English
新闻公告
More
化学进展 2017, Vol. 29 Issue (1): 149-161 DOI: 10.7536/PC161007 前一篇   后一篇

• 综述 •

碳材料在钛酸锂负极材料中的应用

石颖, 闻雷, 吴敏杰, 李峰*   

  1. 中国科学院金属研究所 沈阳材料科学国家(联合)实验室 沈阳 110016
  • 收稿日期:2016-10-09 修回日期:2016-12-23 出版日期:2017-01-05 发布日期:2017-01-10
  • 通讯作者: 李峰 E-mail:fli@imr.ac.cn
  • 基金资助:
    国家重大科学研究计划项目(No.2014C32402,2016YFA0200100,2016YFB0100100),国家自然科学基金项目(No.51521091,51525206,51372253,U1401243)和中科院先导专项(No.XDA09010104)资助

Applications of the Carbon Materials on Lithium Titanium Oxide as Anode for Lithium Ion Batteries

Ying Shi, Lei Wen, Minjie Wu, Feng Li*   

  1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
  • Received:2016-10-09 Revised:2016-12-23 Online:2017-01-05 Published:2017-01-10
  • Supported by:
    The work was supported by the Ministry of Science and Technology of China (No.2014C32402, 2016YFA0200100, 2016YFB0100100), the National Natural Science Foundation of China (No.51521091, 51525206, 51372253, U1401243), and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (No.XDA09010104).
尖晶石型结构的钛酸锂由于具有极高的循环寿命和安全特性,被认为是目前最具应用前景的锂离子电池负极材料之一。但钛酸锂的电子电导率较低,且在充放电循环过程中易产生胀气问题,使其应用受到了极大的限制。将高导电、环境友好、化学和热性能稳定且结构多样的碳材料与钛酸锂形成复合负极材料,可有效提高材料的导电性,同时抑制胀气,对电极材料的性能优化起到非常关键的作用。本文综述了近年来碳材料在钛酸锂负极中的应用与研究进展,深入分析和探讨了碳材料对钛酸锂综合电化学性能的改善方式和改进效果,指出了不同形式的钛酸锂/碳复合材料在制备和应用中需要关注的问题,并对钛酸锂/碳复合材料未来可能的应用方向进行了展望。
With the increasing demand for high power lithium ion batteries in the application of electrochemical energy storage (EES), smart grids and electric vehicle/hybrid electric vehicle (EV/HEV), the development of anode materials with high power density, long cycle life and high safety is of great importance and urgency in recent years. Spinel lithium titanium oxide (Li4Ti5O12, LTO) has been considered as one of the most promising anode materials due to its high charge/discharge voltage plateau, stable crystal, long cycle life and high safety. However, its intrinsic low electronic conductivity, as well as the gassing behavior which usually happens during charge/discharge processes, have hindered the large scale application of LTO. Carbon materials with high conductivity, excellent chemical and thermal stability, various structures and environment friendly, can be used to form hybrid materials with LTO to improve the overall electronic conductivity and suppress the gassing at the same time. Therefore, carbon materials play a crucial role in the modification of LTO. This paper reviews the application of carbon materials for the LTO anode and their research progress in recent years, focusing on the ways and effects of carbon materials on the modification of the electrochemical performance of LTO. The problems in the fabrication and application for the LTO/carbon hybrid materials are addressed. Potential applications of the LTO/carbon hybrid materials are also presented.

Contents
1 Introduction
2 Structural characteristics and charge/discharge mechanism of Li4Ti5O12
3 Modifications of the electrochemical performance of Li4Ti5O12 by carbon materials
3.1 Carbon coating on the Li4Ti5O12
3.2 Li4Ti5O12/carbon composite materials with special structures
3.3 Li4Ti5O12/carbon flexible integrated anodes
4 Carbon modification on the gassing of Li4Ti5O12-based batteries
5 Conclusion

中图分类号: 

()
[1] Vetter J, Novak P, Wagner M R, Veit C, Moller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A. J. Power Sources, 2005, 147:269.
[2] Belharouak I, Sun Y K, Lu W, Amine K. J. Electrochem. Soc., 2007, 154:A1083.
[3] Yi T F, Xie Y, Zhu Y R, Zhu R S, Shen H Y. J. Power Sources, 2013, 222:448.
[4] Lu W, Belharouak I, Liu J, Amine K. J. Electrochem. Soc., 2007, 154:A114.
[5] Ohzuku T, Ueda A, Yamamoto N. J. Electrochem. Soc., 1995, 142:1431.
[6] Borghols W J H, Wagemaker M, Lafont U, Kelder E M, Mulder F M. J. Am. Chem. Soc., 2009, 131:17786.
[7] Imazaki M, Wang L N, Kawai T, Ariyoshi K, Ohzuku T. Electrochim Acta, 2011, 56:4576.
[8] Kavan L, Prochazka J, Spitler T M, Kalbac M, Zukalova M T, Drezen T, Gratzel M. J. Electrochem. Soc., 2003, 150:A1000.
[9] Ouyang C Y, Zhong Z Y, Lei M S. Electrochem. Commun., 2007, 9:1107.
[10] 王倩(Wang Q), 张竞择(Zhang J Z), 娄豫皖(Lou Y W), 夏保佳(Xia B J). 化学进展(Progress in Chemistry), 2014, 26(11):1772.
[11] He Y B, Li B H, Liu M, Zhang C, Lv W, Yang C, Li J, Du H D, Zhang B A, Yang Q H, Kim J K, Kang F Y. Sci Rep, 2012, 2.
[12] Huang S H, Wen Z Y, Zhu X J, Lin Z X. J. Power Sources, 2007, 165:408.
[13] Ji S Z, Zhang J Y, Wang W W, Huang Y, Feng Z R, Zhang Z T, Tang Z L. Materials Chemistry and Physics, 2010, 123:510.
[14] Lin C F, Lai M O, Lu L, Zhou H H, Xin Y L. J. Power Sources, 2013, 244:272.
[15] Chen C H, Vaughey J T, Jansen A N, Dees D W, Kahaian A J, Goacher T, Thackeray M M. J. Electrochem. Soc., 2001, 148:A102.
[16] Huang S H, Wen Z Y, Zhu X J, Lin Z X. J. Electrochem. Soc., 2005, 152:A186.
[17] Park K S, Benayad A, Kang D J, Doo S G. J. Am. Chem. Soc., 2008, 130:14930.
[18] Wang G J, Gao J, Fu L J, Zhao N H, Wu Y P, Takamura T. J. Power Sources, 2007, 174:1109.
[19] Bin Kim J, Kim D J, Chung K Y, Byun D, Cho B W. Phys. Scr., 2010, T139:4.
[20] Cheng L, Li X L, Liu H J, Xiong H M, Zhang P W, Xia Y Y. J. Electrochem. Soc., 2007, 154:A692.
[21] Huang J J, Jiang Z Y. Electrochim Acta, 2008, 53:7756.
[22] Li X, Qu M Z, Huai Y J, Yu Z L. Electrochim Acta, 2010, 55:2978.
[23] Shen L F, Yuan C Z, Luo H J, Zhang X G, Yang S D, Lu X J. Nanoscale, 2011, 3:572.
[24] Shi Y, Wen L, Li F, Cheng H-M. J. Power Sources, 2011, 196:8610.
[25] Li J R, Tang Z L, Zhang Z T. Electrochem. Commun., 2005, 7:894.
[26] Wang Y G, Liu H M, Wang K X, Eiji H, Wang Y R, Zhou H S. J. Mater. Chem., 2009, 19:6789.
[27] 张永龙(Zhang Y L), 胡学步(Hu X B), 徐云兰(Xu Y L), 丁明亮(Ding M L). 化学学报(Acta Chimica Sinica), 2013, 71(10):1341.
[28] Amine K, Belharouak I, Chen Z H, Tran T, Yumoto H, Ota N, Myung S T, Sun Y K. Adv. Mater., 2010, 22:3052.
[29] Liu C F, Wang S H, Zhang C K, Fu H Y, Nan X H, Yang Y, Cao G Z. Energy Storage Mater., 2016, 5:93.
[30] 徐淑银(Xu S Y), 刘燕燕(Liu Y Y), 高飞(Gao F), 杨凯(Yang K), 王绥军(Wang S J), 胡勇胜(Hu Y S).硅酸盐学报(Journal of the Chinese Ceramic Society), 2015, 43(5):657.
[31] Wang G X, Bradhurst D H, Dou S X, Liu H K. J. Power Sources, 1999, 83:156.
[32] Yi T F, Liu H P, Zhu Y R, Jiang L J, Xie Y, Zhu R S. J. Power Sources, 2012, 215:258.
[33] Aldon L, Kubiak P, Womes M, Jumas J C, Olivier-Fourcade J, Tirado J L, Corredor J I, Vicente C P. Chem. Mat., 2004, 16:5721.
[34] Sorensen E M, Barry S J, Jung H K, Rondinelli J R, Vaughey J T, Poeppelmeier K R. Chem. Mat., 2006, 18:482.
[35] Scharner S, Weppner W, Schmid-Beurmann P. J. Electrochem. Soc., 1999, 146:857.
[36] Ma J X, Wang C S, Wroblewski S. J. Power Sources, 2007, 164:849.
[37] Takami N, Inagaki H, Kishi T, Harada Y, Fujita Y, Hoshina K. J. Electrochem. Soc., 2009, 156:A128.
[38] Takami N, Hoshina K, Inagaki H. J. Electrochem. Soc., 2011, 158:A725.
[39] Yi T F, Jiang L J, Shu J, Yue C B, Zhu R S, Qiao H B. J. Phys. Chem. Solids, 2010, 71:1236.
[40] Zhu G N, Wang Y G, Xia Y Y. Energy Environ. Sci., 2012, 5:6652.
[41] Yi T F, Yang S Y, Xie Y. J. Mater. Chem. A, 2015, 3:5750.
[42] 朱希平(Zhu X P), 贺艳兵(He Y B). 应用化工(Applied Chemical Industry), 2012, 41(5):884.
[43] Li N, Zhou G M, Li F, Wen L, Cheng H M. Adv. Funct. Mater., 2013, 23:5429.
[44] Cheng L, Yan J, Zhu G N, Luo J Y, Wang C X, Xia Y Y. J. Mater. Chem., 2010, 20:595.
[45] Jung H G, Myung S T, Yoon C S, Son S B, Oh K H, Amine K, Scrosati B, Sun Y K. Energy Environ. Sci., 2011, 4:1345.
[46] Li B H, Han C P, He Y B, Yang C, Du H D, Yang Q H, Kang F Y. Energy Environ. Sci., 2012, 5:9595.
[47] Yuan T, Yu X, Cai R, Zhou Y K, Shao Z P. J. Power Sources, 2010, 195:4997.
[48] Li H S, Shen L F, Yin K B, Ji J, Wang J, Wang X Y, Zhang X G. J. Mater. Chem. A, 2013, 1:7270.
[49] Zhao L, Hu Y S, Li H, Wang Z X, Chen L Q. Adv. Mater., 2011, 23:1385.
[50] Zhang Z H, Li G C, Peng H R, Chen K Z. J. Mater. Chem. A, 2013, 1:15429.
[51] Li H Q, Zhou H S. Chem. Commun., 2012, 48:1201.
[52] Zhu G N, Liu H J, Zhuang J H, Wang C X, Wang Y G, Xia Y Y. Energy Environ. Sci., 2011, 4:4016.
[53] Shen L F, Li H S, Uchaker E, Zhang X G, Cao G Z. Nano Lett., 2012, 12:5673.
[54] Wang J, Liu X M, Yang H, Shen X D. J. Alloy. Compd., 2011, 509:712.
[55] Hu X B, Lin Z J, Yang K R, Huai Y J, Deng Z H. Electrochim Acta, 2011, 56:5046.
[56] Zhu Z Q, Cheng F Y, Chen J. J. Mater. Chem. A, 2013, 1:9484.
[57] Shen L F, Yuan C Z, Luo H J, Zhang X G, Chen L, Li H S. J. Mater. Chem., 2011, 21:14414.
[58] Wang C, Wang S, Tang L K, He Y B, Gan L, Li J, Du H D, Li B H, Lin Z Q, Kang F Y. Nano Energy, 2016, 21:133.
[59] Peng L, Zhang H J, Fang L, Zhang Y, Wang Y. Nanoscale, 2016, 8:2030.
[60] Luo H J, Shen L F, Rui K, Li H S, Zhang X G. J. Alloy. Compd., 2013, 572:37.
[61] Sun X C, Radovanovic P V, Cui B. New J. Chem., 2015, 39:38.
[62] Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J. J. Electrochem. Soc., 2005, 152:A607.
[63] Zhu G N, Wang C X, Xia Y Y. J. Electrochem. Soc., 2011, 158:A102.
[64] Wen L, Wu Z Y, Luo H Z, Song R S, Li F. J. Electrochem. Soc., 2015, 162:A3038.
[65] Raffaelle R P, Landi B J, Harris J D, Bailey S G, Hepp A F. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 2005, 116:233.
[66] Li X, Qu M Z, Yu Z L. Solid State Ion., 2010, 181:635.
[67] Shen L F, Yuan C Z, Luo H J, Zhang X G, Xu K, Zhang F. J. Mater. Chem., 2011, 21:761.
[68] Naoi K, Ishimoto S, Isobe Y, Aoyagi S. J. Power Sources, 2010, 195:6250.
[69] Wu Z S, Zhou G M, Yin L C, Ren W, Li F, Cheng H M. Nano Energy, 2012, 1:107.
[70] Liang M H, Zhi L J. Journal of Materials Chemistry, 2009, 19:5871.
[71] Sun Y Q, Wu Q O, Shi G Q. Energy Environ. Sci., 2011, 4:1113.
[72] Geim A K, Novoselov K S. Nat. Mater., 2007, 6:183.
[73] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442:282.
[74] Zhu N, Liu W, Xue M Q, Xie Z A, Zhao D, Zhang M N, Chen J T, Cao T B. Electrochim Acta, 2010, 55:5813.
[75] Pang S P, Zhao Y Y, Zhang C J, Zhang Q H, Gu L, Zhou X H, Li G C, Cui G L. Scr. Mater., 2013, 69:171.
[76] Oh Y, Nam S, Wi S, Kang J, Hwang T, Lee S, Park H H, Cabana J, Kim C, Park B. J. Mater. Chem. A, 2014, 2:2023.
[77] Kim H K, Bak S M, Kim K B. Electrochem. Commun., 2010, 12:1768.
[78] 闻雷(Wen L), 刘成名(Liu C M), 宋仁升(Song R S), 罗洪泽(Luo H Z), 石颖(Shi Y), 李峰(Li F), 成会明(Cheng H M). 化学学报(Acta Chimica Sinica), 2014, 72(3):333.
[79] Zhou G M, Li F, Cheng H M. Energy Environ. Sci., 2014, 7:1307.
[80] Wu Y, Wu H C, Luo S, Wang K, Zhao F, Wei Y, Liu P, Jiang K L, Wang J P, Fan S S. RSC Adv., 2014, 4:20010.
[81] Shen L F, Ding B, Nie P, Cao G Z, Zhang X G. Adv. Energy Mater., 2013, 3:1484.
[82] Wang K, Luo S, Wu Y, He X F, Zhao F, Wang J P, Jiang K L, Fan S S. Adv. Funct. Mater., 2013, 23:846.
[83] Hu L B, Wu H, La Mantia F, Yang Y A, Cui Y. ACS Nano, 2010, 4:5843.
[84] Li N, Chen Z P, Ren W C, Li F, Cheng H M. Proc. Natl. Acad. Sci. U. S. A., 2012, 109:17360.
[85] Shi Y, Wen L, Zhou G M, Chen J, Pei S F, Huang K, Cheng H M, Li F. 2D Mater., 2015, 2.
[86] Cao S M, Feng X, Song Y Y, Xue X, Liu H J, Miao M, Fang J H, Shi L Y. ACS Appl. Mater. Interfaces, 2015, 7:10695.
[87] Yuan T, Cai R, Shao Z P. J. Phys. Chem. C, 2011, 115:4943.
[88] Ding Z J, Zhao L, Suo L M, Jiao Y, Meng S, Hu Y S, Wang Z X, Chen L Q. Phys. Chem. Chem. Phys., 2011, 13:15127.
[89] Snyder M Q, DeSisto W J, Tripp C P. Appl. Surf. Sci., 2007, 253:9336.
[90] Nakajima T, Ueno A, Achiha T, Ohzawa Y, Endo M. J. Fluor. Chem., 2009, 130:810.
[91] Wu K, Yang J, Liu Y, Zhang Y, Wang C Y, Xu J M, Ning F, Wang D Y. J. Power Sources, 2013, 237:285.
[92] Bernhard R, Meini S, Gasteiger H A. J. Electrochem. Soc., 2014, 161:A497.
[93] Wu K, Yang J, Qiu X Y, Xu J M, Zhang Q Q, Jin J, Zhuang Q C. Electrochim Acta, 2013, 108:841.
[94] He Y B, Ning F, Li B H, Song Q S, Lv W, Du H D, Zhai D Y, Su F Y, Yang Q H, Kang F Y. J. Power Sources, 2012, 202:253.
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[3] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[4] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[9] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[10] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[11] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[12] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[13] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[14] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[15] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.