English
新闻公告
More
化学进展 2018, Vol. 30 Issue (8): 1242-1256 DOI: 10.7536/PC171013 前一篇   

• 综述 •

水的结构和反常物性

姚闯1, 张希2*, 黄勇力3, 李蕾1, 马增胜3, 孙长庆1,4*   

  1. 1. 重庆市超常配位键工程与先进材料技术重点实验室 长江师范学院 重庆 408100;
    2. 深圳大学纳米表面科学与工程研究所 深圳 518060;
    3. 湘潭大学材料科学与工程学院 湘潭 411105;
    4. 南洋理工大学电气与电子工程学院 新加坡 639798
  • 收稿日期:2017-10-12 修回日期:2018-04-29 出版日期:2018-08-15 发布日期:2018-05-16
  • 通讯作者: 张希, 孙长庆 E-mail:zh0005xi@szu.edu.cn;ecqsun@gmail.com
  • 基金资助:
    科学挑战专题项目(No.TZ2016001)、国家自然科学基金项目(No.11502223)、湖南省自然科学基金项目(No.2016JJ3119)和深圳市人才基金项目(No.827000131)资助

Perspective: Structures and Properties of Liquid Water

Chuang Yao1, Xi Zhang2*, Yongli Huang3, Lei Li1, Zengsheng Ma3, Changqing Sun1,4*   

  1. 1. Key Laboratory of Extraordinary Coordination Bond Engineering and Advanced Materials Technology(EBEAM) Chongqing Municipality, Yangtze Normal University, Chongqing 408100, China;
    2. Institute of Nanosurface Science and Engineering, Shenzhen University, Shenzhen 518060, China;
    3. School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China;
    4. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • Received:2017-10-12 Revised:2018-04-29 Online:2018-08-15 Published:2018-05-16
  • Supported by:
    The work was supported by the Science Challenge Project(No.TZ2016001), the National Natural Science Foundation of China(No. 11502223), the Hunan Natural Science Foundation of China(No. 2016JJ3119), and the Shenzhen Municipal Human Resources Fund(No. 827000131).
自从Bernal-Fowler-Pauling在1933~1935年间提出氢质子在两个氧原子之间的非对称等价位置以THz的频率自发往复隧穿后,液态水的结构尤其是水分子的近邻配位数目一直是学界关注的焦点。尽管水分子的刚性或柔性偶极子相互作用表述、纳晶非晶混相结构或均相涨落模型等假说已逐渐成为认知主流,但定量破解水在外场作用下所呈现的各种反常物性的进展依然缓慢。譬如,浮冰、复冰、超滑、热水速冻等现象的机理及内在关联仍有待系统深入研究。本文旨在尝试解读当前关注焦点和介绍最新研究进展的同时,融合连续介质论、分子时空论、质子量子论和氢键弛豫极化论并强调从传统的分子“偶极子-偶极子”到“氢键(O:H—O)超短程非对称强耦合”作用以及从源头的“质子隧穿失措”到“氢键受激协同弛豫”的思维转变。证据表明,水中键合质子数目和孤对电子数目和氢键的构型守恒和分子空间取向和质子隧穿规则应为关注焦点;通过氢键作用的静态四配位均相类单晶结构和动态强涨落可能是打破僵局的关键;由于氢键的O:H和H—O分段比热的差异,液态与固态之间存在一个具有冷胀热缩和相边界可调特性的准固态;键序降低导致氢键分段协同弛豫且使低配位水分子形成具有超低密度、强极化、高弹性、高热稳定性的超固态。由于O:H非键无处不在且起主导作用,拓展对于水溶液的认知到其他领域如含能材料的储能-燃爆机理、药物、食品、生命科学等会更加引人入胜,意义深远。
The structure of liquid water particularly the number of bonds per water molecule has been a debating issue during 1933~1935 when Bernal, Fowler, and Pauling firstly proposed the scenario of proton "transitional quantum tunneling" in THz frequency at asymmetrical sites between two oxygen ions. Although conventions of the rigid or flexible dipole-dipole interaction, nanophase mixed amorphous structure or homogeneous fluctuating phase models, solute diffusion dynamics or hydration length scale premises have been becoming dominant, mysteries such as floating of ice, regelation of ice (compression melting), slipperiness of ice, fast cooling of warm water, etc. have yet to be resolved. The definition of hydrogen bond needs yet to be certain. In this perspective, we emphasize that it would be more efficient to transit the conventional "dipole-dipole" interaction to "hydrogen bond (O:H-O) asymmetrical, short-range, correlative" interaction, from the "proton translational tunneling" to "hydrogen bond cooperative relaxation". Progress also revealed that the O:H-O bond configuration and the numbers of protons and nonbonding electron lone pairs conserve and that water forms the tetrahedrally-coordinated, strongly correlated, fluctuating single liquid crystal. The O:H nonbond and the H-O bond segmental specific heat disparity derives a quasisolid phase between the liquid and the solid. With tunable boundaries, the quasisolid phase possesses the negative thermal expansion coefficient. Remarkably, molecular undercoordination results in a supersolid phase that is highly polarized, thermally stable, viscoelastic, and lesser dense. Extending hydrogen-bond knowledge to the energy storage-explosion reaction mechanics of energetic materials may further verify the comprehensiveness and universality of the current notion of hydrogen bond cooperativity-nonbonding interaction is ubiquitously important.
Contents
1 Introduction:challenges and opportunities
2 Strategies:manner of thinking
3 Principles:rules of conservation and prohibition
3.1 N number and O:H-O bond configuration conservation
3.2 Molecular orientation and proton tunneling prohibition
3.3 Water single crystal and O:H-O bond potential Path
3.4 O:H-O bond coorpertivity and ice water anomalies
4 Method:spectrometrics and analysis
5 Progress:mysteries resolution
5.1 Quasisolid cooling expansion:ice floating and density oscillation
5.2 Undercoordination supersolidity:slipperiness and skin hydorphobicity
5.3 O:H-O symmetrization:quasisolid phase boundary dispersion and regelation
5.4 Hot water cools faster:O:H-O bond memory and skin supersolidity
6 Conclusion:insight and perspective

中图分类号: 

()
[1] Sun C Q, Sun Y, The Attribute of Water:Single Notion, Multiple Myths. Springer-Verlag:Heidelberg, 2016.
[2] Ball P. Nature, 2008, 452:291.
[3] Editorial. Science, 2005, 309:78.
[4] Agmon N, Bakker H J, Campen R K, Henchman R H, Pohl P, Roke S, Thämer M, Hassanali A. Chem. Rev., 2016, 116:7642.
[5] Amann-Winkel K, Bellissent-Funel M C, Bove L E, Loerting T, Nilsson A, Paciaroni A, Schlesinger D, Skinner L. Chem. Rev., 2016, 116:7570.
[6] Björneholm O, Hansen M H, Hodgson A, Liu L M, Limmer D T, Michaelides A, Pedevilla P, Rossmeisl J, Shen H, Tocci G, Tyrode E, Walz M, Werner J, Bluhm H. Chem. Rev., 2016, 116:7698.
[7] Ceriotti M, Fang W, Kusalik P G, McKenzie R H, Michaelides A, Morales M A, Markland T E. Chem. Rev., 2016, 116:7529.
[8] Cisneros G A, Wikfeldt K T, Ojamäe L, Lu J B, Xu Y, Torabifard H, Bartók A P, Csányi G, Molinero V, Paesani F. Chem. Rev., 2016, 116:7501.
[9] Fransson T, Harada Y, Kosugi N, Besley N A, Winter B, Rehr J J, Pettersson L G M, Nilsson A. Chem. Rev., 2016, 116:7551.
[10] Gallo P, Amann-Winkel K, Angell C A, Anisimov M A, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos A Z, Russo J, Sellberg J A, Stanley H E, Tanaka H, Vega C, Xu L, Pettersson L G M. Chem. Rev., 2016, 116:7463.
[11] Perakis F, Marco L D, Shalit A, Tang F, Kann Z R, Kühne T D, Torre R, Bonn M, Nagata Y. Chem. Rev., 2016, 116:7590.
[12] Pettersson L G M, Henchman R H, Nilsson A. Chem. Rev., 2016, 116:7459.
[13] Amann-Winkel K, Böhmer R, Fujara F, Gainaru C, Geil B, Loerting T. Rev. Mod. Phys., 2016, 88:011002.
[14] Ball P. H2O:A Biography of Water. Hachette UK, 2015.
[15] Huang Y L, Zhang X, Ma Z S, Zhou Y C, Zheng W T, Zhou J, Sun C Q. Coord. Chem. Rev., 2015, 285:109.
[16] Zhang X, Sun P, Huang Y L, Ma Z S, Liu X J, Zhou J, Zheng W T, Sun C Q. J. Phys. Chem. B, 2015, 119:5265.
[17] Zhang X, Sun P, Huang Y L, Yan T T, Ma Z S, Liu X J, Zou B, Zhou J, Zheng W T, Sun C Q. Prog. Solid State Chem., 2015, 43:71.
[18] Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund L A, Hirsch T K, Ojamae L, Glatzel P, Pettersson L G M, Nilsson A. Science, 2004, 304:995.
[19] Smith J D, Cappa C D, Wilson K R, Messer B M, Cohen R C, Saykally R J. Science, 2004, 306:851.
[20] Head-Gordon T, Johnson M E. Proc. Natl. Acad. Sci. U.S.A., 2006, 103:7973.
[21] Hermann A, Schmidt W G, Schwerdtfeger P. Phys. Rev. Lett., 2008, 100:207403.
[22] Guo J, Bian K, Lin Z R, Jiang Y. J. Chem. Phys., 2016, 145:160901.
[23] Guo J, Lü J T, Feng Y X, Chen J, Peng J B, Lin Z R, Meng X Z, Wang Z C, Li X Z, Wang E G, Jiang Y. Science, 2016, 352:321.
[24] Ball P, Ben-Jacob E. The European Physical Journal Special Topics, 2014, 223:849.
[25] Pauling L. The Nature of the Chemical Bond. 3 ed. Cornell University press:Ithaca, NY, 1960.
[26] Bernal J D, Fowler R H. J. Chem. Phys., 1933, 1:515.
[27] Pauling L. J. Am. Chem. Soc., 1935, 57:2680.
[28] de Grotthuss C. Galvanique. Ann. Chim., 1806.
[29] Hassanali A, Giberti F, Cuny J, Kuhne T D, Parrinello M. Proc. Natl. Acad. Sci. U. S. A., 2013, 110:13723.
[30] Harich S A, Hwang D W H, Yang X, Lin J J, Yang X, Dixon R N. J. Chem. Phys., 2000, 113:10073.
[31] Alduchov O A, Eskridge R E. Improved Magnus' Form Approximation of Saturation Vapor Pressure. 1997.
[32] Jones G, Dole M. J. Am. Chem. Soc., 1929, 51:2950.
[33] Wynne K. J. Phys. Chem. Lett., 2017, 8:6189.
[34] Araque J C, Yadav S K, Shadeck M, Maroncelli M, Margulis C J. J. Phys. Chem. B, 2015, 119:7015.
[35] Thämer M, de Marco L, Ramasesha K, Mandal A, Tokmakoff A. Science, 2015, 350:78.
[36] Branca C, Magazu S, Maisano G, Migliardo P, Tettamanti E. Physica B, 2000, 291:180.
[37] Sellberg J A, Huang C, McQueen T A, Loh N D, Laksmono H, Schlesinger D, Sierra R G, Nordlund D, Hampton C Y, Starodub D, DePonte D P, Beye M, Chen C, Martin A V, Barty A, Wikfeldt K T, Weiss T M, Caronna C, Feldkamp J, Skinner L B, Seibert M M, Messerschmidt M, Williams G J, Boutet S, Pettersson L G, Bogan M J, Nilsson A. Nature, 2014, 510:381.
[38] Ren Z, Ivanova A S, Couchot-Vore D, Garrett-Roe S. J. Phys. Chem. Lett., 2014, 5:1541.
[39] Park S, Odelius M, Gaffney K J. J. Phys. Chem. B, 2009, 113:7825.
[40] Guo J, Li X Z, Peng J B, Wang E G, Jiang Y. Prog. Surf. Sci., 2017, 92:203.
[41] Peng J B, Guo J, Ma R Z, Meng X Z, Jiang Y. J. Phys.:Condens. Matter., 2017, 29:104001.
[42] Peng J B, Guo J, Hapala P, Cao D Y, Ma R Z, Cheng B W, Xu L M, Ondrá Dcek M, Jelínek P, Wang E G, Jiang Y. Nat. Commun., 2018, 9:122.
[43] Huang Y L, Ma Z S, Zhang X, Zhou G H, Zhou Y, Sun C Q. J. Phys. Chem. B, 2013, 117:13639.
[44] Huang Y L, Zhang X, Ma Z S, Zhou G H, Gong Y Y, Sun C Q. J. Phys. Chem. C, 2015, 119:16962.
[45] Sun C Q. Relaxation of the Chemical Bond. Springer-Verlag:Heidelberg, 2014.
[46] Sun C Q. Progress in Materials Science, 2003, 48:521.
[47] Guo J, Meng X Z, Chen J, Peng J B, Sheng J M, Li X Z, Xu L M, Shi J R, Wang E G, Jiang Y. Nat. Mater., 2014, 13:184.
[48] Meng X Z, Guo J, Peng J B, Chen J, Wang Z C, Shi J R, Li X Z, Wang E G, Jiang Y. Nature Physics, 2015, 11:235.
[49] Wang Y C, Liu H Y, Lv J, Zhu L, Wang H, Ma Y M. Nat. Commun., 2011, 2:563.
[50] Benoit M, Marx D, Parrinello M. Nature, 1998, 392:258.
[51] Sun C Q, Zhang X, Zheng W T. Chem. Sci., 2012, 3:1455.
[52] Sun C Q, Zhang X, Zhou J, Huang Y, Zhou Y, Zheng W T. J. Phys. Chem. Lett., 2013, 4:2565.
[53] Sun C Q, Zhang X, Fu X J, Zheng W T, Kuo J L, Zhou Y C, Shen Z X, Zhou J. J. Phys. Chem. Lett., 2013, 4:3238.
[54] Sun C Q, Chen J S, Gong Y Y, Zhang X, Huang Y L. J. Phys. Chem. B, 2018, 122:1228.
[55] Zhang X, Zhou Y, Gong Y Y, Huang Y L, Sun C Q. Chem. Phys. Lett., 2017, 678:233.
[56] Zeng Q X, Yan T T, Wang K, Gong Y Y, Zhou Y, Huang Y L, Sun C Q, Zou B. Phys.Chem.Chem.Phys., 2016, 18:14046.
[57] Gong Y Y, Zhou Y, Wu H C, Wu D P, Huang Y L, Sun C Q. J. Raman Spectrosc., 2016, 47:1351.
[58] Kumagai T. Prog. Surf. Sci., 2015, 90:239.
[59] Li J C, Kolesnikov A I. J. Mol. Liq., 2002, 100:1.
[60] Everts S. Chemical Engineering News, 2013, 91:28.
[61] Mallamace F, Branca C, Broccio M, Corsaro C, Mou C Y, Chen S H. Proc. Natl. Acad. Sci. U.S.A., 2007, 104:18387.
[62] Zhang X, Huang Y L, Sun P, Liu X J, Ma Z S, Zhou Y C, Zhou J, Zheng W T, Sun C Q. Sci. Rep., 2015, 5:13655.
[63] Faraday M. Proc. R. Soc. London, 1859, 10:440.
[64] Thomson J. Proc. R. Soc. London, 1859, 10:151.
[65] Wang C L, Lu H J, Wang Z G, Xiu P, Zhou B, Zuo G H, Wan R Z, Hu J, Fang H P. Phys. Rev. Lett., 2009, 103:137801.
[66] Zhang X, Liu X J, Zhong Y, Zhou Z F, Huang Y L, Sun C Q. Langmuir, 2016, 32:11321.
[67] Tyndall J. Philos. Trans. R. Soc. London, 1858, 211.
[68] Faraday M. Experimental Researches in Chemical and Physics. Tayler and Francis London, 1859.
[69] Zhang X, Yan T T, Huang Y L, Ma Z S, Liu X J, Zou B, Sun C Q. Phys.Chem.Chem.Phys., 2014, 16:24666.
[70] 王彦超(Wang Y C), 孙长庆(Sun C Q), 吴光恒(Wu G H). 科学通报(Chinese Science Bulletin), 2017, 62:1111.
[71] Sun C Q, Sun Y, Ni Y G, Zhang X, Pan J S, Wang X H, Zhou J, Li L T, Zheng W T, Yu S S, Pan L K, Sun Z. J. Phys. Chem. C, 2009, 113:20009.
[72] Zhang X, Huang Y L, Ma Z S, Zhou Y C, Zheng W T, Zhou J, Sun C Q. Phys.Chem.Chem.Phys., 2014, 16:22987.
[73] Wilson K R, Schaller R D, Co D T, Saykally R J, Rude B S, Catalano T, Bozek J D. J. Chem. Phys., 2002, 117:7738.
[74] Winter B, Aziz E F, Hergenhahn U, Faubel M, Hertel I V. J. Chem. Phys., 2007, 126:124504.
[75] James T B. Nature, 1872, 5:185.
[76] Forbes J D. Philos. T. R. Soc. B, 1846, 136:157.
[77] Forbes J D. Philos. T. R. Soc. B, 1846, 136:143.
[78] Yoshimura Y, Stewart S T, Somayazulu M, Mao H K, Hemley R J. J. Chem. Phys., 2006, 124:964.
[79] Goncharov A F, Struzhkin V V, Mao H K, Hemley R J. Phys. Rev. Lett., 1999, 83:1998.
[80] Holzapfel W. J. Chem. Phys., 1972, 56:712.
[81] Loubeyre P, LeToullec R, Wolanin E, Hanfland M, Husermann D. Nature, 1999, 397:503.
[82] Goncharov A F, Struzhkin V V, Somayazulu M S, Hemley R J, Mao H K. Science, 1996, 273:218.
[83] Teixeira J. Nature, 1998, 392:232.
[84] Ryzhkin I A. J. Exp. Theor. Phys., 1999, 88:1208.
[85] Stillinger F H, Schweizer K S. J. Phys. Chem., 1983, 87:4281.
[86] Tian L N, Kolesnikov A I, Li J C. J. Chem. Phys., 2012, 137:204507.
[87] Zheng W T, Sun C Q. Energ. Environ. Sci., 2011, 4:627.
[88] Gu M X, Zhou Y C, Pan L K, Sun Z, Wang S Z, Sun C Q. J. Appl. Phys., 2007, 102:083524.
[89] Gu M X, Pan L K, Yeung T C A, Tay B K, Sun C Q. J. Phys. Chem. C, 2007, 111:13606.
[90] Yang C, Zhou Z F, Li J W, Yang X X, Qin W, Jiang R, Guo N G, Wang Y, Sun C Q. Nanoscale, 2012, 4:1304.
[91] Liu K, Cruzan J D, Saykally R J. Science, 1996, 271:929.
[92] Ludwig R. Angew. Chem. Int. Ed., 2001, 40:1808.
[93] Kang D D, Dai J Y, Hou Y, Yuan J M. J. Chem. Phys., 2010, 133:014302.
[94] Green J L, Durben D J, Wolf G H, Angell C A. Science, 1990, 249:649.
[95] Malenkov G. J. Phys. Condens. Matter, 2009, 21:283101.
[96] Sun C Q, Bai H L, Tay B K, Li S, Jiang E Y. J. Phys. Chem. B, 2003, 107:7544.
[97] 孙长庆(Sun C Q), 黄勇力(Huang Y L), 张希(Zhang X). 水规则六十条(60 Rules of Water). 北京:高等教育出版社(Beijing:Higher Education Press), 2018.
[98] Aristotle, Meteorology.http://classics.mit.edu/Aristotle/meteorology.1.i.html:350 B.C.E.
[99] Brownridge J D. Am. J. Phys., 2011, 79:78.
[100] Zhang X, Huang Y L, Ma Z S, Zhou Y C, Zhou J, Zheng W T, Jiang Q, Sun C Q. Phys.Chem.Chem.Phys., 2014, 16:22995.
[101] Huang Y L, Zhang X, Ma Z S, Zhou Y C, Zhou J, Zheng W T, Sun C Q. Sci. Rep., 2013, 3:3005.
[102] Zhou Y, Zhong Y, Gong Y Y, Zhang X, Ma Z S, Huang Y L, Sun C Q. J. Mol. Liq., 2016, 220:865.
[103] Zhou Y, Huang Y L, Ma Z S, Gong Y Y, Zhang X, Sun Y, Sun C Q. J. Mol. Liq., 2016, 221:788.
[1] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[2] 王琼, 肖康. 中国城市住宅室内甲醛浓度及影响因素[J]. 化学进展, 2022, 34(3): 743-772.
[3] 陶学兵, 于吉攀, 梅雷, 聂长明, 柴之芳, 石伟群. 铀催化的氮气活化[J]. 化学进展, 2021, 33(6): 907-913.
[4] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[5] 吴金柯, 王建军, 戴礼兴, 孙东豪, 陈嘉嘉. 金属配位聚氨酯[J]. 化学进展, 2021, 33(12): 2188-2202.
[6] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[7] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[8] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[9] 曲树璋, 张韬毅, 王伟. 氮配位单茂金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(7): 929-938.
[10] 赵宝东, 高福磊, 汪营磊, 刘亚静, 陈斌, 潘永飞. 火药用叠氮含能增塑剂[J]. 化学进展, 2019, 31(2/3): 475-490.
[11] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[12] 郑亚楠, 王丹. 金属调控蛋白的结构、性质及应用[J]. 化学进展, 2019, 31(10): 1372-1383.
[13] 李娜, 常泽, 陈强, 尹佳成, 卜显和. 动态配位空间的构筑与调控[J]. 化学进展, 2019, 31(1): 10-20.
[14] 陈淏川, 付浩浩, 邵学广, 蔡文生. 重要性采样方法与自由能计算[J]. 化学进展, 2018, 30(7): 921-931.
[15] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
阅读次数
全文


摘要

水的结构和反常物性