English
新闻公告
More
化学进展 2018, Vol. 30 Issue (9): 1349-1363 DOI: 10.7536/PC180125 前一篇   后一篇

• 综述 •

石墨烯-聚苯胺类超级电容器复合电极材料

鲍长远, 韩家军*, 程瑾宁, 张瑞涛   

  1. 哈尔滨工业大学(威海)应用化学系 威海 264209
  • 收稿日期:2018-01-26 修回日期:2018-03-12 出版日期:2018-09-15 发布日期:2018-05-16
  • 通讯作者: 韩家军 E-mail:hanjiajunhitweihai@163.com
  • 基金资助:
    国家国际科技合作项目(No.SQ2012ZOC600002)资助

Electrode Materials Blended with Graphene/Polyaniline for Supercapacitor

Changyuan Bao, Jiajun Han*, Jinning Cheng, Ruitao Zhang   

  1. Department of Applied Chemistry, Harbin Institute of Technology, Weihai 264209, China
  • Received:2018-01-26 Revised:2018-03-12 Online:2018-09-15 Published:2018-05-16
  • Supported by:
    The work was supported by the International S&T Cooperation Program of China (No.SQ2012ZOC600002).
聚苯胺理论比容量高、易合成,是一种理想的电极材料,但其循环寿命差,而石墨烯具有高的理论比表面积,将二者复合,充分利用两者之间的协同效应,能够使复合材料具有优异的电化学电容性能。本文回顾了近几年石墨烯-聚苯胺纳米复合材料在超级电容器中的最新研究结果及其制备方法,并对如何优化电极的结构与性能进行讨论,同时介绍了石墨烯-聚苯胺类电极材料在有机超级电容器中的应用进展,最后对石墨烯-聚苯胺复合材料的前景进行了展望。超级电容器用石墨烯-聚苯胺纳米复合材料的发展取决于其合理的微观结构设计,构建理想的三维多孔结构以避免聚苯胺的膨胀与收缩现象是研究的方向之一,此外,在改善石墨烯和聚苯胺间弱的界面相互作用的同时寻求石墨烯性能与功能化的平衡仍是难点,机械性能优异的聚苯胺纳米复合材料对于柔性全固态超级电容器的研究也会起到关键作用。
Graphene/polyaniline nanocomposites have attracted tremendous attention of the researchers because of their significant potential in the energy storage filed, especially supercapacitors. Polyaniline(PANI)is one of ideal electrode materials, due to high theoretical specific capacity and facile synthesis. However, its drawback is poor cycling life. Graphene(GN)possesses a high theoretical specific surface area and composites of polyaniline with graphene derivatives are used to acquire excellent electrochemical capacitive properties on account of the synergistic effect between the two components. In this feature article, new research results and important advances over the past few years on the synthesis of graphene-polyaniline based nanocomposite for electrochemical supercapacitors are reviewed. And we discuss how to improve the structure and performance of electrodes. In the meantime, the application of electrode materials blended with graphene-polyaniline for organic supercapacitors is introduced. Eventually, the application prospects of graphene-polyaniline nanocomposites are briefly described. The progress of graphene/polyaniline nanocomposites in the fields of supercapacitor depends on the appropriate microstructure design of the composites. The construction of an ideal 3D porous structure is one of research interests which is used to avoid the expansion and contraction of polyaniline. Furthermore, it is still difficult to find the balance between the performance and functionalization of graphene while improving the weak interfacial interaction between graphene and polyaniline. PANI-based nanocomposites with excellent mechanical properties can also play a vital role in the study of flexible quasi-solid-state supercapacitors.
Contents
1 Introduction
2 Preparation of graphene/polyaniline nanocomposites
2.1 In-situ chemical oxidative polymerization
2.2 Electro-polymerization
2.3 Interfacial polymerization
2.4 Solution mixing
2.5 LBL self-assembled
3 Structural optimization of graphene/polyaniline nanocomposites
3.1 Microstructure control of polyaniline
3.2 Composite film
3.3 3D hierarchical structure
4 Application of graphene-polyaniline nanocomposites for organic supercapacitors
5 Conclusion and outlook

中图分类号: 

()
[1] Zheng F L, Li G R, Ou Y N, Wang Z L, Su C Y, Tong Y X. Chemical Communications, 2010, 46(27):5021.
[2] Zhou G M, Wang D W, Feng L I, Zhang L L, Weng Z, Cheng H M. Carbon, 2011, 26(3)3:180.
[3] Jiang H, Lee P S, Li C. Energy & Environmental Science, 2012, 6(1):41.
[4] Jost K, Dion G, Gogotsi Y. Journal of Materials Chemistry A, 2014, 2(28):10776.
[5] Kumar N A, Baek J B. Chemical Communications, 2014, 50(48):6298.
[6] Chae H K, Siberio-pérez D Y, Kim J, Go Y B, Eddaoudi M, Matzger A J. Nature, 2004, 427(6974):523.
[7] Kim K S, Zhao Y, Jang H, Le S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 457(7230):706.
[8] Wang H L, Hao Q L, Yang X J, Lu L, Wang X. Electrochemistry Communications, 2009, 11(6):1158.
[9] Zhang Y P, Sun X W, Pan L K, Li H B, Sun Z, Sun C Q, Tay B K. Journal of Alloys & Compounds, 2009, 480(2):L17.
[10] Yan J, Tong W, Fan Z J, Qian W Z, Zhang M L, Shen X D, Wei F. Journal of Power Sources, 2010, 195(9):3041.
[11] Hughes M, Chen G Z, Shaffer M S P, Fray D J, Windle A H. Composites Science & Technology, 2004, 64(15):2325.
[12] Zhang X, Wang J M, Liu J, Wu J, Chen H, Bi H. Carbon, 2017, 115:134.
[13] Snook G A, Kao P, Best A S. Journal of Power Sources, 2011, 196(1):1.
[14] Sun Y Q, Shi G Q. Journal of Polymer Science Part B:Polymer Physics, 2013, 51(4):231.
[15] Huang Y F, Lin C W. Polymer, 2012, 53(13):2574.
[16] Zhao T K, Ji X L, Bi P, Jin W B, Xiong C Y, Dang A, Li H, Li T H, Shang S M, Zhou Z F. Electrochimica Acta, 2017, 230:342.
[17] Xu J, Wang K, Zu S Z, Han B H, Wei Z. ACS Nano, 2010, 4(9):5019.
[18] Wang H L, Hao Q L, Yang X J, Lu L, Wang X. Nanoscale, 2010, 2(10):2164.
[19] Tayel M B, Soliman M M, Ebrahim S, Harb M E. Journal of Electronic Materials, 2016, 45(1):820.
[20] Li Z F, Zhang H, Liu Q, Sun L L, Stanciu L, Xie J. ACS Applied Materials & Interfaces, 2013, 5(7):2685.
[21] Zhao Q, Chen J H, Luo F B, Shen L, Wang Y, Wu K, Lu M G. Journal of Applied Polymer Science, 2017, 134(19):44808.
[22] Qiu H X, Han X B, Qiu F L, Yan J H. Applied Surface Science, 2016, 376:261.
[23] Nguyen V H, Lamiel C, KharismadewI D, Tran V C, Shim J J. Journal of Electroanalytical Chemistry, 2015, 758:148.
[24] Male U, Modigunta J K R. Polymer, 2017, 110:242.
[25] Liu T Z, Liu Y S, Yan X S, Fan Y F, Wang P, Cai Q, Zhang J M. Polymer Composites, 2014, 36(10):1767.
[26] Wu T, Xu X Y, Zhang L, Chen H B, Gao J P, Liu Y. RSC Advances, 2014, 4(15):7673.
[27] 涂亮亮(Tu L L), 贾春阳(Jia C Y). 化学进展(Progress in Chemistry), 2010, 22(8):1610.
[28] 安红芳(An H F), 王先友(Wang X Y), 李娜(Li N). 化学进展(Progress in Chemistry), 2009, 21(9):1832.
[29] Lin Y C, Hsu F H, Wu T M. Synthetic Metals, 2013, 184(11):29.
[30] Moussa M, Elkady M F, Zhao Z H, Majewski P, Ma J. Nanotechnology, 2016, 27(44).
[31] Wang S Y, Ma L, Gan M Y, Fu S N, Dai W Q, Zhou T, Sun X W, Wang H H, Wang H N. Synthetic Metals, 2015, 210:367.
[32] Wu X M, Wang Q G, Zhang W Z, Wang Y, Chen W X. Journal of Materials Science, 2016, 51(16):7731.
[33] Gao S Y, Zhang L I, Qiao Y D, Dong P, Shi J, Cao S K. RSC Advances, 2016, 6(64):58854.
[34] Yu M, Ma Y X, Liu J H, Li S M. Carbon, 2015, 87:98.
[35] Mitchell E, Candler J, Souza F D, Gupta R K, Gupta B K, Dong L F. Synthetic Metals, 2015, 199(199):214.
[36] Hu L W, Tu J G, Jiao S Q, Hou J G, Zhu H M, Fray D J. Physical Chemistry Chemical Physics, 2012, 14(45):15652.
[37] Xin G X, Wang Y H, Liu X X, Zhang J H, Wang Y F, Huang J J, Zang J B. Electrochimica Acta, 2015, 167(11):254.
[38] Fei X, Yang S X, Zhang Z Y, Liu H F, Xiao J W, Wan L, Luo J, Wang S, Liu Y Q. Scientific Reports, 2015, 5:9359.
[39] Gao Z, Yang W, Wang J, Yan H J, Yao Y, Ma J, Wang B, Zhang M L, Liu L H. Electrochimica Acta, 2013, 91(3):185.
[40] Wei H G, Zhu J H, Wu S J, Wei S Y, Guo Z H. Polymer, 2013, 54(7):1820.
[41] Shen J L, Yang C Y, Li X W, Wang G C. ACS Applied Materials & Interfaces, 2013, 5(17):8467.
[42] Li H L, Wang J X, Chu Q X, Wang Z, Zhang F B, Wang S C. Journal of Power Sources, 2009, 190(2):578.
[43] Mensing J P, Wisitsoraat A, Phokharatkul D, Lomas T, Tuantranont A. Composites Part B Engineering, 2015, 77:93.
[44] Nguyen V H, Tang L, Shim J J. Colloid and Polymer Science, 2013, 291(9):2237.
[45] Li D J, Li Y, Feng Y Y, Hu W P, Feng W. Journal of Materials Chemistry A, 2015, 3(5):2135.
[46] Chini M K, Chatterjee S. Flatchem, 2016, 1:1.
[47] Xiong S X, Shi Y J, Jia C, Gong M, Wu B H, Wang X Q. Electrochimica Acta, 2014, 127(5):139.
[48] Zhu J, Chen M, Qu H, Zhang X, Wei H G, Luo Z P, Colorado H A, Wei S Y, Guo Z H. Polymer, 2012, 53(25):5953.
[49] Chen Z X, Lu H B. Chemical Journal of Chinese Universities, 2013, 34(9):2020.
[50] Wu Q, Xu Y X, Yao Z Y, Liu A R, Shi G Q. ACS Nano, 2010, 4(4):1963.
[51] Fan W, Zhang C, Weng W T, Kumari P P, He C B, Liu T X. ACS Applied Materials & Interfaces, 2013, 5(8):3382.
[52] Liu S, Liu X H, Li Z P, Yang S R, Wang J Q. New Journal of Chemistry, 2011, 35(2):369.
[53] Zhou S P, Zhang H M, Zhao Q, Wang X H, Li J, Wang F S. Carbon, 2013, 52(2):440.
[54] Luo J, Ma Q, Gu H, Zheng Y, Liu X. Electrochimica Acta, 2015, 173:184.
[55] Hong X D, Zhang B B, Murphy E, Zou J L, Kim F. Journal of Power Sources, 2017, 343:60.
[56] Li L, Zhang X, Qiu J J, Weeks B L, Wang S R. Nano Energy, 2013, 2(5):628.
[57] Chatterjee S, Layek R K, Nandi A K. Carbon, 2013, 52(2):509.
[58] Tang L, Yang Z K, Duan F, Chen M Q. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2017, 520:184.
[59] Feng X M, Chen N N, Zhou J H, Li Y, Huang Z D, Zhang L, Ma Y W, Wang L H, Yan X H. New Journal of Chemistry, 2015, 39(3):2261.
[60] Fan X, Yang Z W, Liu Z. Chinese Journal of Chemistry, 2016, 34(1):107.
[61] Ke F Y, Liu Y, Xu H Y, Ma Y, Guang S Y, Zhang F Y, Lin N B, Ye M D, Lin Y H, Liu X Y. Composites Science & Technology, 2017, 142:286.
[62] Lu X J, Hui D, Yang S, Hao L, Zhang L J, Shen L F, Zhang F, Zhang X G. Electrochimica Acta, 2011, 56(25):9224.
[63] Zang X, Li X, Zhu M, Li X M, Zhen Z, He Y J, Wang K L, Wei J Q, Kang F Y, Zhu H W. Nanoscale, 2015, 7(16):7318.
[64] Wu X M, Wang Q G, Zhang W Z, Wang Y, Chen W X. Electrochimica Acta, 2016, 211:1066.
[65] 李学航(Li X H), 俞慧涛(Yu H T), 王伟仁(Wang W R),布林朝克(Bulin C K), 辛国祥(Xin G X), 张邦文(Zhang B W). 高等学校化学学报(Chemical Journal of Chinese Universities), 2017, 38(12):2306.
[66] Dinari M, Momeni M M, Goudarzirad M. Surface Engineering, 2016, 32(7):535.
[67] Lee M, Hong J D. Journal of the Korean Chemical Society, 2015, 59(1):36.
[68] Meng Y N, Wang K, Zhang Y J, Wei Z X. Advanced Materials, 2013, 25(48):6985.
[69] 傅深娜(Fu S N), 马利(Ma L), 陈红冲(Chen H C),甘孟瑜(Gan M Y). 化工新型材料(New Chemical Materials), 2017(1):7.
[70] Tang W, Peng L, Yuan C, Wang J, Mo S B, Zhao C Y, Yu Y H, Min Y G, Epstein A J. Synthetic Metals, 2015, 202:140.
[71] Ma C, Peng L, Feng Y, Shen J X, Xiao Z Q, Cai K Y, Yu Y H, Min Y, Epstein A J. Synthetic Metals, 2016, 220:227.
[72] Phokaratkul D, Mensing J P, Jaruwongrangsee K, Lomas T, Tuantranont A, Wisitsoraat A. IEEE, International Conference on Nanotechnology. IEEE, 2016:1469.
[73] Liu R, Ma L N, Huang S, Mei J, Xu J, Yuan G H. New Journal of Chemistry, 2017, 41(2):857.
[74] Fu S, Ma L, Gan M, Wang S Y, Zhang X L, Zhang J, Zhou T, Wang H H. Journal of Materials Science Materials in Electronics, 2016:1.
[75] Zhang H R, Wang J X, Chen Y Y, Wang Z, Wang S C. Electrochimica Acta, 2013, 105(26):69.
[76] Kovalska E, Kocabas C. Materials Today Communications, 2016, 7:55.
[77] Yang C Y, Sun M Q, Wang G C, Cheng Q L, Bao H, Li X W, Saha N, Saha P. Chemical Engineering Journal, 2017, 326:9.
[78] Zhou S P, Zhang H M, Wang X H, Li J, Wang F S. RSC Advances, 2013, 3(6):1797.
[79] Hu R F, Zhao J, Zhu G D, Zheng J P. Electrochimica Acta, 2018, 261:151.
[80] Zheng X W, Yu H T, Xing R G, Ge X, Sun H, Li R H, Zhang Q W. Electrochimica Acta, 2018, 260:504.
[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[4] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[5] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[6] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[7] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[8] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[9] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[10] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[11] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[12] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[13] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[14] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[15] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.