English
新闻公告
More
化学进展 2021, Vol. 33 Issue (7): 1092-1099 DOI: 10.7536/PC200825 前一篇   后一篇

• 综述 •

石墨烯基气凝胶小球的可控制备

向笑笑, 田晓雯, 刘会娥*(), 陈爽, 朱亚男, 薄玉琴   

  1. 中国石油大学(华东)化学工程学院 青岛 266580
  • 收稿日期:2020-08-10 修回日期:2020-09-08 出版日期:2021-07-20 发布日期:2020-12-28
  • 通讯作者: 刘会娥
  • 基金资助:
    山东省自然科学基金项目(ZR2017MB015); 国家自然科学基金项目(22078366)

Controlled Preparation of Graphene-Based Aerogel Beads

Xiaoxiao Xiang, Xiaowen Tian, Huie Liu*(), Shuang Chen, Yanan Zhu, Yuqin Bo   

  1. College of Chemical Engineering, China University of Petroleum(East China), Qingdao 266580, China
  • Received:2020-08-10 Revised:2020-09-08 Online:2021-07-20 Published:2020-12-28
  • Contact: Huie Liu
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2017MB015); National Natural Science Foundation of China(22078366)

石墨烯气凝胶是由二维石墨烯片层组装成的三维宏观材料,因其孔隙率高、比表面积大和密度低等特点在水体污染物的吸附去除方面具有广阔的应用前景,已成为当今的研究热点。然而相关研究大多集中在块体石墨烯气凝胶,对于气凝胶小球的研究较少。本文结合相关领域的最新研究进展,综述了石墨烯基气凝胶小球的制备方法,包括静电喷雾、静电纺丝、微流控和湿纺等方法;以湿纺法为代表,分析了气凝胶小球的成型影响因素,如GO分散体的浓度和黏度、挤出参数、凝固浴的种类和浓度等;并进一步分析了可用于调节材料孔径的因素,例如通过控制GO浓度、GO片层尺寸、冷冻处理的温度等可实现在一定范围内材料孔径的调整。针对废水中处理对象的不同,设计吸附性能、循环使用性能优异及微观形貌可控的石墨烯基气凝胶小球并寻求制备方法的优化与创新仍是未来探索的重点。

Graphene aerogel is a three-dimensional macroscopic material assembled from two-dimensional graphene sheets. Due to its high porosity, large specific surface area and low density, it has a broad application prospect in the adsorption and removal of water pollutants and has become a research hotspot. However, most of the related researches focused on bulk graphene aerogels, and few researches on graphene-based aerogel beads. This review summarizes the preparation methods of graphene-based aerogel beads, including electrostatic spray, electrostatic spinning, microfluidic technology and wet spinning. Taking the wet spinning method as the representative, the influencing factors for aerogel beads formation are analyzed, such as the concentration and viscosity of GO dispersion, extrusion parameters, the type and concentration of coagulation bath, etc. Furthermore, the factors of adjusting the pore size of the material are further analyzed. For example, the pore size of the material can be adjusted within a certain range by controlling the GO concentration, the GO layer sizes, and the temperature of freezing treatment. In view of the different treatment objects in the wastewater, the design of graphene-based aerogel beads with excellent adsorption performance, recycling performance and controllable micromorphology and the optimization and innovation of preparation methods are still the key points of exploration in future.

Contents

1 Introduction

2 Preparation of graphene-based aerogel beads

2.1 Preparation methods

2.2 Drying methods

3 Influencing factors of graphene-based aerogel beads formation

3.1 Influencing factors for wet spinning method

3.2 Influencing factors for other methods

4 Methods for adjusting the pore size of graphene-based aerogel beads

4.1 GO concentration

4.2 Temperature of freezing treatment

4.3 GO layer sizes

4.4 The speed of homogenizer

5 Conclusion and outlook

()
图1 (a)制备装置;(b, c, e, f)气凝胶小球SEM图;(d)流速与粒径关系图[9]
Fig. 1 (a) Preparation device; (b, c, e, f) SEM images of aerogel beads; (d) the relation between flow rate and the particle sizes[9]. Copyright 2016, Royal Society of Chemistry
图2 RGOs制备装置(a)与SEM图[15]:(b, c)横截面;(d, e)壳体
Fig. 2 Preparation device(a); SEM images of RGOs[15](b, c) cross section; (d, e) shell. Copyright 2017, Advanced Materials
图3 GO小球、GO-CTS小球浸于水中和GO-CTS小球宏观图片[14]
Fig. 3 Photos (from left to right) of GO beads, GO-CTS beads immersed in water clearly revealing the GO core inside, GO-CTS beads[14], Copyright 2015, American Chemical Society
图4 GOAMs SEM图:(a, b)GO浓度为4 mg/mL;(c, d)GO浓度为6 mg/mL[9]
Fig. 4 SEM images of GOAMs:(a, b) GO concentration(4 mg /mL);(c, d) GO concentration(6 mg/mL)[9]. Copyright 2016, Royal Society of Chemistry
图5 (a~f)-10,-20, -40,-70,-100和-196 ℃的GA的SEM图[72]
Fig. 5 (a~f) SEM images of GA frozen at six different temperatures (-10, -20, -40, -70, -100 and -196 ℃), scale bar: 20 μm [72]. Copyright 2020, Royal Society of Chemistry
[1]
Yue H J, Sun H J, Peng T J, Liu B, Yang J J, Liang X Y. Mater. Rev., 2018, 32(15):2601.
( 岳焕娟, 孙红娟, 彭同江, 刘波, 杨敬杰, 梁小毅. 材料导报, 2018, 32(15):2601.)
[2]
Somak C, Sourav M, Sirshendu D. J. Clean. Prod., 2018, 177:760.

doi: 10.1016/j.jclepro.2017.12.249     URL    
[3]
Zhou S K, You T T, Zhang X M, Xu F. ACS Appl. Nano Mater., 2018, 1(5):2095.

doi: 10.1021/acsanm.8b00079     URL    
[4]
Zhang C L, Chen Z Z, Guo W, Zhu C W, Zou Y J. Int. J. Biol. Macromol., 2018, 112:1048.

doi: 10.1016/j.ijbiomac.2018.02.074     URL    
[5]
Huang Y F, Liu H E, Ma Y B, Wang Y B, Chen S. Chem. Ind. Eng. Proc., 2018, 37(08):3092.
( 黄扬帆, 刘会娥, 马雁冰, 王玉斌, 陈爽. 化工进展, 2018, 37(08):3092. )
[6]
Zhu H G, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. Adv. Funct. Mater., 2015, 25(4):597.

doi: 10.1002/adfm.v25.4     URL    
[7]
Wu Y P, Yi N B, Huang L, Zhang T F, Fang S L, Chang H C, Li N, Oh J, Lee J A, Mikhail K, Alin C. C, Terrones H, Xiao P S, Long G K, Huang Y, Zhang F, Zhang L, Xavier L, Carter H, Ma'rcio D L, Nestor P L, Lakshmy P. R, Ana L. E, Feng S M, Seon J K, Narayanan N.T., Pulickel M. A, Mauricio T, Ali A, Chu P F, Zhang Z, Ray H. B, Chen Y S. Nat Commun. 2015, 6:6141.

doi: 10.1038/ncomms7141     URL    
[8]
Wang X C, Li G Y, Hong G, Guo Q, Zhang X T. ACS Appl. Mater. Interfaces, 2017, 9(47):41323.

doi: 10.1021/acsami.7b13969     URL    
[9]
Liao S C, Zhai T L, Xia H S. J. Mater. Chem. A, 2016, 4(3):1068.

doi: 10.1039/C5TA09540A     URL    
[10]
Li D W, Zhang H, Zhang L, Wang P F, Xu H, Xuan J. ACS Omega, 2019, 4(24):20509.

doi: 10.1021/acsomega.9b02249     URL    
[11]
Bao C L, Bi S G, Zhang H, Zhao J L, Wang P F, Yue C Y, Yang J L. J. Mater. Chem. A, 2016, 4(24):9437.

doi: 10.1039/C6TA01411A     URL    
[12]
Li Z T, Huang X H, Wu K K, Jiao Y P, Zhou C R. Mater. Sci. Eng.: C, 2020, 106:110282.

doi: 10.1016/j.msec.2019.110282     URL    
[13]
Wang X C, Li J Z, Li G Y, W J, Zhang X T, Guo Q. Acta Phys. Chim. Sin., 2017, 33(11):2141.
( 王叙春, 李金泽, 李广勇, 王锦, 张学同, 郭强. 物理化学学报, 2017, 33(11):2141.)
[14]
Ouyang A, Wang C H, Wu S T, Shi E Z, Zhao W Q, Cao A Y, Wu D H. ACS Appl. Mater. Interfaces, 2015, 7(26):14439.

doi: 10.1021/acsami.5b03369     URL    
[15]
Zhao X L, Yao W Q, Gao W W, Chen H, Gao C. Adv. Mater., 2017, 29(35):1701482.

doi: 10.1002/adma.201701482     URL    
[16]
Yu R M, Shi Y Z, Yang D Z, Liu Y X, Qu J, Yu Z Z. ACS Appl. Mater. Interfaces, 2017, 9(26):21809.

doi: 10.1021/acsami.7b04655     URL    
[17]
Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, A. Firsov, Science, 2004, 306:666.
[18]
Du X, Skachko I, Barker A, Andrei E Y. Nat. Nanotechnol., 2008, 3(8):491.

doi: 10.1038/nnano.2008.199     URL    
[19]
Shahil K M F, Balandin A A. Solid State Commun., 2012, 152(15):1331.

doi: 10.1016/j.ssc.2012.04.034     URL    
[20]
Thakur S, Das G, Raul P K, Karak N. J. Phys. Chem. C, 2013, 117(15):7636.

doi: 10.1021/jp400221k     URL    
[21]
Kemp K C, Seema H, Saleh M, Le N H, Mahesh K, Chandra V, Kim K S. Nanoscale, 2013, 5(8):3149.

doi: 10.1039/c3nr33708a     URL    
[22]
Han Z, Tang Z H, Li P, Yang G Z, Zheng Q B, Yang J H. Nanoscale, 2013, 5(12):5462.

doi: 10.1039/c3nr00971h     URL    
[23]
Xie X, Yu G H, Liu N, Bao Z N, Criddle C S, Cui Y. Energy Environ. Sci., 2012, 5(5):6862.

doi: 10.1039/c2ee03583a     URL    
[24]
Worsley M A, Pauzauskie P J, Olson T Y, Biener J, Satcher J H Jr, Baumann T F. J. Am. Chem. Soc., 2010, 132(40):14067.

doi: 10.1021/ja1072299     pmid: 20860374
[25]
Hu H, Zhao Z B, Wan W B, Gogotsi Y, Qiu J S. Adv. Mater., 2013, 25(15):2219.

doi: 10.1002/adma.201204530     URL    
[26]
Geim A K, Novoselov K S. Nat. Mater., 2007, 6(3):183.

pmid: 17330084
[27]
Huang X, Zeng Z Y, Fan Z X, Liu J Q, Zhang H. Adv. Mater., 2012, 24(45):5979.

doi: 10.1002/adma.v24.45     URL    
[28]
Wu Z S, Sun Y, Tan Y Z, Yang S B, Feng X L, Müllen K. J. Am. Chem. Soc., 2012, 134(48):19532.

doi: 10.1021/ja308676h     URL    
[29]
Jones S M, Sakamoto J.. Aerogels Handbook. New York, NY: Springer New York, 2011.721.
[30]
Biener J, Stadermann M, Suss M, Worsley M A, Biener M M, Rose K A, Baumann T F. Energy Environ. Sci., 2011, 4(3):656.

doi: 10.1039/c0ee00627k     URL    
[31]
Kavan L, Yum J H, Grätzel M. ACS Nano, 2011, 5(1):165.

doi: 10.1021/nn102353h     URL    
[32]
Fan X F, Zheng W T, Kuo J L. ACS Appl. Mater. Interfaces, 2012, 4(5):2432.

doi: 10.1021/am3000962     URL    
[33]
Zhao Y F, Kim Y H, Dillon A C, Heben M J, Zhang S B. Phys. Rev. Lett., 2005, 94(15):155504.

doi: 10.1103/PhysRevLett.94.155504     URL    
[34]
Lv W, Zhang C, Li Z J, Yang Q H. J. Phys. Chem. Lett., 2015, 6(4):658.

doi: 10.1021/jz502655m     URL    
[35]
Liu Y X, Yang D Z, Shi Y Z, Song L N, Yu R M, Qu J, Yu Z Z. ACS Sustainable Chem. Eng., 2019, 7(13):11228.

doi: 10.1021/acssuschemeng.9b00561     URL    
[36]
He M, Fei G X, Zheng Z, Wang Z G, Xia Z H, He S. Langmuir, 2019, 3:3694.
[37]
Deng Y M. Master’s Dissertation of Guangzhou University of Technology, 2016.
( 邓永茂. 广东工业大学硕士论文, 2016.)
[38]
Meng F B, Wang H G, Wei, Chen Z J, Li T, Li C Y, Xuan Y, Zhou Z W. Nano Res., 2018, 11(5):2847.

doi: 10.1007/s12274-017-1915-6     URL    
[39]
Li T, Zhi D D, Chen Y, Li B, Zhou Z W, Meng F B. Nano Res., 2020, 13(2):477.

doi: 10.1007/s12274-020-2632-0     URL    
[40]
Gao C M. Master’s Dissertation of Southwest University of Science and Technology, 2009.
( 高存梅. 西南科技大学硕士论文, 2009.)
[41]
Zhao C W, Fan J, Chen D, Xu Y, Wang T. Nano Res., 2016, 9(3):866.

doi: 10.1007/s12274-015-0968-7     URL    
[42]
Li C, Zeng X L, Tan L Y, Yao Y M, Zhu D L, Sun R, Xu J B, Wong C P. Chem. Eng. J., 2019, 368:79.

doi: 10.1016/j.cej.2019.02.110     URL    
[43]
Feng X M, Zhao J L, Sun D W, Shanmugam L, Kim J K, Yang J L. J. Mater. Chem. A, 2019, 7(9):4400.

doi: 10.1039/C8TA09062A     URL    
[44]
Yao W Q, Mao R W, Gao W W, Chen W Q, Xu Z, Gao C. Carbon, 2020, 158:418.

doi: 10.1016/j.carbon.2019.11.005     URL    
[45]
Fei Y, Li Y, Han S, Ma J. J. Colloid Interface Sci., 2016, 484:196.

doi: 10.1016/j.jcis.2016.08.068     URL    
[46]
Yang M L, Liu X L, Qi Y C, Sun W, Men Y. J. Colloid Interface Sci., 2017, 506:669.

doi: 10.1016/j.jcis.2017.07.093     URL    
[47]
Wu Y C, Qi H J, Huang Z H. J. Funct. Mater., 2017, 48(8):8117.
( 吴彦晨, 戚后娟, 黄占华. 功能材料, 2017, 48(8):8117.)
[48]
Gan L, Li H, Chen L W, Xu L J, Liu J, Geng A B, Mei C T, Shang S M. Colloid Polym. Sci., 2018, 296(3):607.

doi: 10.1007/s00396-018-4281-3     URL    
[49]
Lin D C, Yang J W, Deng Y Y, Dai M, Zheng X L, Peng C S. CIESC J., 2020, 71(3):914.
( 林帝出, 杨佳薇, 邓玉莹, 戴敏, 郑西来, 彭昌盛. 化工学报. 2020, 71(3):914.)
[50]
Liao X C, Tian L R, He M, Hu X D, Xia H S. Chin. Polym. Bull., 2017, 7(10):33.
( 廖述驰, 田丽蓉, 何苗, 虎晓东, 夏和生. 高分子通报, 2017, 7(10):33.)
[51]
Clara L, Joana B, Inés A, Fernando J. M, Carmen A, José L. G, Carlos A. G. Carbohydr. Polym., 2019, 1:223.
[52]
Mohammad A, Rana O, Hadeia M. Carbohydr. Polym., 2018, 180:264.

doi: 10.1016/j.carbpol.2017.10.038     URL    
[53]
Cheng Y H, Zhou S B, Hu P, Zhao G D, Li Y X, Zhang X H, Han W B. Sci. Rep., 2017, 7(1):1.

doi: 10.1038/s41598-016-0028-x     URL    
[54]
Ge X S, Shan Y N, Wu L, Mu X D, Peng H, Jiang Y J. Carbohydr. Polym., 2018, 197:277.

doi: 10.1016/j.carbpol.2018.06.014     URL    
[55]
Tao E, Ma D, Yang S Y, Hao X. J. Alloys Compd., 2020, 832:154833.

doi: 10.1016/j.jallcom.2020.154833     URL    
[56]
Xu W L, Chen S, Zhu Y N, Xiang X X, Bo Y Q, Lin Z M, Wu H, Liu H E. J. Mater. Sci., 2020, 55(24):10543.

doi: 10.1007/s10853-020-04720-5     URL    
[57]
Gao G Q. Master’s Dissertation of Shandong University, 2018.
( 高冠卿. 山东大学硕士论文, 2018.)
[58]
Li K. Master’s Dissertation of Qilu University of Science and Technology of China, 2018.
( 李可. 中国科学技术大学硕士论文, 2018.)
[59]
Cheng S H. Master’s Dissertation of Shandong University, 2019.
( 程淑华. 山东大学硕士论文, 2019.)
[60]
Ren F, Li Z, Tan W Z, Liu X H, Sun Z F, Ren P G, Yan D X. J. Colloid Interface Sci., 2018, 532:58.

doi: 10.1016/j.jcis.2018.07.101     URL    
[61]
Feng J J, Ding H, Yang G, Wang R T, Li S G, Liao J N, Li Z Y, Chen D M. J. Colloid Interface Sci., 2017, 508:387.

doi: 10.1016/j.jcis.2017.07.113     URL    
[62]
Wang B S. Master’s Dissertation of Qilu University of Technology, 2019.
( 王斌收. 齐鲁工业大学硕士论文, 2019.)
[63]
Zhang L Z. Master’s Dissertation of Chinese Academy of Sciences, 2014.
( 张良忠. 中国科学院大学硕士论文, 2014.)
[64]
Bandara P C, Perez J V D, Nadres E T, Nannapaneni R G, Krakowiak K J, Rodrigues D F. ACS Appl. Polym. Mater., 2019, 1(10):2668.

doi: 10.1021/acsapm.9b00612     URL    
[65]
Chen M, Wu H M, Li Z T, Wu K K, Jiao Y P, Zhou C R. J. Porous Mater., 2020, 27(2):549.

doi: 10.1007/s10934-019-00838-3     URL    
[66]
Zhao L Q, Yang S N, Yilihamu A, Ma Q, Shi M Y, Ouyang B W, Zhang Q Q, Guan X, Yang S T. Environ. Res., 2019, 179:108779.

doi: 10.1016/j.envres.2019.108779     URL    
[67]
Song X, Huang X H, Li Z X, Li Z T, Wu K K, Jiao Y P, Zhou C R. Carbohydr. Polym., 2019, 207:704.

doi: 10.1016/j.carbpol.2018.12.005     URL    
[68]
Singh D K, Kumar V, Mohan S, Bano D, Hasan S H. J. Water Process. Eng., 2017, 18:150.

doi: 10.1016/j.jwpe.2017.06.011     URL    
[69]
Jiang Z Q, Jiang Z J, Tian X N, Luo L J. Electrochimica Acta, 2014, 146:455.

doi: 10.1016/j.electacta.2014.09.069     URL    
[70]
Park S H, Kim H K, Yoon S B, Lee C W, Ahn D, Lee S I, Roh K C, Kim K B. Chem. Mater., 2015, 27:457.

doi: 10.1021/cm5034244     URL    
[71]
Zhao X D, Li Y H, Wu S L, Du L, Wang Y H. J. Qingdao Univ. Nat. Sci. Ed., 2013, 26(3):38.
( 赵新东, 李延辉, 吴少玲, 杜丽, 王永昊. 青岛大学学报(自然科学版), 2013, 26(3):38.)
[72]
Zhu X Y, Yang C, Wu P W, Ma Z Q, Shang Y Y, Bai G Z, Liu X Y, Chang G, Li N, Dai J J, Wang X T, Zhang H L. Nanoscale, 2020, 12(8):4882.

doi: 10.1039/C9NR07861D     URL    
[73]
Jung S M, Mafra D L, Lin C T, Jung H Y, Kong J. Nanoscale, 2015, 7(10):4386.

doi: 10.1039/C4NR07564A     URL    
[74]
Deng W, Fang Q L, Zhou X F, Cao H L, Liu Z P. RSC Adv., 2016, 6(25):20843.

doi: 10.1039/C5RA26088D     URL    
[75]
Diao S, Liu H E, Chen S, Yu A R, Xu W L, Zhang G Z. Chem. Ind. Eng. Proc., 2020, 39(7):2742.
( 刁帅, 刘会娥, 陈爽, 于安然, 许文龙, 张广智. 化工进展, 2020, 39(7):2742.)
[76]
Wang Z Y, Liu H E, Zhu J M, Chen S, Yu A R. CIESC J., 2019, 70(3):1152.
( 王振有, 刘会娥, 朱佳梦, 陈爽, 于安然. 化工学报, 2019, 70(3):1152.)
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[3] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[4] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[5] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[6] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[7] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[8] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[9] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[10] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[11] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[12] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[13] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[14] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[15] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
阅读次数
全文


摘要

石墨烯基气凝胶小球的可控制备