English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 1960-1974 DOI: 10.7536/PC180344 前一篇   后一篇

• 综述 •

高浓度锂盐电解液

常增花1,2, 王建涛1,2, 武兆辉2, 赵金玲2, 卢世刚1,2*   

  1. 1. 北京有色金属研究总院 北京 100088;
    2. 国联汽车动力电池研究院有限责任公司 北京 100088
  • 收稿日期:2018-03-28 修回日期:2018-05-23 出版日期:2018-12-15 发布日期:2018-09-26
  • 通讯作者: 卢世刚 E-mail:lusg8867@163.com
  • 基金资助:
    国家自然科学基金项目(No.51404030)、北京市科技新星计划(No.Z161100004916096)和国家自然科学基金青年科学基金项目(No.51604032)资助

Concentrated Electrolyte for Lithium/Li-Ion Batteries

Zenghua Chang1,2, Jiantao Wang1,2, Zhaohui Wu2, Jinling Zhao2, Shigang Lu1,2*   

  1. 1. General Research Institute for Nonferrous Metals, Beijing 100088, China;
    2. China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
  • Received:2018-03-28 Revised:2018-05-23 Online:2018-12-15 Published:2018-09-26
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51404030, 51604032), the Beijing Nova Program(No. Z161100004916096).
基于1 mol ·dm-3 LiPF6/EC的传统非水型电解液已在锂离子电池中应用了20年。高功率、高比能锂离子电池以及锂金属电池(如Li-O2和Li-S)的发展,对电解液提出了更高的要求,使得电解液的研究与开发到了一个革新换代的阶段。研究者们已经在离子液体、聚合物电解质和无机固态电解质等新型体系研究方面取得一定的研究成果,但是这些新体系存在的本征问题使其商业化应用面临一定的困难。研究者们也开始重新审视已优化的常规液态电解液体系,高浓度锂盐电解液(>3 mol ·dm-3)再次引起广泛关注。本文综述了高浓度锂盐电解液的发展历程、溶液结构特征、分类标准及其特殊的物理化学性能、锂离子传输性质和电解液/电极相容性;对高浓度锂盐电解液存在的主要问题进行了简要分析,提出了相应的改进措施,展望了高浓度锂盐电解液未来的发展方向,为新型电解液的开发提供了一条新思路。
The conventional non-aqueous electrolyte based on 1 mol·dm-3 LiPF6/EC has been used for two decades in Li-ion batteries. With the rapid development of higher energy and power densities Li-ion batteries and Lithium batteries (such as Li-O2, Li-S,etc.), the electrolyte, as an indispensable component in rechargeable batteries, comes to the stage of innovation. Considerable efforts have been made on the research of several new types of electrolytes such as ionic liquid, polymer electrolytes and inorganic solid electrolytes. However, their commercial applications are hampered due to their intrinsic problems. Therefore, researchers begin to revisit the non-aqueous solution, and pay more attention on the concentrated electrolyte. This review summarizes the research on concentrated electrolytes including the development history, the solution structure, the classification criteria, the physicochemical property and the compatibility with electrode, the specific transport properties of lithium ions in the bulk solutions and the interface of electrolyte/electrode, as well as the compatibility of electrolyte and electrode. Besides, the main problems of concentrated electrolyte such as high viscosity and low ionic conductivity are briefly summarized, and the corresponding improvement measures are proposed. Finally, we highlight the research direction of concentrated electrolyte in the future, and provide an idea for the design of new type electrolyte.
Contents
1 Introduction
2 The development of concentrated electrolyte
3 Structural characteristics of concentrated electrolyte
3.1 The effect of lithium salt concentration on the structure of concentrated electrolyte
3.2 The effect of solvent on the structure of concentrated electrolyte
3.3 The effect of anions on the structure of concentrated electrolyte
4 The classification of concentrated electrolyte
5 Physical chemistry and interface properties of concentrated electrolyte
5.1 Thermal stability
5.2 Electrochemical stability
5.3 Ionic transfer property
5.4 Compatibility with electrode materials
6 The disadvantage of concentrated electrolyte
7 Conclusion

中图分类号: 

()
[1] Thackeray M M, Wolverton C, Isaacs E D. Energy & Environmental Science, 2012, 5(7):7854.
[2] Manthiram A, Chemelewski K, Lee E S. Energy & Environmental Science, 2014, 7(4):1339.
[3] Rui X, Zhao X, Lu Z, Tan H, Sim D, Hng H H, Yazami R, Lim T M, Yan Q. ACS Nano, 2013, 7(6):5637.
[4] Wolfenstine J, Allen J. Journal of Power Sources, 2005, 142(1/2):389.
[5] Cheruku R, Kruthika G, Govindaraj G, Vijayan L. Journal of Physics & Chemistry of Solids, 2015, 8627.
[6] Xu B, Fell C R, Chi M, Meng Y S. Energy & Environmental Science, 2011, 4(6):2223.
[7] Lu Z, Macneil D D, Dahn J R. Electrochemical, Solid-State Letters, 2004, 7(12):A503.
[8] Park Y J, Hong Y S, Wu X L, Kim M G, Ryu K S, Chang S H. Journal of the Electrochemical Society, 2004, 151(151):A720.
[9] Lu Z, Dahn J R. Journal of the Electrochemical Society, 2002, 149(11):A1454.
[10] Su X, Wu Q L, Li J C, Xiao X C, Lott A, Lu W Q, Sheldon B W, Wu J. Advanced Energy Materials, 2014, 4(1):23.
[11] Armand M, Tarascon J M. Nature, 2008, 451(7179):652.
[12] Li Y, Ravdel B, Lucht B L. Electrochemical, Solid-State Letters, 2010, 13(8):A95.
[13] Gao X W, Chen Y H, Johnson L, Bruce P G. Nature Materials, 2016, 15(8):882.
[14] Yim T, Park M S, Yu J S, Kim K J, Im K Y, Kim J H, Jeong G, Yong N J, Woo S G, Kang K S. Electrochimica Acta, 2013, 107(3):454.
[15] Goodenough J B, Kim Y. Chemistry of Materials, 2010, 22(3):587.
[16] Suo L, Hu Y S, Li H, Armand M, Chen L. Nature Communications, 2013, 41481.
[17] Kido R, Ueno K, Iwata K, Kitazawa Y, Imaizumi S, Mandai T, Dokko K, Watanabe M. Electrochimica Acta, 2015, 1755.
[18] Suo L M, Fang Z, Hu Y S, Chen L Q. Chinese Physics B, 2016, 25(1):1.
[19] Wang J, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Nature Communications, 2016, 71.
[20] Masuhara R, Hashinokuchi M, Doi T, Inaba M, Inoue H, Nakagawa H, Inamasu T, Yoshida H. Indagationes Mathematicae, 2015, 78(4):351.
[21] Petibon R, Madec L, Abarbanel D W, Dahn J R. Journal of Power Sources, 2015, 300419.
[22] Yoshida K, Nakamura M, Kazue Y, Tachikawa N, Tsuzuki S, Seki S, Dokko K, Watanabe M. Journal of the American Chemical Society, 2011, 133(33):13121.
[23] Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. Journal of the American Chemical Society, 2014, 136(13):5039.
[24] Yamada Y, Yaegashi M, Abe T, Yamada A. Chemical Communications, 2013, 49(95):11194.
[25] Yamada Y, Chiang C H, Sodeyama K, Wang J, Tateyama Y, Yamada A. ChemElectroChem, 2015, 2(11):1687.
[26] Moon H, Mandai T, Tatara R, Ueno K, Yamazaki A, Yoshida K, Seki S, Dokko K, Watanabe M. Journal of Physical Chemistry C, 2015, 119(8):3957.
[27] McOwen D W, Seo D M, Borodin O, Vatamanu J, Boyle P D, Henderson W A. Energy & Environmental Science, 2014, 7(1):416.
[28] Matsumoto K, Inoue K, Nakahara K, Yuge R, Noguchi T, Utsugi K. Journal of Power Sources, 2013, 231234.
[29] Petibon R, Aiken C P, Ma L, Xiong D, Dahn J R. Electrochimica Acta, 2015, 154(0):287.
[30] Jeong S K, Seo H Y, Kim D H, Han H K, Kim J G, Lee Y B, Iriyama Y, Abe T, Ogumi Z. Electrochemistry Communications, 2008, 10(4):635.
[31] Zheng F, Qiang M, Liu P, Jie M, Hu Y S, Zhou Z, Hong L, Huang X, Chen L. ACS Applied Materials & Interfaces, 2017, 9(5):4282.
[32] Ma Q, Fang Z, Liu P, Ma J, Qi X, Feng W, Nie J, Hu Y S, Li H, Huang X, Chen L, Zhou Z. ChemElectroChem, 2016, 3(4):531.
[33] Qian J F, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J G. Nature Communications, 2015, 61.
[34] Ueno K, Park J W, Yamazaki A, Mandai T, Tachikawa N, Dokko K, Watanabe M. Journal of Physical Chemistry C, 2013, 117(40):20509.
[35] Shin E S, Kim K, Oh S H, Il Cho W. Chemical Communications, 2013, 49(20):2004.
[36] Dokko K, Tachikawa N, Yamauchi K, Tsuchiya M, Yamazaki A, Takashima E, Park J W, Ueno K, Seki S, Serizawa N, Watanabe M. Journal of the Electrochemical Society, 2013, 160(8):A1304.
[37] Seo D M, Reininger S, Kutcher M, Redmond K, Euler W B, Lucht B L. Journal of Physical Chemistry C, 2015, 119(25):14038.
[38] Borodin O, Han S D, Daubert J S, Seo D M, Yun S H, Henderson W A. Journal of the Electrochemical Society, 2015, 162(4):A501.
[39] Aguilera L, Xiong S, Scheers J, Matic A. Journal of Molecular Liquids, 2015, 210, Part B238.
[40] Seo D M, Boyle P D, Sommer R D, Daubert J S, Borodin O, Henderson W A. Journal of Physical Chemistry B, 2014, 118(47):13601.
[41] Alia J M, Edwards H G M, Moore J. Journal of Raman Spectroscopy, 1995, 26(8/9):715.
[42] Alía J M, Díaz, de Mera Y, Edwards H G M, García F J, Lawson E E. Journal of Molecular Structure, 1997, 408.
[43] Alía J M, Edwards H G M. Vibrational Spectroscopy, 2000, 24(2):185.
[44] Alia J M, deMera Y D, Edwards H G M, Garcia F J, Lawson E E. Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, 1996, 196209.
[45] Cazzanelli E, Mustarelli P, Benevelli F, Appetecchi G B, Croce F. Solid State Ionics, 1996, 86/88:379.
[46] Cazzanelli E, Croce F, Appetecchi G B, Benevelli F, Mustarelli P. The Journal of Chemical Physics, 1997, 107(15):5740.
[47] Croce F, Appetecchi G B, Mustarelli P, Quartarone E, Tomasi C, Cazzanelli E. Electrochimica Acta, 1998, 43(10/11):1441.
[48] Castriota M, Cazzanelli E, Nicotera I, Coppola L, Oliviero C, Ranieri G A. Journal of Chemical Physics, 2003, 118(12):5537.
[49] Wang Z X, Huang B Y, Xue R J, Chen L Q, Huang X J. Journal of the Electrochemical Society, 1998, 145(10):3346.
[50] Jeong S K, Inaba M, Iriyama Y, Abe T, Ogumi Z. Electrochemical, Solid-State Letters, 2003, 6(1):A13.
[51] Takeuchi S, Miyazaki K, Sagane F, Fukutsuka T, Jeong S K, Abe T. Electrochimica Acta, 2011, 56(28):10450.
[52] Jeong S K, Inaba M, Iriyama Y, Abe T, Ogumi Z. Journal of Power Sources, 2008, 175(1):540.
[53] Henderson W A, Brooks N R, Brennessel W W, Young V G. Chemistry of Materials, 2003, 15(24):4679.
[54] Henderson W A, Brooks N R, Young V G. Chemistry of Materials, 2003, 15(24):4685.
[55] Henderson W A, McKenna F, Khan M A, Brooks N R, Young V G, Frech R. Chemistry of Materials, 2005, 17(9):2284.
[56] Henderson W A. Journal of Physical Chemistry B, 2006, 110(26):13177.
[57] Seo D M, Borodin O, Han S D, Ly Q, Boyle P D, Henderson W A. Journal of the Electrochemical Society, 2012, 159(5):A553.
[58] Seo D M, Borodin O, Han S D, Boyle P D, Henderson W A. Journal of the Electrochemical Society, 2012, 159(9):A1489.
[59] Seo D M, Borodin O, Balogh D, O'Connell M, Ly Q, Han S D, Passerini S, Henderson W A. Journal of the Electrochemical Society, 2013, 160(8):A1061.
[60] Han S D, Borodin O, Allen J L, Seo D M, McOwen D W, Yun S H, Henderson W A. Journal of the Electrochemical Society, 2013, 160(11):A2100.
[61] Han S D, Borodin O, Seo D M, Zhou Z B, Henderson W A. Journal of the Electrochemical Society, 2014, 161(14):A2042.
[62] Pappenfus T M, Henderson W A, Owens B B, Mann K R, Smyrl W H. Journal of the Electrochemical Society, 2004, 151(2):A209.
[63] Seo D M, Afroz T, Allen J L, Boyle P D, Trulove P C, De Long H C, Henderson W A. The Journal of Physical Chemistry C, 2014, 118(45):25884.
[64] Han S D, Yun S H, Borodin O, Seo D M, Sommer R D, Young V G, Henderson W A. The Journal of Physical Chemistry C, 2015, 119(16):8492.
[65] Han S D, Allen J L, Jónsson E, Johansson P, Mcowen D W, Boyle P D, Henderson W A. Journal of Physical Chemistry C, 2013, 117(11):5521.
[66] Afroz T, Seo D M, Han S D, Boyle P D, Henderson W A. Journal of Physical Chemistry C, 2015, 119(13):7022.
[67] Shimizu K, Freitas A A, Atkin R, Warr G G, FitzGerald P A, Doi H, Saito S, Ueno K, Umebayashi Y, Watanabe M, Canongia Lopes J N. Phys Chem Chem Phys, 2015, 17(34):22321.
[68] Ueno K, Tatara R, Tsuzuki S, Saito S, Doi H, Yoshida K, Mandai T, Matsugami M, Umebayashi Y, Dokkoa K, Watanabe M. Physical Chemistry Chemical Physics, 2015, 17(12):8248.
[69] Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M. The Journal of Physical Chemistry C, 2011, 115(37):18384.
[70] Tamura T, Yoshida K, Hachida T, Tsuchiya M, Nakamura M, Kazue Y, Tachikawa N, Dokko K, Watanabe M. Chemistry Letters, 2010, 39(7):753.
[71] Tamura T, Hachida T, Yoshida K, Tachikawa N, Dokko K, Watanabe M. Journal of Power Sources, 2010, 195(18):6095.
[72] Shobukawa H, Tokuda H, Tabata S I, Watanabe M. Electrochimica Acta, 2004, 50(2/3):305.
[73] Seki S, Takei K, Miyashiro H, Watanabe M. Journal of the Electrochemical Society, 2011, 158(6):A769.
[74] Mandai T, Yoshida K, Tsuzuki S, Nozawa R, Masu H, Ueno K, Dokko K, Watanabe M. The Journal of Physical Chemistry B, 2015, 119(4):1523.
[75] Zhang C, Yamazaki A, Murai J, Park J W, Mandai T, Ueno K, Dokko K, Watanabe M. Journal of Physical Chemistry C, 2014, 118(31):17362.
[76] Zhang C, Ueno K, Yamazaki A, Yoshida K, Moon H, Mandai T, Umebayashi Y, Dokko K, Watanabe M. J. Phys. Chem. B, 2014, 118(19):5144.
[77] Tsuzuki S, Shinoda W, Seki S, Umebayashi Y, Yoshida K, Dokko K, Watanabe M. Chemphyschem, 2013, 14(9):1993.
[78] Ueno K, Tokuda H, Watanabe M. Physical Chemistry Chemical Physics, 2010, 12(45):15133.
[79] Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M. Journal of the Electrochemical Society, 2012, 159(7):A1005.
[80] Moon H, Tatara R, Mandai T, Ueno K, Yoshida K, Tachikawa N, Yasuda T, Dokko K, Watanabe M. The Journal of Physical Chemistry C, 2014, 118(35):20246.
[81] Orita A, Kamijima K, Yoshida M, Dokko K, Watanabe M. Journal of Power Sources, 2011, 196(8):3874.
[82] Nakazawa T, Ikoma A, Kido R, Ueno K, Dokko K, Watanabe M. Journal of Power Sources, 2016, 307746.
[83] Dokko K, Tachikawa N, Yamauchi K, Tsuchiya M, Yamazaki A, E. Takashima, Park J W, Ueno K, Seki S, Serizawa N, Watanabe M. Journal of The Electrochemical Society 2013, 160, A1304.
[84] Zhang S, Ueno K, Dokko K, Watanabe M. Advanced Energy Materials, 2015, 5(16):1500117.
[85] Tachikawa N, Yamauchi K, Takashima E, Park J W, Dokko K, Watanabe M. Chemical Communications, 2011, 47(28):8157.
[86] Tatara R, Tachikawa N, Kwon H M, Ueno K, Dokko K, Watanabe M. Chemistry Letters, 2013, 42(9):1053.
[87] Kitazawa Y, Iwata K, Imaizumi S, Ahn H, Kim S Y, Ueno K, Park M J, Watanabe M. Macromolecules, 2014, 47(17):6009.
[88] Ueno K, Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M. J. Phys. Chem. B, 2012, 116(36):11323.
[89] Saito S, Watanabe H, Ueno K, Mandai T, Seki S, Tsuzuki S, Kameda Y, Dokko K, Watanabe M, Umebayashi Y. J. Phys. Chem. B, 2016, 120(13):3378.
[90] Ueno K, Murai J, Ikeda K, Tsuzuki S, Tsuchiya M, Tatara R, Mandai T, Umebayashi Y, Dokko K, Watanabe M. The Journal of Physical Chemistry C, 2015.
[91] Mandai T, Yoshida K, Ueno K, Dokko K, Watanabe M. Physical Chemistry Chemical Physics, 2014, 16(19):8761.
[92] Tokuda H, Tsuzuki S, Susan M A B H, Hayamizu K, Watanabe M. Journal of Physical Chemistry B, 2006, 110(39):19593.
[93] Yuki Y, Takazawa Y, Miyazaki K, Abe T. Journal of Physical Chemistry C, 2010, 114:11680.
[94] Yamada Y, Usui K, Chiang C H, Kikuchi K, Furukawa K, Yamada A. ACS Appl Mater Interfaces, 2014, 6(14):10892.
[95] Sodeyama K, Yamada Y, Aikawa K, Yamada A, Tateyama Y. The Journal of Physical Chemistry C, 2014, 118(26):14091.
[96] Li F J, Zhang T, Yamada Y, Yamada A, Zhou H S. Advanced Energy Materials, 2013, 3(4):532.
[97] Hu Y S, Li H, Huang X J, Chen L Q. Electrochemistry Communications, 2004, 6(1):28.
[98] Hu Y S, Wang Z X, Li H, Huang X J, Chen L Q. Journal of the Electrochemical Society, 2004, 151(9):A1424.
[99] Liu Y, Suo L, Lin H, Yang W, Fang Y, Liu X, Wang D, Hu Y S, Han W, Chen L. Journal of Materials Chemistry A, 2014, 2(24):9020.
[100] Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K. Science, 2015, 350(6263):350.
[101] Suo L, Borodin O, Wei S, Fan X, Yang C, Fei W, Tao G, Ma Z, Schroeder M, Von Cresce A. Angewandte Chemie International Edition, 2016, 55(25):7136.
[102] Suo L, Han F, Fan X, Liu H, Xu K, Wang C. J. Mater. Chem. A, 2016, 4(17):6639.
[103] Wildman A, Martinez-Baez E, Fulton J, Schenter G., Pearce C, Clark A E,Li X. The journal of physical chemistry letters, 2018, 2444.
[104] Maeda S, Kameda Y, Amo Y, Usuki T, Ikeda K, Otomo T, Yanagisawa M, Seki S, Arai N, Watanabe H,Umebayashi Y. Journal of Physical Chemistry B, 2017, 121(48):10979.
[105] Takenaka N, Fujie T, Bouibes A, Yamada Y, Yamada A,Nagaoka M. Journal of Physical Chemistry C, 2018, 122(5):2564.
[106] Lu D, Tao J, Yan P, Henderson W A, Li Q, Shao Y, Helm M L, Borodin O, Graff G L, Polzin B, Wang C M, Engelhard M, Zhang J G, De Yoreo J J, Liu J,Xiao J. Nano Letters, 2017, 17(3):1602.
[107] Chang Z H, Wang J T, Wu Z H, Gao M, Wu S J,Lu S G. ChemSusChem, 2018, 11,1.
[108] Flores E, Åvall G, Jeschke S, Johansson P. Electrochimica Acta, 2017, 233, 134.
[109] Cresce A V W, Gobet M, Borodin O, Peng J, Russell S M, Wikner E, Fu A, Hu L, Lee H S, Zhang Z. Journal of Physical Chemistry C, 2015, 119(49):27255.
[110] Andreev Y G, Seneviratne V, Khan M, Henderson W A, Frech R E, Bruce P G. Chemistry of Materials, 2005, 17(4):767.
[111] Hayamizu K, Akiba E, Bando T, Aihara Y. Journal of Chemical Physics, 2002, 117(12):5929.
[112] Brouillette D, Irish D E, Taylor N J, Perron G, Odziemkowski M,Desnoyers J E. Physical Chemistry Chemical Physics, 2002, 4(24):6063.
[113] Gores H J, Barthel J, Zugmann S, Moosbauer D, Amereller M, Hartl R, Maurer A. Liquid Nonaqueous Electrolytes. 2. 2011. 525.
[114] Nie M, Abraham D P, Seo D M, Chen Y, Bose A, Lucht B L. Journal of Physical Chemistry C, 2013, 117(48):25381.
[115] Shi P C, Lin M, Zheng H, He X D, Xue Z M, Xiang H F, Chen C H. Electrochimica Acta, 2017, 247(Supplement C):12.
[116] Liu X R, Wang L, Wan L J, Wang D. ACS Applied Materials & Interfaces, 2015, 7(18):9573.
[117] Fukutsuka T, Kokumai R, Song H Y, Takeuchi S, Miyazaki K, Abe T. J. Electrochem. Soc., 2017, 164(2):A48.
[118] Liu B, Xu W, Yan P, Sun T K, Engelhard M H, Sun X, Mei D, Cho J, Wang C M, Zhang J G. Advanced Energy Materials, 2017, 7(14):1602605.
[119] Kwon H M, Thomas M L, Tatara R, Oda Y, Kobayashi Y, Nakanishi A, Ueno K, Dokko K, Watanabe M. ACS Appl Mater Interfaces, 2017, 9(7):6014.
[120] Doi T, Shimizu Y, Hashinokuchi M, Inaba M. Journal of The Electrochemical Society, 2017, 164(1):A6412.
[121] Doi D T, Shimizu Y, Hashinokuchi D M, Inaba P M. ChemElectroChem, 2017, 42398.
[122] Peng J, Goenaga G,Zawodzinski T. 231st ECS Meeting, 2017.
[123] Nilsson V, Younesi R, Brandell D, Edström K,Johansson P. Journal of Power Sources, 2018, 384334.
[124] Zhang H, Jeong S, Qin B, Carvalho D V, Buchholz D, Passerini S. ChemSusChem, 2018, 11(8):1382.
[125] Watkins T,Buttry D A. Journal of Physical Chemistry B, 2015, 119(23):7003.
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[7] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[8] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[9] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[10] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[11] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[12] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[13] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[14] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[15] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.
阅读次数
全文


摘要

高浓度锂盐电解液