English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 1803-1818 DOI: 10.7536/PC180303 前一篇   后一篇

• 综述 •

铀氮化物晶体结构及电子结构

王晓方1*, 胡殷1, 潘启发1, 杨瑞龙1, 龙重2, 刘柯钊2*   

  1. 1. 表面物理与化学重点实验室 绵阳 621908;
    2. 中国工程物理研究院材料研究所 绵阳 621907
  • 收稿日期:2018-03-05 修回日期:2018-05-16 出版日期:2018-12-15 发布日期:2018-09-26
  • 通讯作者: 王晓方, 刘柯钊 E-mail:wangxf_spc@163.com;liukezhaonsaf@163.com
  • 基金资助:
    国家自然科学基金委员会与中国工程物理研究院联合基金重点项目(No.U1630250)、国家自然科学基金项目(No.21401174)、中国工程物理研究院基金项目(No.TCSQ2016216,YZJJLX2016006,TP201402-3)以及创新特区基金项目(No.CXTQ20171631302)资助

Crystal Structure and Electronic Structure of Uranium Nitrides

Xiaofang Wang1*, Yin Hu1, Qifa Pan1, Ruilong Yang1, Zhong Long2, Kezhao Liu2*   

  1. 1. Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China;
    2. Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
  • Received:2018-03-05 Revised:2018-05-16 Online:2018-12-15 Published:2018-09-26
  • Supported by:
    The work was supported by NSAF(No. U1630250), the National Natural Science Foundation of China(No. 21401174), the CAEP Foundation(No. TCSQ2016216, YZJJLX2016006, TP201402-3), and the CXTQ Foundation(No. CXTQ20171631302).
铀氮化物因其独特的物理化学性质及优良的性能而成为核燃料循环系统中重要的燃料材料,是核领域的研究热点材料之一。此外,铀氮化物也被用作抗腐蚀涂层材料,在金属铀的表面腐蚀防护领域具有重要的应用价值。在铀-氮体系中,五种结构铀氮化物,包括NaCl型UN、HgIn型UN、Mn2O3型α-U2N3、La2O3型β-U2N3和CaF2型UN2,已经被确认并进行了广泛研究。但是到目前为止,由于铀氮化物复杂的非化学计量比问题,导致对上述物相之间的转化关系的认识仍不清楚;而不同化学计量比的铀氮化物由于其电子结构的差异,使得其基本物理化学性质发生了根本的变化。有关铀氮化物晶体结构和电子结构方面的研究是探讨其优异性能起因的第一步,因此引起研究者的广泛关注。本文在归纳和分析大量文献的基础上,结合本课题组在铀氮化物相关方面的研究成果,着重介绍铀氮化物晶体结构和电子结构方面的主要进展,并对铀氮化物相结构的转化规律以及电子结构的演化规律进行总结,以期为铀氮化物的实验研究和功能应用提供参考。
Uranium nitrides have aroused more and more attention due to their unique physical and chemical properties and their excellent performance in applications such as nuclear fuel and anti-corrosion coating for uranium metal. In U-N system, five structures of uranium nitrides, including NaCl-type UN, HgIn-type UN, Mn2O3-type α-U2N3, La2O3-type β-U2N3 and CaF2-type UN2, have been identified and studied extensively. Up to now, because of the complex nonstoichiometric problems of uranium nitrides, the understanding of the transformation relationship between these phases is still ambiguous. In addition, the basic physical properties of uranium nitrides have been fundamentally changed due to the difference in electronic structures of uranium nitrides with different nitrogen content. The studies of the crystal structure and electronic structure of uranium nitrides are the first step in exploring the causes of their excellent performances, and have attracted much attention in recent years. Based on the analysis and summary of the literatures, as well as the research results of our group, this paper reviews the main progress in the study of the crystal structure and electronic structure of uranium nitrides. The phase transformation and electronic structure evolutions of uranium nitrides are summarized, which is expected to provide reference for the experimental studies and functional applications of uranium nitrides.
Contents
1 Introduction
2 Composition and crystal structure of uranium nitrides
2.1 Crystal structure of UN
2.2 Crystal structure of U2N3
2.3 Crystal structure of UN2
3 Phase relation of uranium nitrides
3.1 Phase relation between NaCl type UN and R3m type UN
3.2 Phase relation between NaCl type UN and U2N3
3.3 Phase relation between α-U2N3 and β-U2N3
3.4 Phase relation between UN2 and α-U2N3
3.5 Phase transition mechanism of uranium nitrides
4 Electronic structures of uranium nitrides
4.1 Electronic structure of UN
4.2 Electronic structure of nitrogen-rich nitrides
5 Conclusion and outlook

中图分类号: 

()
[1] Matzke H. Science of Advanced LMFBR Fuels. North-Holland, Amsterdam, 1986.
[2] 张玉娟(Zhang Y J), 周张健(Zhou Z J), 蓝建慧(Lan J H), 柴之芳(Chai Z F), 石伟群(Shi W Q). 中国科学:化学(Scientia Sinica Chimica), 2017, 47:92.
[3] Long Z, Liu K Z, Bai B, Yan D X. J. Alloys Compd., 2010, 491:252.
[4] Arkush R, Mintz M H, Shamir N. J. Nucl. Mater., 2000, 281:182.
[5] 罗丽珠(Luo L Z), 赖新春(Lai X C), 汪小琳(Wang X L). 化学进展(Progress in Chemistry), 2011, 23:1322.
[6] Long Z, Zeng R, Hu Y, Jing L, Wang W, Zhao Y, Luo Z, Bai B, Wang X, Liu K. Appl. Surf. Sci., 2018, 43:407.
[7] Jiang A, Zhao Y, Long Z, Hu Y, Wang X, Yang R, Zeng R, Liu K. J. Nucl. Mater., 2018, 504:215.
[8] Shareef M F, Bhardwaj P, Singh S. J. Mol. Struct., 2014, 1068:20.
[9] Modak P, Verma A K. Phys. Rev. B, 2011, 84:024108.
[10] Rundle R E, Baenziger N C, Wilson A S, McDonald R A. J. Am. Chem. Soc., 1948, 70:99.
[11] Olsen J S, Gerward L, Benedict U. J. Appl. Crystallogr., 1985, 18:37.
[12] Stöcker H J, Naoumidis A. Ber. Deut. Keram. Ges., 1966, 43:724.
[13] Silva G W C, Yeamans C B, Sattelberger A P, Hartmann T, Cerefice G S, Czerwinski K R. Inorg. Chem., 2009, 48:10635.
[14] Wang X, Qiu R Z, Wang Q, Luo L Z, Hu Y, Liu K Z, Zhang P C. Inorg. Chem., 2017, 56:3550.
[15] Masaki N, Tagawa H. J. Nucl. Mater., 1975, 57:187.
[16] Mueller M H, Knott H W. Acta Crystallogr., 1958, 11:751.
[17] Chiotti P. J. Am. Ceram. Soc., 1952, 35:123.
[18] Williams J, Sambell R A J. Journal of the Less Common Metals, 1959, 1:217.
[19] Kempter C P, McGuire J C, Nadler M R. Anal. Chem., 1959, 31:156.
[20] Kempter C P, Elliott R O. J. Chem. Phys., 1959, 30:1524.
[21] Evans P E, Davies T J. J. Nucl. Mater., 1963, 10:43.
[22] Anselin F. J. Nucl. Mater., 1963, 10:301.
[23] Didchenko R, Gortsema F P. Inorg. Chem., 1963, 2:1079.
[24] Olson W M, Mulford R N R. J. Phys. Chem., 1963, 67:952.
[25] Bugl J, Bauer A A. J. Am. Ceram. Soc., 1964, 47:425.
[26] Price C E, Warren I H. Inorg. Chem., 1965, 4:115.
[27] Berthold H J, Delliehausen C. Angew. Chem. Int. Edit., 1966, 5:726.
[28] Benz R, Bowman M G. J. Am. Chem. Soc., 1966, 88:264.
[29] Counsell J F, Dell R M, Martin J F. Transactions of the Faraday Society, 1966, 62:1736.
[30] Sole M J, Van Der Walt C M. Acta Metallurgica, 1968, 16:501.
[31] Mitamura T, Kanno M, Mukaibo T. J. Ncl. Sci. Techno., 1968, 5:60.
[32] Shunk F A. Constitution of Binary Alloys. McGraw-Hill, New York, 1969.
[33] Benz R, Hutchinson W B. J. Nucl. Mater., 1970, 36:135.
[34] Sasa Y, Atoda T. J. Am. Ceram. Soc., 1970, 53:102.
[35] Tennery V J, Bomar E S. J. Am. Ceram. Soc., 1971, 54:247.
[36] Cordfunke E H P. J. Nucl. Mater., 1975, 56:319.
[37] Muromura T, Tagawa H. J. Nucl. Mater., 1979, 79:264.
[38] Johnson G K, Cordfunke E H P. J. Chem. Thermodyn., 1981, 13:273.
[39] Hayes S L, Thomas J K, Peddicord K L. J. Nucl. Mater., 1990, 171:262.
[40] Black L, Miserque F, Gouder T, Havela L, Rebizant J, Wastin F. J. Alloys Compd., 2001, 315:36.
[41] Le Bihan T, Idiri M, Heathman S. J. Alloys Compd., 2003, 358:120.
[42] Silva G W C, Yeamans C B, Ma L, Cerefice G S, Czerwinski K R, Sattelberger A P. Chem. Mater., 2008, 20:3076.
[43] Adachi J, Kurosaki K, Uno M, Yamanaka S, Takano M, Akabori M, Minato K. J. Nucl. Mater., 2009, 384:6.
[44] Muta H, Kurosaki K, Uno M, Yamanaka S. J. Nucl. Mater., 2009, 389:186.
[45] Le T N, Lorenzelli N, Zuppiroli L, Allain Y, Andre G. J. Nucl. Mater., 1991, 184:230.
[46] Poineau F, Yeamans C, Silva G W C, Cerefice G, Sattelberger A, Czerwinski K. J. Radioanal. Nucl. Chem., 2012, 292:989.
[47] Hoenig C L. J. Am. Ceram. Soc., 1971, 54:391.
[48] Benz R, Balog G, Baca B H. High Temp. Sci., 1970, 2:221.
[49] Blum P L, Laugier J, Martin J M. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C, 1969, 268:148.
[50] Hayes S L, Thomas J K, Peddicord K L. J. Nucl. Mater., 1990, 171:300.
[51] Uno M, Nishi T, Takano M. Thermodynamic and Thermophysical Properties of the Actinide Nitrides A2-Konings, Rudy J M. Oxford:Elsevier, 2012.61.
[52] Tagawa H. J. Nucl. Mater., 1974, 51:78.
[53] Tobisch J, Hase W. Physica Status Solidi, 1967, 21:K11.
[54] Masaki N, Tagawa H, Tsuji T. J. Nucl. Mater., 1972, 45:230.
[55] Serizawa H, Fukuda K, Ishii Y, Morii Y. J. Nucl. Mater., 1994, 208:128.
[56] Chevalier P Y, Fischer E, Cheynet B. J. Nucl. Mater., 2000, 280:136.
[57] Trzebiatowski W, Troc R. Bull. Acad. Polon. Sci. Ser. Sci. Chem., 1964, 12:681.
[58] Trzebiatowski W, Troc R, Leciejewicz J. Bull. Acad. Polon. Sci. Ser. Sci. Chim., 1962, 10:395.
[59] Evans P E. J. Am. Ceram. Soc., 1962, 45:305.
[60] Tagawa H, Masaki N. J. Inorg. Nucl. Chem., 1974, 36:1099.
[61] Vaughan D A. J. Metals, 1956, 8:78.
[62] Atoda T, Kobayashi M, Sasa Y, Takahashi Y, Hiashi I. in Carbides in Nuclear Energy. London:Macmillan & Co., Ltd., 1964. 11.
[63] Allbutt M, Dell R M. J. Nucl. Mater., 1967, 24:1.
[64] Masaki N, Tagawa H. J. Nucl. Mater., 1975, 58:241.
[65] Katsura M, Serizawa H. J. Alloys Compd., 1992, 187:389.
[66] Serizawa H, Fukuda K, Katsura M. J. Alloys Compd., 1995, 223:39.
[67] Serizawa H, Fukuda K, Katsura M. J. Alloys Compd., 1996, 232:274.
[68] Yeamans C B, Silva G W C, Cerefice G S, Czerwinski K R, Hartmann T, Burrell A K, Sattelberger A P. J. Nucl. Mater., 2008, 374:75.
[69] Scott B L, Joyce J J, Durakiewicz T D, Martin R L, McCleskey T M, Bauer E, Luo H, Jia Q. Coord. Chem. Rev., 2014, 266/267:137.
[70] Katsura M, Miyake M, Serizawa H. J. Alloys Compd., 1993, 193:101.
[71] Berthold H J, Hein H G. Angewandte Chemie, 1969, 81:910.
[72] Long Z, Luo L, Lu Y, Hu Y, Liu K, Lai X. J. Alloys Compd., 2016, 664:745.
[73] Lu Y, Wang B, Li R, Shi H, Zhang P. J. Nucl. Mater., 2011, 410:46.
[74] Obodo K O, Chetty N. J. Nucl. Mater., 2013, 442:235.
[75] Tagawa H. J. Nucl. Mater., 1971, 41:313.
[76] Mei Z G, Stan M. J. Alloys Compd., 2014, 588:648.
[77] Tseplyaev V I, Starikov S V. J. Nucl. Mater., 2016, 480:7.
[78] Fujino T, Tagawa H. J. Phys. Chem. Solids, 1973, 34:1611.
[79] Wang X, Long Z, Bin R, Yang R, Pan Q, Li F, Luo L, Hu Y, Liu K. Inorg. Chem., 2016, 55:10835.
[80] Norton P R, Tapping R L, Creber D K, Buyers W J L. Phys. Rev. B, 1980, 21:2572.
[81] Samsel-Czekala M, Talik E, Du Plessis P de V, Troc R, Misiorek H, Sulkowski C. Phys. Rev. B, 2007, 76:144426.
[82] Zhang Y B, Meng D Q, Xu Q Y, Zhang Y S. J. Nucl. Mater., 2010, 397:31.
[83] Fujimori S I, Ohkochi T, Okane T, Saitoh Y, Fujimori A, Yamagami H, Haga Y, Yamamoto E, ōnuki Y. Phys. Rev. B, 2012, 86:235108.
[84] Liu K Z, Luo L Z, Luo L L, Long Z, Hong Z L, Yang H, Wu S. Appl. Surf. Sci., 2013, 280:268.
[85] Troc R. J. Solid State Chem., 1975, 13:14.
[86] Reihl B, Hollinger G, Himpsel F J. Phys. Rev. B, 1983, 28:1490.
[87] Ito T, Kumigashira H, Souma S, Takahashi T, Suzuki T. J. Magn. Magn. Mater., 2001, 226/230:68.
[88] Long Z, Hu Y, Chen L, Luo L Z, Liu K Z, Lai X C. J. Alloys Compd., 2015, 620:289.
[89] Liu K Z, Bin R, Xiao H, Long Z, Hong Z L, Yang H, Wu S. Appl. Surf. Sci., 2013, 265:389.
[90] Lu L, Li F F, Hu Y, Xiao H, Bai B, Zhang Y Z, Luo L Z, Liu J, Liu K Z. J. Nucl. Mater., 2016, 480:189.
[91] Evarestov R A, Panin A I, Bandura A V, Losev M V. Journal of Physics:Conference Series, 2008, 117:12015.
[92] Lu Y, Wang B, Li R, Shi H, Zhang P. J. Nucl. Mater., 2010, 406:218.
[93] Weck P F, Kim E, Balakrishnan N, Poineau F, Yeamans C B, Czerwinski K R. Chem. Phys. Lett., 2007, 443:82.
[94] 罗立力(Luo L L), 刘柯钊(Liu K Z), 罗丽珠(Luo L Z), 钟永强(Zhong Y Q), 李芳芳(Li F F), 肖红(Xiao H).原子能科学技术(Atomic Energy Sci. Technol.), 2013, 47:1074.
[95] 陆雷(Lu L), 肖红(Xiao H), 李芳芳(Li F F), 钟永强(Zhong Y Q), 白彬(Bai B), 刘柯钊(Liu K Z). 稀有金属材料与工程(Rare Metal Mater. Eng.), 2015, 4:1975.
[96] Hu Y, Long Z, Liu K Z, Liu J. Mater. Lett., 2016, 178:124.
[97] Wang X, Long Z, Huang H, Bin R, Hu Y, Luo L, Liu K, Zhang P. Comp. Mater. Sci., 2016, 123:224.
[98] Luo L, Lu L, Zhao D, Zhang H, Jing T, Liu K. J. Electron. Spectrosc. Relat. Phenom., 2017, 217:6.
[99] 易伟(Yi W), 代胜平(Dai S P), 沈保罗(Shen B L), 左国平(Zuo G P), 谈先球(Tan X Q), 彭倩(Peng Q), 王莹(Wang Y). 核动力工程(Nuclear Power Engineering), 2007, 28:46.
[1] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[7] 鲁闻生, 王海飞, 张建平, 江龙. 金纳米棒的制备、生长机理及纯化[J]. 化学进展, 2015, 27(7): 785-793.
[8] 靳永勇, 郝盼盼, 任军, 李忠. 单原子催化——概念、方法与应用[J]. 化学进展, 2015, 27(12): 1689-1704.
[9] 杨峰, 梁宏*. 人血清白蛋白及其复合物的结构基础[J]. 化学进展, 2013, 25(04): 530-538.
[10] 沈娟*, 金波, 蒋琪英, 钟国清, 霍冀川. 磷灰石晶体构型及其与生物分子相互作用的计算模拟研究[J]. 化学进展, 2012, 24(05): 737-746.
[11] 任红, 张萍, 吴平, 芦菲. 含三唑-有机羧酸混合配体的配位聚合物[J]. 化学进展, 2012, 24(05): 769-775.
[12] 陈丕恒, 赖新春, 汪小琳. 钚及其化合物的理论研究[J]. 化学进展, 2011, 23(7): 1316-1321.
[13] 苏静, 李隽. 锕系化合物荧光光谱理论研究进展[J]. 化学进展, 2011, 23(7): 1329-1337.
[14] 刘春立, 王路化. 铀酰配合物单晶的合成与结构[J]. 化学进展, 2011, 23(7): 1372-1378.
[15] 李全, 马琰铭. 高压下轻元素单质的结构相变[J]. 化学进展, 2011, 23(5): 829-841.
阅读次数
全文


摘要

铀氮化物晶体结构及电子结构