English
新闻公告
More
化学进展 2017, Vol. 29 Issue (5): 467-475 DOI: 10.7536/PC170216 前一篇   后一篇

• 综述 •

光致发光胶体量子点研究及应用

康永印1, 宋志成2, 乔培胜1, 杜向鹏1, 赵飞1*   

  1. 1. 纳晶科技股份有限公司 杭州 310052;
    2. 青岛海信电器股份有限公司 青岛 266071
  • 收稿日期:2017-02-22 修回日期:2017-03-14 出版日期:2017-05-15 发布日期:2017-05-10
  • 通讯作者: 赵飞 E-mail:feizhaopku@yahoo.com

Research and Application of Photo-Luminescent Colloidal Quantum Dots

Yongyin Kang1, Zhicheng Song2, Peisheng Qiao1, Xiangpeng Du1, Fei Zhao1*   

  1. 1. Najing Technology Co., Ltd., Hangzhou 310052;
    2. Qingdao Hisense Electric Appliance Co., Ltd., Qingdao 266071, China
  • Received:2017-02-22 Revised:2017-03-14 Online:2017-05-15 Published:2017-05-10
胶体量子点材料由于具有激发光谱宽、半峰宽窄、颜色可调和可溶液加工等特点受到广泛关注。经过30多年的发展,量子点材料已实现了"绿色合成路线"和核壳结构设计的优化,部分量子点已可以做到工业化产品生产供应,并已开发出商业化应用的光致发光器件,该系列器件相继应用于LED(light-emitting diode,发光二极管)照明和显示领域。尤其是光致发光量子点器件在显示领域的商业应用,其将色域典型值从传统的72%提高到100%以上,显示色彩更加丰富多彩,吸引了越来越多的产业界厂商参与到量子点应用的阵营中。本文介绍了胶体量子点发光的基本原理、量子点制备及结构设计发展历程、量子点光致发光器件在LED照明和显示领域的应用情况,以及其广阔的应用前景和面临的挑战。
Colloidal quantum dots have attracted impressive attention in the last decades due to their various characteristics and advantages, such as broad excitation range, narrow FWHM (full width at the half maximum), adjustable color and the solution processability. After 30 years' development, the quantum dots materials have been successfully prepared in the "Green Synthesis" route, as well as design and optimization of core-shell structure. Some kinds of the quantum dots could already be produced and supplied in the form of industrial products, with the corresponding commercial applications for photoluminescence devices, including the LED lightening and display fields. In the current stage, more efforts are putting on the development and application of display products, where the photo-luminescent quantum dots device could help to improve the NTSC from 72% to above 100%. Most of the main TV producers have participated in the application of quantum dots and brought out the quantum dots display products, owing to their excellence in color performance and image quality. This paper presents the basic principles of quantum dots emission, development process of quantum dots preparation and structure design, current technology applications in the LED lightening and display fields, as well as their broad application prospects and challenge.
Contents
1 Introducation
2 Colloidal quantum dots
3 Development of colloidal quantum dots
3.1 Synthesis of quantum dots
3.2 Structure design of quantum dots
4 Photo-luminescence applications of colloidal quantum dots
4.1 LED lighting
4.2 LCD display
5 Conclusion

中图分类号: 

()
[1] Jang E, Jun S, Jang H, Lim J, Kim B, Kim Y. Advanced Materials, 2010, 22(28):3076.
[2] Shirasaki Y, Supran G J, Bawendi M G, Bulovi? V. Nature Photonics, 2013, 7(1):13.
[3] Peng X G. Nano Research, 2009, 2(6):425.
[4] Amirav L, Alivisatos A P. J. Am. Chem. Soc., 2013, 135(35):13049.
[5] Coe-Sullivan S, Liu W, Allen P, Steckel J S. ECS Journal of Solid State Science and Technology, 2013, 2(2):3026.
[6] Choi Y, Seol M, Kim W, Yong K. J. Phys. Chem. C, 2014, 118(11):5664.
[7] Luo Z, Chen Y, Wu S T. Optics Express, 2013, 21(22):26269.
[8] Wood V, Bulovic V. Colloidal Quantum Dot Optoelectronics and Photovoltaics. London:Cambridge University Press, 2013. 148.
[9] Chen J, Hardev V, Yurek J. Nanotech. L. & Bus., 2014, 11:4.
[10] 邢滨(Xing B), 李万万(Li W W), 孙康(Sun K). 化学进展(Progress in Chemistry), 2008, 20(6):841.
[11] Demir H V, Nizamoglu S, Erdem T, Mutlugun E, Gaponik N, Eychmüller A. Nano Today, 2011, 6(6):632.
[12] Kim S, Im S H, Kim S W. Nanoscale, 2013, 5(12):5205.
[13] Kim T H, Jun S, Cho K S, Choi B L, Jang E. MRS Bulletin, 2013, 38(09):712.
[14] Bourzac K. Nature, 2013, 493(7432):283.
[15] 金一政(Jin Y Z), 彭笑刚(Peng X G). 浙江大学学报(理学版)(Journal of Zhejiang University (Science Edition)),2016, 43(6):635.
[16] Pu C D, Peng X G. J. Am. Chem. Soc., 2016, 138(26):8134.
[17] Lin W, Niu Y, Meng R, Huang L, Cao H, Zhang Z, Qin H, Peng X G. Nano Research, 2016, 9(1):260.
[18] Guyot-Sionnest P. Comptes Rendus Physique, 2008, 9(8):777.
[19] Pokatilov E P, Fonoberov V A, Fomin V M, Devreese J T. Physical Review B, 2001, 64(24):245328.
[20] Pandey A, Guyot-Sionnest P. Science, 2008, 322(5903):929.
[21] Baskoutas S, Terzis A F. J. App. Phys., 2006, 99(1):013708.
[22] Biadala L, Louyer Y, Tamarat P, Lounis B. Physical Review Letters, 2009, 103(3):037404.
[23] Jiang Y, Xu S, Wang C, Shao H, Wang Z, Cui Y. Journal of Materials Chemistry, 2012, 22(27):13469.
[24] Jiang Y, Wang C, Xu S, Shao H, Lin X, Wang Z, Cui Y. Journal of Fluorescence, 2014, 24(1):183.
[25] Rajh T, Micic O I, Nozik A J. J. Phys. Chem., 1993, 97(46):11999.
[26] Gao M, Kirstein S, M hwald H, Rogach A L, Kornowski A, Eychmüller A, Weller H. J. Phys. Chem. B, 1998, 102(43):8360.
[27] Zhang H, Zhou Z, Yang B, Gao M. J. Phys. Chem. B, 2003, 107(1):8.
[28] Schäfer H J, Haag-Kerwer A, Rausch T. Plant Mol. Biol., 1998, 37(1):87.
[29] Negishi Y, Nobusada K, Tsukuda T. J. Am. Chem. Soc., 2005, 127(14):5261.
[30] Talapin D V, Rogach A L, Shevchenko E V, Kornowski A, Haase M, Weller H. J. Am. Chem. Soc., 2002, 124(20):5782.
[31] Rogach A L, Kornowski A, Gao M, Eychmüller A, Weller H. J. Phys. Chem. B, 1999, 103(16):3065.
[32] Murray C B, Norris D J, Bawendi M G. J. Am. Chem. Soc., 1993, 115:8706.
[33] Colvin V L, Schlamp M C, Alivisatos A P. Nature, 1994, 370:354.
[34] Alivisatos A P. Science, 1996, 271(5251):933.
[35] Peng Z A, Peng X G. J. Am. Chem. Soc., 2001, 123(7):1389.
[36] Peng Z A, Peng X G. J. Am. Chem. Soc., 2001, 123(1):183.
[37] Yu W W, Peng X G. Angew. Chem. Int. Ed., 2002, 41(13):2368.
[38] 付龙(Fu L), 潘一(Pan Y), 徐子健(Xu Z J), 杨双春(Yang S C). 现代化工(Mordern Chemical Industry)2015, 35 (3):11.
[39] Jasieniak J, Bullen C, Van Embden J, Mulvaney P. J. Phys. Chem. B, 2005, 109(44):20665.
[40] Shen H, Wang H, Tang Z, Niu J Z, Lou S, Du Z, Li L S. Cryst. Eng. Comm., 2009, 11(8):1733.
[41] Bullen C, Embden J V, Jasieniak J, Cosgriff J E, Mulder R J, Rizzardo E, Gu M, Raston C L. Chemistry of Materials, 2010, 22(14):4135.
[42] Hou B, Benitoalifonso D, Webster R, Cherns D, Galan M C, Fermin D. Journal of Materials Chemistry, 2014, 2(19):6879.
[43] Cirillo M. Doctoral Dissertation of Ghent University, 2013.
[44] Castro S L, Bailey S G, Raffaelle R P, Banger K K, Hepp A F. Chemistry of Materials, 2003, 15(16):3142.
[45] Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q B. J. Am. Chem. Soc., 2015, 132(5):1470.
[46] Mahapatra N, Panja S, Mandal A, Halder M. Journal of Materials Chemistry C, 2014, 2(35):7373.
[47] 牛原(Niu Y). 浙江大学博士论文(Doctoral Dissertation of Zhejiang University), 2014.
[48] Ott F D, Spiegel L L, Norris D J, Erwin S C. Physical Review Letters, 2014, 113(15):156803.
[49] Talapin D V, Rogach A L, Kornowski A, Haase M, Weller H. Nano Letters, 2001, 1(4):207.
[50] Weiss E A. Accounts of Chemical Research, 2013, 46(11):2607.
[51] Yang Y, Li J, Lin L, Peng X G. Nano Research, 2015, 8(10):3353.
[52] Peng X G, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Nature, 2000, 404(6773):59.
[53] Gao Y, Peng X G. J. Am. Chem. Soc., 2014, 136(18):6724.
[54] Peng X G, Wickham J, Alivisatos A P. J. Am. Chem. Soc., 1998, 120(21):5343.
[55] Li Z, Peng X G. J. Am. Chem. Soc., 2011, 133(17):6578.
[56] Peng Z A, Peng X G. J. Am. Chem. Soc., 2002, 124(13):3343.
[57] Brown P R, Kim D, Lunt R R, Zhao N, Bawendi M G, Grossman J C, Bulovic? V. ACS Nano, 2014, 8(6):5863.
[58] Yu W W, Qu L, Guo W, Peng X. Chem. Mater., 2003, 15 (14):2854.
[59] Bawendi M G, Steigerwald M L, Brus L E. Annual Review of Physical Chemistry, 1990, 41(1):477.
[60] Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G. J. Phys. Chem. B, 1997, 101(46):9463.
[61] Hines M A, Guyot-Sionnest P. J. Phys. Chem., 1996, 100:468.
[62] Peng X G, Schlamp M C, Kadavanich A V, Alivisatos A P. J. Am. Chem. Soc., 1997, 119:7019.
[63] Li J J, Wang Y A, Guo W Z, Keay J C, Mishima T D, Johnson M B, Peng X G. J. Am. Chem. Soc., 2003, 125:12567.
[64] Xie R G, Kolb U, Li J X, Basche T, Mews A. J. Am. Chem. Soc., 2005, 127:7480.
[65] Blackman B, Battaglia D, Peng X G. Chemistry of Materials, 2008, 20:4827.
[66] Chen D, Zhao F, Qi H, Rutherford M, Peng X G. Chemistry of Materials, 2010, 22:1437.
[67] Sung T W, Lo Y L. Sensors & Actuators B Chemical, 2013, 188(11):702.
[68] Aubert T, Soenen S J, Wassmuth D, Cirillo M, Deun R V, Braeckmans K, Hens Z. ACS Applied Materials & Interfaces, 6(14):11714.
[69] Mocatta D, Cohen G, Schattner J, Millo O, Rabani E, Banin U. Science, 2011, 332(6025):77.
[70] Fainblat R, Muckel F, Barrows C J, Vlaskin V A, Gamelin D R, Bacher G. ACS Nano, 2014, 8(12):12669.
[71] Beaulac R, Archer P I, Ochsenbein S T, Gamelin D R. Advanced Functional Materials, 2008,18(18):3873.
[72] Xie R G, Peng X G. J. Am. Chem. Soc., 2009, 131(30):10645.
[73] Pu C, Ma J, Qin H, Yan M, Fu T, Niu Y, Yang X, Huang Y, Zhao F, Peng X G. ACS Central Science, 2015, 2(1):32.
[74] Zhang F, Zhong H, Chen C, Wu X G, Hu X, Huang H, Han J, Zou B, Dong Y. ACS Nano, 2015, 9(4):4533.
[75] Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H. Advanced Functional Materials, 2016, 26(15):1
[76] Ning Z, Gong X, Comin R, Walters G, Fan F, Voznyy O, Yassitepe E, Buin A, Hoogland S, Sargent E H. Nature, 2015, 523(7560):324.
[77] Lee J, Sundar V C, Heine J R, Bawendi M G, Jensen K F. Advanced Materials, 2000, 12(15):1102.
[78] Liu J, Katahara J, Li G, Coe-Sullivan S, Hurt R H. Environmental Science & Technology, 2012, 46(6):3220.
[79] Jun S, Lee J, Jang E. ACS Nano, 2013, 7(2):1472.
[80] Chen H, He J, Wu S T. Recent Advances on Quantum-Dot-Enhanced Liquid Crystal Displays. IEEE Journal of Selected Topics in Quantum Electronics, 2017.
[81] Müller M, Kaiser M, Stachowski G M, Resch-Genger U, Gaponik N, Eychmüller A. Chemistry of Materials, 2014, 26(10):3231.
[82] Erdem T, Demir H V. Nanophotonics, 2013, 2(1):57.
[83] Nizamoglu S, Demir H V. Journal of Applied Physics, 2009, 105(8):083112.
[84] 毕文刚(Bi W G), 苏凯(Su K), 彭笑刚(Peng X G), 乔铁成(Qiao T C). 2011中国LED照明论坛论文集(Proceedings of the 2011 Chinese Lighting Forum), 2011. 112.
[85] Twietmeyer K, Sadasivan S. Journal of the Society for Information Display, 2016, 24(5):312.
[86] Shen H, Cao W, Shewmon N T, Yang C, Li L S, Xue J. Nano Letters, 2015, 15(2):1211.
[87] Kurtin J, Puetz N, Theobald B, Stott N, Osinski J. SID Symposium Digest of Technical Papers, 2014, 45(1):146.
[88] Grinolds D D W, Brown P R, Harris D K, Bulovic V, Bawendi M G. Nano Letters, 2014, 15(1):21.
[89] Mashford B S, Stevenson M, Popovic Z, Hamilton C, Zhou Z, Breen C, Kazlas P T. Nature Photonics, 2013, 7 (5):407.
[90] Wood V, Panzer M J, Chen J, Bradley M S, Halpert J E, Bawendi M G, Bulovi? V. Advanced Materials, 2009, 21(21):2151.
[91] Yoshihara T, Itou K, Nakamura K, Furukawa M, Iqbal A, Hao Z. US 7175948, 2007.
[92] 陈亚文(Chen Y W). CN201610513686.3, 2016.
[93] 梁宇恒(Liang Y H). CN201510646777.X, 2015.
[94] 李冬泽(Li D Z). CN201510779371.9, 2015.
[95] 郭仁炜(Guo R W). CN201310314014.6, 2013.
[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 李振杰, 钟杜, 张洁, 陈金伟, 王刚, 王瑞林. 锂离子电池硅纳米粒子/碳复合材料[J]. 化学进展, 2019, 31(1): 201-209.
[3] 熊兴泉, 范观铭, 朱荣俊, 石霖, 肖上运, 毕成. 酰胺类化合物的高效合成研究[J]. 化学进展, 2016, 28(4): 497-506.
[4] 张东杰, 张丛筠, 卢亚, 郝耀武, 刘亚青. 种子生长法制备Au@Ag核壳纳米粒子[J]. 化学进展, 2015, 27(8): 1057-1064.
[5] 陈思远, 董旭, 查刘生. 表面引发原子转移自由基聚合法合成无机/有机核壳复合纳米粒子[J]. 化学进展, 2015, 27(7): 831-840.
[6] 历阳, 孙洪满, 王有和, 许本静, 阎子峰. 沸石分子筛的绿色合成路线[J]. 化学进展, 2015, 27(5): 503-510.
[7] 汪家喜, 魏晓骏, 沈佳宇, 吕晓萌, 谢吉民, 陈敏. 光催化选择性合成有机物[J]. 化学进展, 2014, 26(09): 1460-1470.
[8] 宋肖锴, 周雅静, 李亮. 核壳结构金属-有机骨架的研究[J]. 化学进展, 2014, 26(0203): 424-435.
[9] 李雷, 李彦兴, 姚瑶, 姚良宏, 季伟捷, 区泽棠. 核壳结构纳米材料的创制及在催化化学中的应用[J]. 化学进展, 2013, 25(10): 1681-1690.
[10] 陈立峰, 史静, 张亚红, 唐颐*. 核壳型沸石复合材料和反应器[J]. 化学进展, 2012, 24(07): 1262-1269.
[11] 葛余俊, 赤骋, 伍蓉, 郭霞, 张巧, 杨剑*. 基于金纳米棒的核壳纳米结构及其光学性质研究[J]. 化学进展, 2012, 24(05): 776-783.
[12] 李广录, 何涛, 李雪梅. 核壳结构纳米复合材料的制备及应用[J]. 化学进展, 2011, 23(6): 1081-1089.
[13] 刘宾, 廖世军, 梁振兴. 核壳结构:燃料电池中实现低铂电催化剂的最佳途径[J]. 化学进展, 2011, 23(5): 852-859.
[14] 林丽娟, 周苇, 郭林. 无机镍纳米复合材料[J]. 化学进展, 2011, 23(11): 2299-2307.
[15] 付庆涛 何婷婷 于濂清 刘勇军 柴永明 刘晨光. 磁性核壳介孔氧化硅微球的制备与应用[J]. 化学进展, 2010, 22(06): 1116-1124.
阅读次数
全文


摘要

光致发光胶体量子点研究及应用