English
新闻公告
More
化学进展 2017, Vol. 29 Issue (1): 137-148 DOI: 10.7536/PC161001 前一篇   后一篇

• 综述 •

液相法合成磷酸铁锂正极材料

杜远超, 华政, 梁风, 李永梅, 戴永年, 姚耀春*   

  1. 昆明理工大学 真空冶金国家工程实验室 云南省先进电池和材料实验室 锂离子电池及材料制备技术国家地方联合工程实验室 昆明 650093
  • 收稿日期:2016-10-01 修回日期:2016-12-03 出版日期:2017-01-05 发布日期:2017-01-10
  • 通讯作者: 姚耀春 E-mail:yaochun9796@163.com
  • 基金资助:
    国家自然科学基金项目(No.51364021)、云南省自然科学基金项目(No.2014FA025)和云南省院士自由探索项目(No.2015HA016,2016HA011)资助

Synthesis of Lithium Iron Phosphate Cathode Material by Liquid State Method

Yuanchao Du, Zheng Hua, Feng Liang, Yongmei Li, Yongnian Dai, Yaochun Yao*   

  1. National Engineering Laboratory for Vacuum Metallurgy, Engineering Laboratory for Advanced Batteries and Materials of Yunnan Province, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2016-10-01 Revised:2016-12-03 Online:2017-01-05 Published:2017-01-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51364021), the Natural Science Foundation of Yunnan Province (No. 2014FA025), and the Academician's Discovering Found from Yunnan Provincial Science and Technology (No. 2015HA016,2016HA011).
液相合成法具有传热、传质快,材料粒径、形貌可控等优点,被广泛应用于各类材料制备领域。本文综述了共沉淀法、溶剂热法、sol-gel法合成磷酸铁锂正极材料的过程、原理和研究进展,并进行了对比和总结:纳米化、高比表面积、碳包覆,可以解决电子电导率低和锂离子扩散速率慢所导致的倍率性能差的问题,是液相法合成的基本要求。共沉淀法有利于合成密堆积的球形形貌,获得高振实密度的材料,可以提高材料的能量密度。溶剂热法有利于合成大(010)面的材料,缩短锂离子扩散的距离,提高材料的倍率性能。Sol-gel法可以达到分子级别的混合,有利于制备成分均匀、原位碳包覆的材料。使用高电子电导率和离子电导率的材料,可以提高LiFePO4的倍率性能。相对固相法,寻找合成时间短、流程短、成本低的产业化方法,推动液相法在原理、工艺上的发展和进步是研究的方向。
The liquid state method has the advantages of fast heat and mass transfer, controlled particle size and shape of materials, so it is widely used in the preparation of various types of materials. In this paper, the process, principle and research progress of co-precipitation method, solvothermal method and sol-gel method for the synthesis of lithium iron phosphate are compared and summarized:the basic requirement of liquid phase synthesis is nano particle size, high specific surface area and carbon coating,which can solve the problem of low electron conductivity and slow lithium ion diffusion rate, accordingly improve the rate performance of materials. The co-precipitation method has advantage in synthesizing the densely packed spherical morphology materials to obtain high tap density and improve the energy density of materials. Solvothermal method is beneficial to synthesize large (010) surface materials, shorten the distance of lithium ion diffusion, and improve the rate performance of the material. Sol-gel can achieve molecular level mixing, which is favorable for the preparation of homogeneous and in situ carbon coated materials. Scientists introduce materials of high electronic conductivity and ionic conductivity to improve conductivity of LiFePO4. Compared with the solid phase method, to investigate a fast, facile process, low cost and easily-industrialized method, and to promote the development and progress of liquid state method in principle and technology is the research direction.

Contents
1 Introduction
2 Synthesis of lithium iron phosphate by co-precipitation method
2.1 Syntheses of nano material
2.2 The reaction mechanism
2.3 Improving tap density of the material
2.4 Introduce high conductivity materials
3 Synthesis of lithium iron phosphate by solvothermal method
3.1 Syntheses of the material of large (010) surface
3.2 Syntheses of the material with nano particle size and high specific surface area
3.3 Introduce high conductivity materials
3.4 The reaction mechanism
4 Synthesis of lithium iron phosphate by sol-gel method
4.1 The chelant
4.2 Introduce high conductivity materials
4.3 Amphiphilic surfactant
5 Conclusion

中图分类号: 

()
[1] 姚耀春(Yao Y C). 昆明理工大学博士学位论文(Doctoral Dissertation of Kunming University of Science and Technology), 2005:4.
[2] 潘芳芳(Pan F F). 中国科技大学博士学位论文(Doctoral Dissertation of University of Science and Technology of China), 2011:12.
[3] 梁风(Liang F). 昆明理工大学硕士学位论文(Master Dissertation of Kunming University of Science and Technology), 2009:7.
[4] Prosini P P, Carewska M, Scaccia S, Wisniewski P, Pasquali M. Electrochimica Acta, 2003, 48:4205.
[5] Wang Y G, Wang Y R, Hosono E J, Wang K X, Zhou H S. Angewandte Chemie, 2008, 120:7571.
[6] Wang X D, Cheng K, Zhang J W, Yu L G, Yang J J. Advanced Powder Technology, 2013, 24:593.
[7] Zhang Q G, Peng T Y, Zhan D, Hu X H, Zhu G Z. Materials Chemistry and Physics, 2013, 138:146.
[8] Chen C, Liu G B, Wang Y, Li J L, Liu H. Electrochimica Acta, 2013, 113:464.
[9] Islam M, Ur S C, Yoon M S. Current Applied Physics, 2015, 15:541.
[10] Zhang J, Lu J B, Bian D C, Yang Z H, Wu Q, Zhang W X. Industrial & Engineering Chemistry Research, 2014, 53:12209.
[11] 倪江锋(Ni J F), 周恒辉(Zhou H H), 陈继涛(Chen J T), 苏光耀(Su G Y). 物理化学学报(Acta Phys-Chim.Simca), 2004, 20(6):582.
[12] 郑国瑞(Zheng G R), 甘礼安(Gan L A), 陈春枝(Chen C Z), 赵瑞瑞(Zhao R R), 陈红雨(Chen H Y). 电源技术(Chin.J.Power Sounes), 2014, 38(2):221.
[13] Yoon M S, Islam M, Park Y M, Ur S C. Electronic Materials Letters, 2013, 9(2):187.
[14] Bi J Y, Zhang T B, Wang K, Zhong B H, Luo G S. Particuology, 2016, 24:142.
[15] Oh S W, Bang H J, Myung S T, Bae Y C, Lee S M, Sun Y K. Journal of the Electrochemical Society, 2008, 155(6):A414.
[16] Oh S W, Myung S T, Bang H J, Yoon C S, Amine K, Suna Y K. Electrochemical and Solid-State Letters, 2009, 12(9):A181.
[17] Oh S W, Myung S T, Oh S M, Yoon C S, Amine K, Sun Y K. Electrochimica Acta, 2010, 55:1193.
[18] Bai N B, Chen H, Zhou W, Xiang K X, Zhang Y L, Li C L, Lu H Y. Electrochimica Acta, 2015, 167:172.
[19] Jegal J P, Kim K B. Journal of Power Sources, 2013, 243:859.
[20] Wu K P, Hu G R, Du K, Peng Z D, Cao Y B. Ceramics International, 2015, 41:13867.
[21] Xie H M, Wang R S, Ying J R, Zhang L Y, Jalbout A F, Yu H Y, Yang G L, Pan X M, Su Z M. Advanced Materials, 2006, 18:2609.
[22] Ma Z P, Shao G J, Qin X J, Fan Y Q, Wang G L, Song J J, Liu T T. Journal of Power Sources, 2014, 269:194.
[23] Yang S F, Zavalij P Y, Whittingham M S. Electrochemistry Communications, 2001, 3:505.
[24] Chen J J, Whittingham M S. Electrochemistry Communications, 2006, 8:855.
[25] 庄大高(Zhuang D G), 赵新兵(Zhao X B), 曹高劭(Cao G S), 米常焕(Mi C H), 涂健(Tu J), 涂江平(Tu J P). 中国有色金属学报(Chin.J.Nonferrous), 2005, 15(12):2034.
[26] 文倩倩(Wen Q Q), 贾梦秋(Jia M Q). 电池(Battery), 2013, 43(1):18.
[27] Nan C Y, Lu J, Chen C, Peng Q, Li Y D. Journal of Materials Chemistry, 2011, 21:9994.
[28] Nan C Y, Lu J, Li L H, Li L L, Peng Q, Li Y D. Nano Research, 2013, 6(7):469.
[29] Pei B, Yao H X, Zhang W X, Yang Z H. Journal of Power Sources, 2012, 220:317.
[30] Wang L, He X M, Sun W T, Wang J L, Li Y D, Fan S S. Nano Letters, 2012, 12:5632.
[31] Chen M M, Ma Q Q, Wang C Y, Sun X, Wang L Q, Zhang C. Journal of Power Sources, 2014, 263:268.
[32] Wang B, Wang S, Liu P, Deng J, Xu B H, Liu T F, Wang D L, Zhao X S. Materials Letters, 2014, 118:137.
[33] Meligrana G, Gerbaldi C, Tuel A, Bodoardo S, Penazzi N. Journal of Power Sources, 2006, 160:516.
[34] Wang Q, Zhang W X, Yang Z H, Weng S Y, Jin Z J. Journal of Power Sources, 2011, 196:10176.
[35] Li J, Qu Q T, Zhang L F, Zhang L, Zheng H H. Journal of Alloys and Compounds, 2013, 579:377.
[36] Chen J, Zou Y C, Zhang F, Zhang Y C, Guo F F, Li G D. Journal of Alloys and Compounds, 2013, 563:264.
[37] Xu G, Li F, Tao Z H, Wei X, Liu Y, Li X, Ren Z H, Shen G, Han G R. Journal of Power Sources, 2014, 246:696.
[38] Wang J, Zheng S Q, Yan H, Zhang H P, Hojamberdiev M, Ren B, Xu Y H. Materials Chemistry and Physics, 2015, 160:398.
[39] Lupo F D, Meligrana G, Gerbaldi C, Bodoardo S, Penazzi N. Electrochimica Acta, 2015, 156:188.
[40] Tan Q Q, Lv C, Xu Y X, Yang J. Particuology, 2014, 17:106.
[41] Deng H G, Jin S L, Zhan L, Wang Y L, Qiao W M, Ling L C. Journal of Power Sources, 2012, 220:342.
[42] Zheng Z M, Pang W K, Tang X C, Jia D Z, Huang Y D, Guo Z P. Journal of Alloys and Compounds, 2015, 640:95.
[43] Wang R H, Xu C H, Sun J, Gao L, Jin J, Lin C C. Materials Letters, 2013, 112:207.
[44] Chen M, Du C Y, Song B, Xiong K, Yin G P, Zuo P J, Cheng X Q. Journal of Power Sources, 2013, 223:100.
[45] Shu H B, Chen M F, Wen F, Fu Y Q, Liang Q Q, Yang X K, Shen Y Q, Liu L, Wang X Y. Electrochimica Acta, 2015, 152:368.
[46] Zhang L Y, Tang Y F, Liu Z Q, Huang H N, Fang Y Z, Huang F Q. Journal of Alloys and Compounds, 2015, 627:132.
[47] Liu Y Y, Gu J J, Zhang J L, Yu F, Dong L T, Nie N, Li W. Journal of Power Sources, 2016, 304:42.
[48] Ellis B, Kan W H, Makahnouk W R M, Nazar L F. Journal of Materials Chemistry, 2007, 17:3248.
[49] Qin X, Wang X H, Xiang H M, Xie J, Li J J, Zhou Y C. The Journal of Physical Chemistry C, 2010, 114:16806.
[50] Lee M H, Kim J Y, Song H K. Chemical Communications, 2010, 46:6795.
[51] Liu Y Y, Gu J J, Zhang J L, Wang J, Nie N, Fu Y, Li W, Yu F. Electrochimica Acta, 2015, 173:448.
[52] Johnson I D, Lübke M, Wu O Y, Makwana N M, Smales G J, Islam H U, Dedigama R Y, Gruar R I, Tighe C J, Scanlon D O, Cor F, Brett D J L, Shearing P R, Darr J A. Journal of Power Sources, 2016, 302:410.
[53] Hsu K F, Tsay S Y, Hwang B J. Journal of Materials Chemistry, 2004, 14:2690.
[54] Wang G X, Bewlay S, Yao J, Ahn J H, Dou S X, Liu H K. Electrochemical and Solid-State Letters, 2004, 7(12):A503.
[55] Dominko R, Goupil J M, Bele M, Gaberscek M, Remskar M, Hanzel D, Jamnik J. Journal of the Electrochemical Society, 2005, 152(5):A858.
[56] Gaberscek M, Dominko R, Bele M, Remskar M, Hanzel D, Jamnik J. Solid State Ionics, 2005, 176:1801.
[57] Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J. Journal of The Electrochemical Society, 2005, 152(3):A607.
[58] Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Goupil J M, Pejovnik S, Jamnik J. Journal of Power Sources, 2006, 153:274.
[59] Dominko R, Bele M, Goupil J M, Gaberscek M, Hanzel D, Arcon I, Jamnik J. Chemistry of Materials, 2007, 19:2960.
[60] Peng W X, Jiao L F, Gao H Y, Qi Z, Wang Q H, Du H M, Si Y C, Wang Y J, Yuan H T. Journal of Power Sources, 2011, 196:2841.
[61] Liu N Q, Gao M Y, Li Z B, Li C M, Wang W K, Zhang H, Yu Z B, Huang Y Q. Journal of Alloys and Compounds, 2014, 599:127.
[62] Chen M, Shao L L, Yang H B, Zhao Q Y, Yuan Z Y. Electrochimica Acta, 2015, 168:59.
[63] Chen M, Shao L L, Yang H B, Ren T Z, Du G H, Yuan Z Y. Electrochimica Acta, 2015, 167:278.
[64] 任兆刚(Ren Z G), 瞿美臻(Qu M Z), 于作龙(Yu Z L). 无机材料学报(J. Inorg.Mater.), 2010, 25(3):230.
[65] 李学良(Li X L), 王凯(Wang K), 肖正辉(Xiao Z H), 刘庆海(Liu Q H). 硅酸盐学报(J. China.Cerumic Soc.), 2012, 40(2):261.
[66] Huang H, Yin S C, Nazarz L F. Electrochemical and Solid-State Letters, 2001, 4(10):A170.
[67] Zhou J, Liu B H, Li Z P. Solid State Ionics, 2013, 244:23.
[68] Zhang H, Liu D, Qian X Z, Zhao C J, Xu Y L. Journal of Power Sources, 2014, 249:431.
[69] Zhou Y K, Wang J, Hu Y Y, O'Hayre R, Sha Z P. Chemical Communications, 2010, 46:7151.
[70] Dhindsa K S, Mandal B P, Bazzi K, Lin M W, Nazri M, Nazri G A, Naik V M, Garg V K, Oliveira A C, Vaishnava P, Naika R, Zhou Z X. Solid State Ionics, 2013, 253:94.
[71] Mun J Y, Ha H W, Choi W C. Journal of Power Sources, 2014, 251:386.
[72] Liang F, Yao Y C, Dai Y N, Yang B, Ma W H, Watanabe T. Solid State Ionics, 2012, 214:31.
[73] Choi D, Kumta P N. Journal of Power Sources, 2007, 163:1064.
[74] Bazzi K, Dhindsa K S, Dixit A, Sahana M B, Sudakar C.Journal of Materials Research, 2012, 27(2):424.
[75] Bazzi K, Mandal B P, Nazri M, Naik V M, Garg V K, Oliveira A C, Vaishnava P P, Nazri G A, Naik R. Journal of Power Sources, 2014, 265:67.
[76] Ni L, Zheng J G, Qin C C, Lu Y W, Liu P X, Wu T F, Tang Y F, Chen Y F. Electrochimica Acta, 2014, 147:330.
[77] Sivakumar M, Muruganantham R, Subadevi R. Applied Surface Science, 2015, 337:234.
[1] 杜海顺, 刘超, 张苗苗, 孔庆山, 李滨*, 咸漠. 纳米纤维素的制备及产业化[J]. 化学进展, 2018, 30(4): 448-462.
[2] 赵涛,孙蓉,冷静,杜如虚,张治军. 液相法制备(亚)铁磁性纳米材料*[J]. 化学进展, 2007, 19(11): 1703-1709.
[3] 陈洪章,邱卫华. 秸秆发酵燃料乙醇关键问题及其进展*[J]. 化学进展, 2007, 19(0708): 1116-1121.
[4] 曲音波. 纤维素乙醇产业化*[J]. 化学进展, 2007, 19(0708): 1098-1108.
阅读次数
全文


摘要

液相法合成磷酸铁锂正极材料