2018, Vol. 30 Issue (4): 349-364 DOI: 10.7536/PC170808 前一篇   后一篇

• 综述 •

水热炭化制备碳量子点及其应用

刘禹杉, 李伟, 吴鹏, 刘守新*   

  1. 东北林业大学材料科学与工程学院 哈尔滨 150040
  • 收稿日期:2017-08-11 修回日期:2017-11-30 出版日期:2018-04-15 发布日期:2018-01-30
  • 通讯作者: 刘守新 E-mail:liushouxin@126.com
  • 基金资助:
    国家自然科学基金项目(No.31570567,31500467)资助

Preparation and Applications of Carbon Quantum Dots Prepared via Hydrothermal Carbonization Method

Yushan Liu, Wei Li, Peng Wu, Shouxin Liu*   

  1. College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
  • Received:2017-08-11 Revised:2017-11-30 Online:2018-04-15 Published:2018-01-30
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 31570567, 31500467).
碳量子点作为新兴的“零维”碳纳米材料引起人们广泛的关注。水热炭化法是目前为止应用最广泛的碳量子点合成方法之一。水热炭化合成碳量子点取材广泛、过程简单,其最大的特点是合成的碳量子点表面含有丰富的含氧官能团,水溶性优异,在制备过程中即可对碳量子点进行表面功能化改性。此外,水热法合成的碳量子点具有石墨或无定形结构的碳核。水热碳量子点的结构和性质主要受原料种类及制备条件(水热炭化温度、时间及化学添加剂)的影响,产物在光催化技术、分析检测、活体成像和细胞标记、发光二极管(LED)及药物输送等领域展示出较好应用效果。本文综述了水热碳量子点的制备、性质、形成机理(包括原料的脱水、聚合、炭化及钝化过程)及发光机理(表面缺陷态效应和量子尺寸效应),并对水热碳量子点的应用进行了总结。最后,对水热碳量子点发展过程中尚待解决的问题进行总结,对其未来的发展方向进行了展望。
Carbon quantum dots acting as a new class of “zero-dimensional” carbon nanomaterials have attracted much attention. Hydrothermal carbonization method has been by far one of the most widely used synthesis methods. Many kinds of raw materials can be selected for preparing carbon quantum dots via hydrothermal carbonization method. The preparation process of hydrothermal carbonization is simple. It is able to obtain the carbon quantum dots with abundant oxygen-containing functional groups on the surface and showing excellent water solubility via hydrothermal carbonization. Furthermore, surface functional modification of carbon quantum dots can be carried out during the preparation process. The carbon cores of hydrothermal carbon quantum dots are graphite or amorphous structures. The structures and properties of hydrothermal carbon quantum dots are influenced mainly by raw material types and preparation conditions (including hydrothermal carbonization temperature, time and chemical additives). The products have found good applications in the fields of photocatalysis technology, analysis and detection, the vivo imaging and cellular labeling, light-emitting diodes (LED), drug delivery and so on. In this review, the preparation, properties, formation mechanism (including dehydration, polymerization, carbonization and passivation progress of raw materials) and luminescence mechanism (including surface defect state effect and quantum size effect) of hydrothermal carbon quantum dots are summerized. Simultaneously, the applications of hydrothermal carbon quantum dots are reviewed. The problems remaining to be solved are summarized and the future developments are prospected.
Contents
1 Introduction
2 Preparation of hydrothermal carbon quantum dots
2.1 Influence of feedstocks
2.2 Influence of preparation conditions
3 Properties of hydrothermal carbon quantum dots
3.1 Surface chemical structure
3.2 Crystal structure
3.3 Optical property
4 Formation mechanism of hydrothermal carbon quantum dots
5 Luminescence mechanism of hydrothermal carbon quantum dots
5.1 Surface defect state effect
5.2 Quantum size effect
6 Applications of hydrothermal carbon quantum dots
6.1 Photocatalysis
6.2 Detection probes
6.3 Bioimaging
6.4 Drug delivery
6.5 Light-emitting diodes
6.6 Other applications
7 Conclusion

中图分类号: 

()
[1] Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126:12736.
[2] Schroeder K L, Goreham R V, Nann T. Pharm. Res., 2016, 33:2337.
[3] Hola K, Zhang Y, Wang Y, Giannelis E P, Zboril R, Rogach A L. Nano Today, 2014, 9:590.
[4] Guo Y M, Zhang L F, Zhang S S, Yang Y, Chen X H, Zhang M C. Biosens. Bioelectron., 2015, 63:61.
[5] Li H T, Kang Z H, Liu Y, Lee S T. J. Mater. Chem., 2012, 22:24230.
[6] Bao L, Zhang Z L, Tian Z Q, Zhang L, Liu C, Lin Y, Qi B, Pang D W. Adv. Mater., 2011, 23:5801.
[7] Ming H, Ma Z, Liu Y, Pan K M, Yu H, Wang F, Kang Z H. Dalton Trans., 2012, 41:9526.
[8] Chen B S, Li F M, Weng W, Guo H X, Zhang X Y, Chen Y B, Huang T T, Hong X L, You S Y, Lin Y M, Zeng K H, Chen S. Nanoscale, 2012, 5:1967.
[9] Kwon W, Rhee S W. Chem. Commun., 2012, 48:5256.
[10] Miao P, Han K, Tang Y G, Wang B D, Lin T, Cheng W B. Nanoscale, 2015, 7:1586.
[11] Baker S N, Baker G A. Angew. Chem. Int. Ed., 2010, 49:6726.
[12] Lim S Y, Shen W, Gao Z Q. Chem. Soc. Rev., 2015, 44:362.
[13] 黄启同(Huang Q T), 林小凤(Lin X F), 李飞明(Li F M), 翁文(Weng W), 林丽萍(Lin L P), 胡世荣(Hu S R). 化学进展(Progress in Chemistry), 2015, 27(11):1604.
[14] 胡胜亮(Hu S L), 白培康(Bai P K), 孙景(Sun J), 曹士锐(Cao S R). 化学进展(Progress in Chemistry), 2010, 22(2/3):345.
[15] 颜范勇(Yan F Y), 邹宇(Zou Y), 王猛(Wang M), 代林枫(Dai L F), 周旭光(Zhou X G), 陈莉(Chen L). 化学进展(Progress in Chemistry), 2014, 26(1):61.
[16] Zhang B, Liu C Y, Liu Y. Eur. J. Inorg. Chem., 2010, 4411.
[17] Hsu P C, Chang H T. Chem. Commun., 2012, 48:3984.
[18] Liang Q H, Ma W J, Shi Y, Li Z, Yang X M. Carbon, 2013, 60:421.
[19] Zhang Z, Hao J H, Zhang J, Zhang B L, Tang J L. RSC Adv., 2012, 2:8599.
[20] Lu S Y, Zhao X H, Zhu S J, Song Y B, Yang B. Nanoscale, 2014, 6:13939.
[21] Xu M M, Huang Q B, Sun R C, Wang X H. RSC Adv., 2016, 6:88674.
[22] Lai T T, Zheng E H, Chen L X, Wang X Y, Kong L C, You C P, Ruan Y M, Weng X X. Nanoscale, 2013, 5:8015.
[23] Wu P, Li W, Wu Q, Liu Y S, Liu S X. RSC Adv., 2017, 7:44144.
[24] Yang Y, Cui J H, Zheng M T, Hu C F, Tan S Z, Xiao Y, Yang Q, Liu Y L. Chem. Commun., 2012, 48:380.
[25] Liang Z C, Kang M J, Payne G F, Wang X H, Sun R C. ACS Appl. Mater. Interfaces, 2016, 8:17478.
[26] Li X M, Lau S P, Tang L B, Ji R B, Yang P Z. Nanoscale., 2014, 6:5323.
[27] Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H B, Zhang K, Sun H C, Wang H Y, Yang B. Angew. Chem. Int. Ed., 2013, 52:3953.
[28] Qu D, Zheng M, Zhang L G, Zhao H F, Xie Z G, Jing X B, Haddad R E, Fan H Y, Sun Z C. Sci. Rep., 2014, 4:5294.
[29] Barman M K, Jana B, Bhattacharyya S, Patra A. J. Phys. Chem C., 2014, 118:20034.
[30] Zhu C Z, Zhai J F, Dong S J. Chem. Commun., 2012, 48:9367.
[31] Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48:8835.
[32] Qin X Y, Lu W B, Asiri A M, Al-Youbi A O, Sun X P. Catal. Sci. Technol., 2013, 3:1027.
[33] Xu Q, Pu P, Zhao J G, Dong C B, Gao C, Chen Y S, Chen J R, Liu Y, Zhou H J. J. Mater. Chem. A, 2015, 3:542.
[34] Wang J, Gao M M, Ho G W. J. Mater. Chem. A, 2014, 2:5703.
[35] Shen C, Sun Y P, Wang J, Lu Y. Nanoscale, 2014, 6:9139.
[36] Wang C X, Xu Z Z, Cheng H, Lin H H, Humphrey M G, Zhang C. Carbon, 2015, 82:87.
[37] Han B F, Wang W X, Wu H Y, Fang F, Wang N Z, Zhang X J, Xu S K. Colloids. Surf. B. Biointerfaces, 2012, 100:209.
[38] Gan Z X, Wu X L, Hao Y L. CrystEngComm, 2014, 16:4981.
[39] Yang Z C, Wang M, Yong A M, Wong S Y, Zhang X H, Tan H, Chang A Y, Li X, Wang J. Chem. Commun., 2011, 47:11615.
[40] He X D, Li H T, Liu Y, Huang H, Kang Z H, Lee S T. Colloids. Surf. B. Biointerfaces, 2011, 87:326.
[41] Li X M, Zhang S L, Kulinich S A, Liu Y L, Zeng H B. Sci. Rep., 2014, 4:4976.
[42] Fang Q Q, Dong Y Q, Chen Y M, Lu C H, Chi Y W, Yang H H, Yu T. Carbon, 2017, 118:319.
[43] Fu M, Ehrat F, Wang Y, Milowska K Z, Reckmeier C, Rogach A L, Stolarczyk J K, Urban A S, Feldmann J. Nano Lett., 2015, 15:6030.
[44] Liu J, Liu X L, Luo H J, Gao Y F. RSC Adv., 2014, 4:7648.
[45] Li N L, Jia L P, Ma R N, Jia W L, Lu Y Y, Shi S S, Wang H S. Biosens. Bioelectron., 2017, 89:453.
[46] Li W, Zhang Z H, Kong B, Feng S S, Wang J X, Wang L Z, Yang J P, Zhang F, Wu P Y, Zhao D Y. Angew. Chem. Int. Ed., 2013, 52:8151.
[47] Wu Z L, Zhang P, Gao M X, Liu C F, Wang W, Leng F, Huang C Z. J. Mater. Chem. B, 2013, 1:2868.
[48] Wu Q, Li W, Wu P, Li J, Liu S X, Jin C D, Zhan X X. RSC Adv., 2015, 5:75711.
[49] Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, Al-Youbi A O, Sun X P. Adv. Mater., 2012, 24:2037.
[50] Huang H, Lv J J, Zhou D L, Bao N, Xu Y, Wang A J, Feng J J. RSC Adv., 2013, 3:21691.
[51] Feng X, Jiang Y Q, Zhao J P, Miao M, Cao S M, Fang J H, Shi L Y. RSC Adv., 2015, 5:31250.
[52] Liao B, Long P, He B Q, Yi S J, Ou B L, Shen S H, Chen J. J. Mater. Chem. C, 2013, 1:3716.
[53] Ding H, Yu S B, Wei J S, Xiong H M. ACS Nano, 2016, 10:484.
[54] Bhunia S K, Saha A, Maity A R, Ray S C, Jana N R. Sci. Rep., 2013, 3:1473
[55] Ding H, Cheng L W, Ma Y Y, Kong J L, Xiong H M. New J. Chem., 2013, 37:2515.
[56] Fang Y X, Guo S J, Li D, Zhu C Z, Ren W, Dong S J, Wang E K. ACS Nano, 2012, 6:400.
[57] Hu S L, Trinchi A, Atkin P, Cole I. Angew. Chem. Int. Ed., 2015, 54:2970.
[58] Zhang Z H, Sun W H, Wu P Y. ACS Sustain. Chem. Eng., 2015, 3:1412.
[59] Atchudan R, Lee Y R, Edison T N J I. J. Colloid. Int. Sci., 2016, 482:8.
[60] Wei J M, Zhang X, Sheng Y Z, Shen J M, Huang P, Guo S K, Pan J Q, Feng B X. Mater. Lett., 2014, 123:107.
[61] Mehta V N, Jha S, Kailasa S K. Mater. Sci. Eng. C:Mater. Biol. Appl., 2014, 38:20.
[62] Liang Z C, Zeng L, Cao X D, Wang Q, Wang X H, Sun R C. J. Mater. Chem. C, 2014, 2:9760
[63] Pan D Y, Guo L, Zhang J C, Xi C, Xue Q, Huang H, Li J H, Zhang Z W, Yu W J, Chen Z W, Li Z, Wu M H. J. Mater. Chem., 2012, 22:3314.
[64] Shen J H, Zhu Y H, Yang X L, Zong J M, Zhang J, Li C Z. New J. Chem., 2012, 36:97.
[65] Qu D, Zheng M, Du P, Zhou Y, Zhang L G, Li D, Tan H Q, Zhao Z, Xie Z G, Sun Z C. Nanoscale, 2013, 5:12272.
[66] Dong Y Q, Pang H C, Yang H B, Guo C X, Shao J W, Chi Y W, Li C M, Yu T. Angew. Chem. Int. Ed., 2013, 52:7800.
[67] Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A. Adv. Mater., 2012, 24:5333.
[68] Li J Z, Wang N Y, Tran T T, Huang C A, Chen L, Yuan L J, Zhou L P, Shen R, Cai Q Y. Analyst, 2013, 138:2038.
[69] Zhu S J, Song Y B, Zhao X H, Shao J R, Zhang J H, Yang B. Nano Res., 2015, 8:355.
[70] Zhu S J, Zhang J H, Tang S J, Qiao C Y, Wang L, Wang H Y, Liu X, Li B, Li Y F, Yu W L, Wang X F, Sun H C, Yang B. Adv. Funct. Mater., 2012, 22:4732.
[71] Kwon W, Do S G, Kim J H, Jeong M S, Rhee S W. Sci. Rep., 2015, 5:10.
[72] Gao M X, Liu C F, Wu Z L, Zeng Q L, Yang X X, Wu W B, Li Y F, Huang C Z. Chem. Commun., 2013, 49:8015.
[73] Song Y B, Zhu S J, Xiang S Y, Zhao X H, Zhang J H, Zhang H, Fu Y, Yang B. Nanoscale, 2014, 6:4676.
[74] Song Y B, Zhu S J, Zhang S, Fu Y, Wang L, Zhao X H, Yang B. J. Mater. Chem. C, 2015, 3:5976.
[75] Yu H, Zhang H C, Huang H, Liu Y, Li H T, Ming H, Kang Z H. New J. Chem., 2012, 36:1031.
[76] Yu B Y, Kwak S Y. J. Mater. Chem., 2012, 22:8345.
[77] Di J, Xia J X, Ji M X, Li H P, Xu H, Li H M, Chen R. Nanoscale, 2015, 7:11433.
[78] Cui X, Zhu L, Wu J, Hou Y, Wang P Y, Wang Z N, Yang M. Biosens. Bioelectron., 2015, 63:506.
[79] Lu W B, Qin X Y, Liu S, Chang G H, Zhang Y W, Luo Y L, Asiri A M, Al-Youbi A O, Sun X P. Anal. Chem., 2012, 84:5351.
[80] Liu L Q, Li Y F, Zhan L, Liu Y, Huang C Z. Sci. China. Chem, 2011, 54:1342.
[81] Zhang H M, Li Y B, Liu X L, Liu P R, Wang Y, An T C, Yang H G, Jing D W, Zhao H J. Environ. Sci. Technol. Lett., 2014, 1:87.
[82] Shen P F, Xia Y S. Anal. Chem., 2014, 86:5323.
[83] Qu K G, Wang J S, Ren J S, Qu X G. Chem. Eur. J., 2013, 19:7243.
[84] Miao H, Wang L, Zhuo Y, Zhou Z N, Yang X M. Biosens. Bioelectron., 2016, 86:83.
[85] Chen H, Xie Y J, Kirillov A M, Liu L L, Yu M H, Liu W S, Tang Y. Chem. Commun., 2015, 51:5036.
[86] Saxena M, Sarkar S. Mater. Express, 2013, 3:201.
[87] Li C L, Ou C M, Huang C C, Wu W C, Chen Y P, Lin T E, Ho L C, Wang C W, Shih C C, Zhou H C, Lee Y C, Tzeng W F, Chiou T J, Chu S T, Cang J S, Chang H T. J. Mater. Chem. B, 2014, 2:4564.
[88] Wang H, Di J, Sun Y B, Fu J P, Wei Z Y, Matsui H, Alonso C A, Zhou S Q. Adv. Funct. Mater., 2015, 25:5537.
[89] Shen C, Wang J, Cao Y, Lu Y. J. Mater. Chem. C, 2015, 3:6668.
[90] Tang L B, Ji R B, Cao X K, Lin J Y, Jiang H X, Li X, Teng K S, Luk C M, Zeng S J, Hao J H, Lau S P. ACS Nano, 2012, 6:5102.
[91] Wang Y, Kalytchuk S, Wang L Y, Zhovtiuk O, Cepe K, Zboril R, Rogach A L. Chem. Commun., 2015, 51:2950.
[92] Dou Q Q, Fang X T, Jiang S, Chee P L, Lee T C, Loh X J. RSC Adv, 2015, 5:46817.
[93] Chen P C, Chen Y N, Hsu P C, Shih C C, Chang H T. Chem. Commun., 2013, 49:1639.
[94] Ge J C, Lan M H, Zhou B J, Liu W M, Guo L, Wang H, Jia Q Y, Niu G L, Huang X, Zhou H Y, Meng X M, Wang P F, Lee C S, Zhang W J, Han X D. Nat. Commun, 2014, 5:4596.
[95] Ge J C, Jia Q Y, Liu W M, Guo L, Liu Q Y, Lan M H, Zhang H Y, Meng X M, Wang P F. Adv. Mater., 2015, 27:4169.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[5] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[6] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[7] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[10] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[11] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[12] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[13] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[14] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[15] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
阅读次数
全文


摘要

水热炭化制备碳量子点及其应用