English
新闻公告
More
化学进展 2016, Vol. 28 Issue (12): 1788-1797 DOI: 10.7536/PC160619 前一篇   后一篇

• 综述与评论 •

Li-Mg-N-H体系储氢材料的热力学和动力学调控

李超1,2*, 范美强1, 陈海潮1, 陈达1, 田光磊1, 舒康颖1*   

  1. 1. 中国计量大学材料科学与工程学院 杭州 310018;
    2. 浙江大学硅材料国家重点实验室 杭州 310027
  • 收稿日期:2016-06-01 修回日期:2016-10-01 出版日期:2016-12-25 发布日期:2016-12-23
  • 通讯作者: 李超,e-mail:lichao@cjlu.edu.cn;舒康颖,e-mail:shukangying@cjlu.edu.cn E-mail:lichao@cjlu.edu.cn;shukangying@cjlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51501175)和浙江省自然科学基金项目(No.LQ16E010001)资助

Thermodynamics and Kinetics Modifications on the Li-Mg-N-H Hydrogen Storage System

Li Chao1,2*, Fan Meiqiang1, Chen Haichao1, Chen Da1, Tian Guanglei1, Shu Kangying1*   

  1. 1. College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China;
    2. State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China
  • Received:2016-06-01 Revised:2016-10-01 Online:2016-12-25 Published:2016-12-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51501175)
Mg(NH22-2LiH体系储氢材料具有较高的储氢容量和较适宜的热力学性能,并且其吸放氢过程完全可逆,是目前最有望实现大规模应用的固态储氢材料之一。然而,由于该体系在吸放氢过程中具有较高的动力学壁垒,导致其在200℃以上才能实现快速地吸放氢。因此,国际上对该体系储氢材料的研究主要集中在热力学和动力学的调控方面。本文从成分调变、纳米化和掺杂改性等方面,详细综述了Mg(NH22-2LiH体系储氢材料热力学和动力学调控的研究现状,并提出了其中存在的问题和相应对策,同时指出了将来的研究方向。
Mg(NH2)2-2LiH system possesses a higher reversible hydrogen storage capacity and favorable thermodynamics, consequently being regarded as one of the most promising hydrogen storage materials. However, a temperature above 200℃ is needed to obtain quick de-/hydrogenation because of a rather high kinetic barrier. As a result, numerous investigations have been attempted to adjust the hydrogen storage thermodynamics and kinetics properties. Starting from the three aspects of material composites, nanocrystallization and modification by doping, the progress in the hydrogen storage thermodynamics and kinetics is systematically summarized in this review. The challenges and countermeasures are illustrated, and the direction to further enhancing the hydrogen storage properties of the Mg(NH2)2-2LiH system is also pointed out.

Contents
1 Introduction
2 Compositional manipulation of the Li-Mg-N-H system
3 Nanosized Li-Mg-N-H system
4 Modification by doping
4.1 The effect of transition metals and their compounds
4.2 The effect of carbon-based materials
4.3 The effect of metal borohydrides
4.4 The effect of alkali metal-based compounds
4.5 The effect of other dopants
5 Conclusion

中图分类号: 

()
[1] Schlapbach L, Züttel A. Nature, 2001, 414:353.
[2] Vanvucht J H, Kuijpers F A, Bruning H C A. Philips Res. Rep., 1970, 255:133.
[3] Reilly J J, Wiswall R H., Inorg. Chem., 1968, 7:2254.
[4] Eberle U, Felderhoff M, Schuth F. Angew. Chem. Int. Edit., 2009, 48:6608.
[5] 陶占良(Tao Z L), 陈军(Chen J). 化学进展(Progress in Chemistry), 2009, 9:1945.
[6] Liu Y, Yang Y, Gao M, Pan H. Chem. Rec., 2016, 16:189.
[7] Zhu M, Lu Y, Ouyang L, Wang H. Materials, 2013, 6:4654.
[8] 刘新(Liu X), 吴川(Wu C), 吴锋(Wu F), 白莹(Bai Y). 化学进展(Progress in Chemistry), 2015, 9:1167.
[9] Wang P. Dalton Trans., 2012, 41:4296.
[10] Song L F, Jiang C H, Liu S S, Jiao C L, Si X L, Wang S, Li F, Zhang J, Sun L X, Xu F, Huang F L. Front. Phys., 2011, 6:151.
[11] Orimo S, Nakamori Y, Eliseo J R, Züttel A, Jensen C M. Chem. Rev., 2007, 107:4111.
[12] Chen P, Xiong Z T, Luo J Z, Lin J Y, Tan K L. Nature, 2002, 420:302.
[13] Isobe S, Ichikawa T, Tokoyoda K, Hanada N, Leng H, Fujii H, Kojima Y. Thermochim Acta, 2008, 468:35.
[14] Xiong Z T, Wu G T, Hu J J, Chen P. Adv. Mater., 2004, 16:1522.
[15] Luo W F. J. Alloys Compd., 2004, 381:284.
[16] Hu J, Liu Y, Wu G, Xiong Z, Chen P. J. Phys. Chem. C, 2007, 111:18439.
[17] Xiong Z T, Hu J J, Wu G T, Chen P, Luo W F, Gross K, Wang J. J. Alloys Compd., 2005, 398:235.
[18] Sudik A, Yang J, Halliday D, Wolverton C. J.Phys. Chem. C, 2007, 111:6568.
[19] Xiong Z T, Wu G T, Hu J J, Chen P, Luo W F, Wang J. J. Alloys Compd., 2006, 417:190.
[20] Leng H Y, Ichikawa T, Hino S, Hanada N, Isobe S, Fujii H. J. Phys. Chem. B, 2004, 108:8763.
[21] Nakamori Y, Kitahara G, Orimo S. J. Power Sources, 2004, 138:309.
[22] Aoki M, Noritake T, Nakamori Y, Towata S, Orimo S. J. Alloys Compd., 2007, 446:328.
[23] Hu J, Fichtner M. Chem. Mater., 2009, 21:3485.
[24] Li B, Liu Y, Zhang Y, Gao M, Pan H. J. Phys. Chem. C, 2012, 116:13551.
[25] Lu J, Fang Z Z G, Choi Y J, Sohn H Y. J. Phys. Chem. C, 2007, 111:12129.
[26] Osborn W, Markmaitree T, Shaw L L. J. Power Sources, 2007, 172:376.
[27] Lu J, Choi Y J, Fang Z Z, Sohn H Y. J. Power Sources, 2010, 195:1992.
[28] Liu Y F, Zhong K, Gao M X, Wang H H, Pan H G, Wang Q D. Chem. Mater., 2008, 20:3521.
[29] Liang C, Liu Y F, Luo K, Li B, Gao M X, Pan H G, Wang Q D. Chem. Eur. J., 2010, 16:693.
[30] Zhang B, Li W, Lv Y, Yan Y, Wu Y. J. Alloys Compd., 2015, 645:S464.
[31] Liu Y, Li B, Tu F, Liang C, Gao M, Pan H, Wang Q. Dalton Trans., 2011, 40:8179.
[32] Xie L, Liu Y, Li G Q, Li X G. J. Phys. Chem. C, 2009, 113:14523.
[33] Hoang K, Janotti A, van de Walle C G. Angew. Chem. Int. Edit., 2011, 50:10170.
[34] Wang J H, Hu J J, Liu Y F, Xiong Z T, Wu G T, Pan H G, Chen P. J. Mater. Chem., 2009, 19:2141.
[35] Liu Y F, Zhong K, Luo K, Gao M X, Pan H G, Wang Q D. J. Am. Chem. Soc., 2009, 131:1862.
[36] Xia G, Tan Y, Li D, Guo Z, Liu H, Liu Z, Yu X. Scientific Reports, 2014, 4:6599.
[37] Xia G, Chen X, Zhou C, Zhang C, Li D, Gu Q, Guo Z, Liu H, Liu Z, Yu X. J. Mater. Chem. A, 2015, 3:12646.
[38] Lohstroh W, Fichtner M. J. Alloys Compd., 2007, 446:332.
[39] Shahi R R, Yadav T P, Shaz M A, Srivastva O N. Inter. J. Hydrogen Energy, 2010, 35:238.
[40] Ma L P, Dai H B, Liang Y, Kang X D, Fang Z Z, Wang P J, Wang P, Cheng H M. J. Phys. Chem. C, 2008, 112:18280.
[41] Ma L P, Wang P, Dai H B, Cheng H M. J. Alloys Compd., 2009, 468:L21.
[42] Wang J C, Li Z N, Li H L, Mi J, Lu F, Wang S M, Liu X P, Jiang L J. Rare Metals, 2010, 29:621.
[43] Shukla V, Bhatnagar A, Pandey S K, Shahi R R, Yadav T P, Shaz M A, Srivastava O N. Inter. J. Hydrogen Energy, 2015, 40:12294.
[44] Chen Y, Wang P, Liu C, Cheng H M. Inter. J. Hydrogen Energy, 2007, 32:1262.
[45] Shahi R R, Raghubanshi H, Shaz M. A, Srivastava O. N. Inter. J. Hydrogen Energy, 2012, 37:3705.
[46] Hu J J, Liu Y F, Wu G. T, Xiong Z T, Chua Y S, Chen P. Chem. Mater., 2008, 20:4398.
[47] Hu J J, Fichtner M, Chen P. Chem. Mater., 2008, 20:7089.
[48] Hu J J, Pohl A, Wang S M, Rothe J, Fichtner M J. Phys. Chem. C, 2012, 116:20246.
[49] Cao H, Wu G, Zhang Y, Xiong Z, Qiu J, Chen P. J. Mater. Chem. A, 2014, 2:15816.
[50] Wang H, Cao H, Wu G, He T, Chen P. Energies, 2015, 8:6898.
[51] Liang C, Liu Y, Jiang Y, Wei Z, Gao M, Pan H, Wang Q. Phys. Chem. Chem. Phys., 2011, 13:314.
[52] Pan H, Shi S, Liu Y, Li B, Yang Y, Gao M. Dalton Trans., 2013, 42:3802.
[53] Li B, Liu Y, Gu J, Gu Y, Gao M, Pan H. Inter. J. Hydrogen Energy, 2013, 38:5030.
[54] Li B, Liu Y, Gu J, Gao M, Pan H. Chem.-Asian J., 2013, 8:374.
[55] Liu Y, Hu J, Xiong Z, Wu G, Chen P. Journal of Materials Research, 2007, 22:1339.
[56] Wang J H, Liu T, Wu G T, Li W, Liu Y F, Araujo C M, Scheicher R H, Blomqvist A, Ahuja R, Xiong Z T, Yang P, Gao M X, Pan H G, Chen P. Angew. Chem. Int. Edit., 2009, 48:5828.
[57] Li C, Liu Y, Pang Y, Gu Y, Gao M, Pan H. Dalton Trans., 2013, 43:2369.
[58] Durojaiye T, Goudy A. Inter. J. Hydrogen Energy, 2012, 37:3298.
[59] Luo W, Stavila V, Klebanoff L E. Inter. J. Hydrogen Energy, 2012, 37:6646.
[60] Li C, Liu Y, Gu Y, Gao M, Pan H. Chem.-Asian J., 2013, 8:2136.
[61] Durojaiye T, Hayes J, Goudy A. J. Phys. Chem. C, 2013, 117:6554.
[62] Hayes J, Durojaiye T, Goudy A. Journal of Alloys and Compounds, 2015, 645:S496.
[63] Li C, Liu Y, Ma R, Zhang X, Li Y, Gao M, Pan H. ACS Appl. Mater. Inter., 2014, 6:17024.
[64] Durojaiye T, Hayes J, Goudy A. Inter. J. Hydrogen Energy, 2015, 40:2266.
[65] Hayes J, Goudy A. Inter. J. Hydrogen Energy, 2015, 40:12336.
[66] Liang C, Liu Y, Wei Z, Jiang Y, Wu F, Gao M, Pan H. Inter. J. Hydrogen Energy, 2011, 36:2137.
[67] Liang C, Liu Y, Gao M, Pan H. J. Mater. Chem. A, 2013, 1:5031.
[68] Liu Y F, Yang Y X, Zhang X, Li Y, Gao M X, Pan H G. Dalton Trans., 2015, 44:18012.
[69] Li B, Liu Y F, Li C, Gao M X, Pan H G. J. Mater. Chem. A, 2014, 2:3155.
[70] Gamba N S, Arneodo-Larochette P, Gennari F. C. RSC Adv., 2015, 5:68542.
[71] Gamba N S, Arneodo-Larochette P, Gennari F C. RSC Adv. 2016, 6:15622.
[72] Cao H, Wang H, He T, Wu G, Xiong Z, Qiu J, Chen P. RSC Adv., 2014, 4:32555.
[73] Liu Y, Li C, Li B, Gao M, Pan H. J. Phys. Chem. C, 2013, 117:866.
[74] Li C, Liu Y, Yang Y, Gao M, Pan H. J. Mater. Chem. A, 2014, 2:7345.
[75] Cao H J, Zhang Y, Wang J H, Xiong Z T, Wu G T, Qiu J S, Chen P. Dalton Trans., 2013, 42:5524.
[76] Torre F, Valentoni A, Milanese C, Pistidda C, Marini A, Dornheim M, Enzo S, Mulas G, Garroni S. J. Alloys Compd., 2015, 645:S284.
[77] Bill R F, Reed D, Book D, Anderson P A. J. Alloys Compd., 2015, 645:S96.
[78] Zhang Y, Xiong Z, Cao H, Wu G, Chen P. Inter. J. Hydrogen Energy, 2014, 39:1710.
[79] Ulmer U, Hu J, Franzreb M, Fichtner M. Inter. J. Hydrogen Energy, 2013, 38:1439.
[1] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[2] 彭诚, 吴乐云, 徐志建, 朱维良. 副本交换分子动力学[J]. 化学进展, 2022, 34(2): 384-396.
[3] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[4] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[5] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[6] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[7] 顾婷婷, 顾坚, 张喻, 任华. 金属硼氢化物基固态储氢体系[J]. 化学进展, 2020, 32(5): 665-686.
[8] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[9] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[10] 李志勇, 冯莹, 王慧勇, 袁晓晴, 赵玉灵, 王键吉. 光响应离子液体的结构与性能调控[J]. 化学进展, 2019, 31(11): 1550-1559.
[11] 陈淏川, 付浩浩, 邵学广, 蔡文生. 重要性采样方法与自由能计算[J]. 化学进展, 2018, 30(7): 921-931.
[12] 张世亮, 姚淇露, 卢章辉*. 肼硼烷的合成及产氢[J]. 化学进展, 2017, 29(4): 426-434.
[13] 王建东, 许家喜. 含邻手性碳原子双键亲电加成反应的立体选择性模型[J]. 化学进展, 2016, 28(6): 784-800.
[14] 刘新, 吴川, 吴锋, 白莹. 轻金属配位氢化物储氢体系[J]. 化学进展, 2015, 27(9): 1167-1181.
[15] 王霄, 许吉英, 陈义. 生物分子相互作用动力学的表面等离子体共振研究方法[J]. 化学进展, 2015, 27(5): 550-558.