English
新闻公告
More
化学进展 2022, Vol. 34 Issue (11): 2361-2372 DOI: 10.7536/PC220311 前一篇   后一篇

• 综述 •

有机碳材料在光电催化系统中的作用

陈向娟, 王欢*(), 安伟佳, 刘利, 崔文权*()   

  1. 华北理工大学化学工程学院 河北省环境光电催化材料重点实验室 唐山 063210
  • 收稿日期:2022-03-11 修回日期:2022-05-22 出版日期:2022-11-24 发布日期:2022-06-25
  • 通讯作者: 王欢, 崔文权
  • 作者简介:

    王欢 研究方向能源与环境催化,主持河北省自然科学基金项目1项,河北省教育厅青年拔尖人才项目1项。发表学术论文20余篇,其中SCI、EI收录的论文17篇,ESI高被引论文2篇。

    崔文权 研究方向能源与环境催化,主持国家自然科学基金两项,河北省杰出青年基金项目一项。共发表SCI收录的论文100余篇,其中,TOP期刊论文25篇,8篇入选ESI前1%高被引论文,个人H因子35。

  • 基金资助:
    河北省自然科学基金青年基金项目(B2020209065); 河北省高等学校科学技术研究项目(BJK2022013); 河北省自然科学基金重点项目(B2020209017)

Study on Photoelectrocatalysis of Organic Carbon Materials

Xiangjuan Chen, Huan Wang(), Weijia An, Li Liu, Wenquan Cui()   

  1. Hebei Provincial Key Laboratory of Environmental Photocatalytic Materials,College of Chemical Engineering, North China University of Science and Technology,Tangshan 063210, China
  • Received:2022-03-11 Revised:2022-05-22 Online:2022-11-24 Published:2022-06-25
  • Contact: Huan Wang, Wenquan Cui
  • Supported by:
    Youth Program of Natural Science of Hebei Province(B2020209065); Science and Technology Project of Hebei Education Department(BJK2022013); Key Program of Natural Science of Hebei Province(B2020209017)

有机碳材料因电荷传导效率高、结构可调、无污染等特点被广泛应用于光电催化领域。将含有机碳材料的催化剂作为电极材料已成为光电催化领域的研究热点之一。本文介绍了几种常见的有机碳材料的结构、特点、制备方法及其研究方向,并将含有机碳材料的电极进行分类。主要总结并论述了有机碳材料在光电催化系统中的五种作用:(1)作为催化剂;(2)作为光敏剂(3)作为电子介质;(4)作为催化剂载体;(5)作为光电极的稳定剂,最后阐述了有机碳材料在光电催化系统中的研究现状及难点问题。

Organic carbon materials are widely used in the field of photoelectrocatalysis because of their high charge conduction efficiency, adjustable structure and no pollution. The catalyst containing organic carbon as electrode material has become one of the research hotspots in the field of photoelectrocatalysis. The structure and characteristics of several common organic carbon materials are introduced in this paper. These preparation methods and research direction of photoelectrocatalysis are also elaborated. And the electrodes containing organic carbon were divided into three categories. Five functions of organic carbon materials in photoelectric catalytic system are summarized and discussed: (1) act as catalyst; (2) act as photosensitizer; (3) act as electronic medium; (4) act as carrier; (5) act as photoelectrode stabilizer. In the end the research status and difficulties of organic carbon materials in photoelectrocatalytic system are also described in this paper.

Contents

1 Introduction

2 Common carbon-based compounds

2.1 C-Dots

2.2 G-C3N4

2.3 Graphene

2.4 Metal-organic skeleton

2.5 Other organic carbon materials

3 Carbon-based compound electrode material

3.1 Thin film type photoelectrode

3.2 Array type photoelectrode

3.3 Gel type photoelectrode

4 The role of organic carbon materials in photocatalysis

4.1 Act as catalyst

4.2 Act as photosensitizer

4.3 Act as electronic medium

4.4 Act as carrier

4.5 Act as stabilizer

5 Conclusion and outlook

()
图1 (a) CDs的分类以及聚合物点碳核的结构[8]; (b) TiO2/Ti和CDs-TiO2/Ti的光电流响应[9]; (c) g-C3N4分子结构图;(d) 石墨烯分子结构图; (e) UiO系列MOF分子结构图; (f) 常见的COF分子结构图
Fig. 1 (a) Classification of CDs and the structures of carbon core of CPDs[8], Copyright 2019, Wiley; (b) Photocurrent responses of TiO2/Ti and CDs-TiO2/Ti[9], Copyright 2019, Elsevier; (c) The molecular structure diagram of g-C3N4; (d) The molecular structure diagram of GO; (e) The molecular structure diagram of UiO Metal-Organic Frameworks; (f) The molecular structure diagram of common COF
图2 光电催化降解有机物原理示意图[48]
Fig. 2 Schematic diagram of photocatalytic degradation of organic compounds[48], Copyright 2021, Elsevier
图3 C-Co-Pi/ Fe2O3电荷分离与转移机理[72]
Fig. 3 Charge separation and transfer mechanism in the C-Co-Pi/Fe2O3 photoanode[72]. Copyright 2018, Elsevier
表1 近年来碳材料在碳基化合物中作为电子介质的研究
Table 1 Recent studies on the use of carbon materials as electron mediators in carbon-based compounds
Organic carbon
composite photoelectrode
The electrode type Application Organic carbon material effect
CDs/TiO2/g-C3N4[78] Thin film Degradation g-C3N4 constructed z-type heterojunction with TiO2, and CDs extended carrier life and enhanced charge separation efficiency.
N-CDs/TiO2[77] Thin film Oxygen production Broaden the range of light absorption and improve the efficiency of charge separation.
CDs/SiNWs@Co3O4[79] Array Oxygen production As electron acceptor, extend carrier life and improve semiconductor stability.
MOF/BiVO4[58] Thin film Oxygen production Conduction hole, effectively avoid photogenerated electrons and hole compound efficiency
CDs/Au/TiO2[71] Array Oxygen production Increase the amount and rate of electron separation.
CDs/BiVO4/g-C3N4[22] Thin film Hydrogen production As an electron donor, the density of semiconductor electron cloud is increased and enhance the reduction ability is enhanced.
CDs/Cu-In-Zn-S/MoS2[11] Thin film Hydrogen production Act as electron acceptor, temporarily store electrons, extend carrier life.
CNT /TiO2[80] Thin film Degradation Carbon nanotubes significantly reduce the charge transfer resistance and increase the anodic photocurrent response of the film.
FeNi-MOF/TiO2[81] Array Oxygen production Improve the separation rate of photogenerated electrons and holes.
CNT/Ag3PO4[82] Thin film Degradation MWCNTs were used as electron traps to effectively separate photocarriers.
CDs/(Co-Pi)/Fe2O3[72] Thin film Oxygen production The charge separation and charge transfer in Co-Pi/Fe2O3 photoanode were promoted by using CQDs as charge bridge to conduct interfacial electrons.
GO /Bi2WO6[30] Thin film Degradation The conjugation of graphene structure and the hybridization between Bi2WO6 and rGO can promote the migration of interfacial charge carriers and effectively improve the photogenerated charge separation and photocatalytic quantum efficiency.
GO/CdS[83] Thin film Degradation The synergistic effect of enhanced light absorption and high electron conductivity of graphene sheets contributes to charge separation and extends the lifetime of photogenerated electron-hole pairs by reducing the recombination rate.
GO/TiO2/Cu2O[84] Thin film Degradation Charge transfer channel.
GO/CeO2/TiO2[85] Array Degradation It can improve the utilization efficiency of visible part of sunlight and effectively reduce the recombination rate of photogenerated electrons and holes.
CNT/TiO2[86] Thin film Degradation As the channel of electron transmission, the separation efficiency of electron and hole is enhanced.
CNT/CdS[87] Thin film Hydrogen production As a channel of electronic transmission between CdS and stainless steel substrate, fast transmission to the cathode to produce hydrogen.
GO/α-Fe2O3[88] Thin film Oxygen production Graphene can extract photoenergetic electrons from α -Fe2O3 and inhibit the charge recombination of electron-hole pairs, thus enhancing the photocurrent response.
γ-GO/TiO2[74] Array Degradation Heterojunction is constructed to improve charge separation efficiency.
P3HT/TiO2[89] Array Degradation Heterojunction was constructed to effectively improve the separation efficiency of photogenerated electrons and holes
CNT/MoS2-MoO3[90] Thin film Hydrogen production The introduction of multi-walled carbon nanotubes (MWCNTs) and the formation of heterostructures can improve the charge transfer rate and the ability of electron and hole separation.
g-C3N4/TiO2[73] Array Degradation Heterojunction is constructed to improve charge separation efficiency.
图4 (a) 负载于不锈钢网上的石墨烯水凝胶;(b) 石墨烯气凝胶的电子显微镜图
Fig. 4 (a) Graphene hydrogel supported on stainless steel mesh; (b) electron microscopic view of graphene aerogel
图5 碳气凝胶作为固碳基质还原CO2机理图[98]
Fig. 5 Mechanism diagram of carbon aerogel as carbon sequestration matrix for CO2 reduction[98]. Copyright 2016, The Royal Society of Chemistry
[1]
Li D P, Qu J H. J. Environ. Sci., 2009, 21(6): 713.

doi: 10.1016/S1001-0742(08)62329-3     URL    
[2]
Bunz U H F, Rubin Y, Tobe Y. Chem. Soc. Rev., 1999, 28(2): 107.

doi: 10.1039/a708900g     URL    
[3]
Li Z, Liu Z, Sun H Y, Gao C. Chem. Rev., 2015, 115(15): 7046.

doi: 10.1021/acs.chemrev.5b00102     URL    
[4]
Lu X L, Han Y Y, Lu T B. Journal of Physical Chemistry, 2018, 34(09): 1014.
(卢秀利, 韩莹莹, 鲁统部. 物理化学学报, 2018, 34(09): 1014.).
[5]
Yu H J, Shi R, Zhao Y F, Waterhouse G I N, Wu L Z, Tung C H, Zhang T R. Adv. Mater., 2016, 28(43): 9454.

doi: 10.1002/adma.201602581     URL    
[6]
Wang R, Lu K Q, Tang Z R, Xu Y J. J. Mater. Chem. A, 2017, 5(8): 3717.

doi: 10.1039/C6TA08660H     URL    
[7]
Zhu S J, Song Y B, Zhao X H, Shao J R, Zhang J H, Yang B. Nano Res., 2015, 8(2): 355.

doi: 10.1007/s12274-014-0644-3     URL    
[8]
Xia C L, Zhu S J, Feng T L, Yang M X, Yang B. Adv. Sci., 2019, 6(23): 1901316.

doi: 10.1002/advs.201901316     URL    
[9]
He C, Xu P, Zhang X H, Long W J. Carbon, 2022, 186: 91.

doi: 10.1016/j.carbon.2021.10.002     URL    
[10]
Aliyeva H, Gurel A, Nowak S, Lau S, Decorse P, Chaguetmi S, Schaming D, Ammar S. Mater. Lett., 2019, 250: 119.

doi: 10.1016/j.matlet.2019.02.131    
[11]
Chen Q T, Liu Y H, Gu X Q, Li D, Zhang D X, Zhang D Q, Huang H, Mao B D, Kang Z H, Shi W D. Appl. Catal. B Environ., 2022, 301: 120755.

doi: 10.1016/j.apcatb.2021.120755     URL    
[12]
Truong H B, Bae S, Cho J, Hur J. Chemosphere, 2022, 286: 131737.

doi: 10.1016/j.chemosphere.2021.131737     URL    
[13]
Li H, Zhang Z E, Liu Y L, Cen W L, Luo X B. Nanomaterials, 2018, 8(8): 589.

doi: 10.3390/nano8080589     URL    
[14]
Liang F F, Zhu Y F. Appl. Catal. B Environ., 2016, 180: 324.

doi: 10.1016/j.apcatb.2015.05.009     URL    
[15]
Duan S F, Tao C L, Geng Y Y, Yao X Q, Kang X W, Su J Z, Rodríguez-GutiÉrrez I, Kan M, Romero M, Sun Y, Zhao Y X, Qin D D, Yan Y. ChemCatChem, 2019, 11(2): 729.

doi: 10.1002/cctc.201801581     URL    
[16]
Zhang Q, Zhang X. Solid State Sci., 2019, 89: 150.

doi: 10.1016/j.solidstatesciences.2019.01.004    
[17]
Qin D D, Quan J J, Duan S F, San Martin J, Lin Y X, Zhu X L, Yao X Q, Su J Z, Rodríguez-GutiÉrrez I, Tao C L, Yan Y. ChemSusChem, 2019, 12(4): 898.

doi: 10.1002/cssc.201802382     URL    
[18]
Ko?í K, van H D, Edelmannová M, Reli M, Wu J C S. Appl. Surf. Sci., 2020, 503: 144426.

doi: 10.1016/j.apsusc.2019.144426     URL    
[19]
Wang N, Wu L P, Li J, Mo J M, Peng Q M, Li X J. Sol. Energy Mater. Sol. Cells, 2020, 215: 110624.

doi: 10.1016/j.solmat.2020.110624     URL    
[20]
Wang F F, Ou R P, Yu H B, Lu Y, Qu J, Zhu S Y, Zhang L L, Huo M X. Appl. Surf. Sci., 2021, 565: 150597.

doi: 10.1016/j.apsusc.2021.150597     URL    
[21]
Amornpitoksuk P, Suwanboon S, Sirimahachai U, Randorn C, Yaemsunthorn K. Bull. Mater. Sci., 2016, 39(6): 1507.

doi: 10.1007/s12034-016-1294-8     URL    
[22]
Samsudin M F R, Ullah H, Tahir A A, Li X H, Ng Y H, Sufian S. J. Colloid Interface Sci., 2021, 586: 785.

doi: 10.1016/j.jcis.2020.11.003     URL    
[23]
Feng J, Cheng L, Zhang J D, Okoth O K, Chen F. Ceram. Int., 2018, 44(4): 3672.

doi: 10.1016/j.ceramint.2017.11.124     URL    
[24]
García A, Fernandez-Blanco C, Herance J R, Albero J, García H. J. Mater. Chem. A, 2017, 5(32): 16522.

doi: 10.1039/C7TA04045H     URL    
[25]
Valenzuela L, Faraldos M, Bahamonde A, Rosal R. Electrochimica Acta, 2021, 395: 139203.

doi: 10.1016/j.electacta.2021.139203     URL    
[26]
Saeidi S, Rezaei B, Ensafi A A. Mater. Today Chem., 2022, 23: 100742.
[27]
Wang H, Lu J R, Liu L, Cui W Q, Liang Y H. Appl. Surf. Sci., 2020, 506: 144966.

doi: 10.1016/j.apsusc.2019.144966     URL    
[28]
Zhai C Y, Zhu M S, Ren F F, Yao Z Q, Du Y K, Yang P. J. Hazard. Mater., 2013, 263: 291.

doi: 10.1016/j.jhazmat.2013.09.013     URL    
[29]
Wang Q, Zhu N X, Liu E Q, Zhang C L, Crittenden J C, Zhang Y, Cong Y Q. Appl. Catal. B Environ., 2017, 205: 347.

doi: 10.1016/j.apcatb.2016.11.046     URL    
[30]
He Z T, Liu S, Zhong Y, Chen D M, Ding H, Wang J, Du G X, Yang G, Hao Q. Chin. J. Catal., 2020, 41(2): 302.

doi: 10.1016/S1872-2067(19)63520-5     URL    
[31]
Wang H, Liang Y H, Liu L, Hu J S, Cui W Q. Appl. Surf. Sci., 2017, 392: 51.

doi: 10.1016/j.apsusc.2016.08.068     URL    
[32]
Prado T M, Silva F L, Carrico A, de Vasconcelos Lanza M R, Fatibello-Filho O, Moraes F C. Mater. Res. Bull., 2022, 145: 111539.

doi: 10.1016/j.materresbull.2021.111539     URL    
[33]
Gupta S, Subramanian V R. ACS Appl. Mater. Interfaces, 2014, 6(21): 18597.

doi: 10.1021/am503396r     URL    
[34]
Ali M, Pervaiz E, Noor T, Rabi O, Zahra R, Yang M H. Int. J. Energy Res., 2021, 45(2): 1190.

doi: 10.1002/er.5807     URL    
[35]
Candia-Onfray C, Rojas S, Zanoni M V B, Salazar R. Curr. Opin. Electrochem., 2021, 26: 100669.
[36]
Zhou Y T, Abazari R, Chen J, Tahir M, Kumar A, Ikreedeegh R R, Rani E, Singh H, Kirillov A M. Coord. Chem. Rev., 2022, 451: 214264.

doi: 10.1016/j.ccr.2021.214264     URL    
[37]
Valenzuela L, Amariei G, Ezugwu C I, Faraldos M, Bahamonde A, Mosquera M E G, Rosal R. Sep. Purif. Technol., 2022, 285: 120351.

doi: 10.1016/j.seppur.2021.120351     URL    
[38]
García-Sánchez A, Gomez-Mendoza M, Barawi M, Villar-Garcia I J, Liras M, Gándara F, de la Peña O’Shea V A. J. Am. Chem. Soc., 2020, 142(1): 318.

doi: 10.1021/jacs.9b10261     pmid: 31809033
[39]
Gao Z Y, Liang L, Zhang X, Xu P, Sun J M. ACS Appl. Mater. Interfaces, 2021, 13(51): 61334.

doi: 10.1021/acsami.1c20878     URL    
[40]
Cardoso J C, Stulp S, de Brito J F, Flor J B S, Frem R C G, Zanoni M V B. Appl. Catal. B Environ., 2018, 225: 563.

doi: 10.1016/j.apcatb.2017.12.013     URL    
[41]
Zhu H L, Liu D X, Zou D T, Zhang J Y. J. Mater. Chem. A, 2018, 6(15): 6130.

doi: 10.1039/C8TA00494C     URL    
[42]
Zhang G Y, Guan Q Q, Miao R R, Ning P, He L. Mater. Rep., 2021, 35(13): 13215.
(张关印, 关清卿, 庙荣荣, 宁平, 何亮. 材料导报, 2021, 35(13): 13215.).
[43]
Xu N F. Doctoral Dissertation of China University of Geosciences, 2021.
(徐楠峰. 中国地质大学博士学位论文, 2021.).
[44]
Wu S Q, Hu Y H. Chem. Eng. J., 2021, 409: 127739.

doi: 10.1016/j.cej.2020.127739     URL    
[45]
Wuttke S, Medina D D, Rotter J M, Begum S, Stassin T, Ameloot R, Oschatz M, Tsotsalas M. Adv. Funct. Mater., 2018, 28(44): 1801545.

doi: 10.1002/adfm.201801545     URL    
[46]
Yuan J L, Wang P C, Hao C J, Yu G C. Electrochimica Acta, 2016, 193: 1.

doi: 10.1016/j.electacta.2016.02.037     URL    
[47]
Wang G, Chen Q H, Liu Y P, Ma D, Xin Y J, Ma X H, Zhang X W. Chem. Eng. J., 2018, 337: 322.

doi: 10.1016/j.cej.2017.12.058     URL    
[48]
Ye S S, Chen Y X, Yao X L, Zhang J D. Chemosphere, 2021, 273: 128503.

doi: 10.1016/j.chemosphere.2020.128503     URL    
[49]
Zhao H Y, Chen Y, Peng Q S, Wang Q N, Zhao G H. Appl. Catal. B Environ., 2017, 203: 127.

doi: 10.1016/j.apcatb.2016.09.074     URL    
[50]
Peng Q S, Zhao H Y, Qian L, Wang Y B, Zhao G H. Appl. Catal. B Environ., 2015, 174/175: 157.

doi: 10.1016/j.apcatb.2015.02.031     URL    
[51]
Liu X E, Dai L M. Nat. Rev. Mater., 2016, 1(11): 16064.

doi: 10.1038/natrevmats.2016.64     URL    
[52]
Zheng Y M, Liu Y Y, Guo X L, Zhang W J, Wang Y X, Zhang M, Li R, Peng Z B, Xie H, Huang Y. ACS Appl. Nano Mater., 2020, 3(8): 7982.

doi: 10.1021/acsanm.0c01444     URL    
[53]
Zhang Z S, Lin S L, Li X G, Li H, Cui W Q. RSC Adv., 2017, 7(89): 56335.

doi: 10.1039/C7RA11205J     URL    
[54]
Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen B A, Haasch R, Abiade J, Yarin A L, Salehi-Khojin A. Nat. Commun., 2013, 4: 2819.

doi: 10.1038/ncomms3819     URL    
[55]
Li W L, Bandosz T J. ChemSusChem, 2018, 11(17): 2987.

doi: 10.1002/cssc.201801073     URL    
[56]
Kao E, Liang Q H, Bertholet G R K, Zang X N, Park H S, Bae J, Lu J N, Lin L W. Sens. Actuat. A Phys., 2018, 277: 18.

doi: 10.1016/j.sna.2018.04.037     URL    
[57]
Sangiorgi N, Tuci G, Sanson A, Peruzzini M, Giambastiani G. Rendiconti Lincei Scienze Fisiche E Nat., 2019, 30(3): 497.
[58]
Wang B, Yang F L, Dong Y P, Cao Y Z, Wang J Y, Yang B J, Wei Y, Wan W R, Chen J Z, Jing H W. Chem. Eng. J., 2020, 396: 125255.

doi: 10.1016/j.cej.2020.125255     URL    
[59]
Zheng J G, Li X J, Qin Y H, Zhang S Q, Sun M S, Duan X G, Sun H Q, Li P Q, Wang S B. J. Catal., 2019, 371: 214.

doi: 10.1016/j.jcat.2019.01.022     URL    
[60]
Zhao X L, Pan D L, Chen X F, Li R P, Jiang T G, Wang W C, Li G S, Leung D Y C. Appl. Surf. Sci., 2019, 467/468: 658.

doi: 10.1016/j.apsusc.2018.10.090     URL    
[61]
Deshmukh S, Deore A, Mondal S. ACS Appl. Nano Mater., 2021, 4(8): 7587.

doi: 10.1021/acsanm.1c01880     URL    
[62]
Sui L Z, Jin W W, Li S Y, Liu D L, Jiang Y F, Chen A M, Liu H, Shi Y, Ding D J, Jin M X. Phys. Chem. Chem. Phys., 2016, 18(5): 3838.

doi: 10.1039/C5CP07558K     URL    
[63]
Liu B B, Liu X J, Li L, Li J W, Li C, Gong Y Y, Niu L Y, Zhao X S, Sun C Q. Chin. J. Catal., 2018, 39(12): 1901.

doi: 10.1016/S1872-2067(18)63137-7     URL    
[64]
Zhang W J, Zhang X Z, Zhang Z X, Wang W H, Xie A J, Xiao C H, Zhang H, Shen Y H. J. Electrochem. Soc., 2015, 162(9): H638.

doi: 10.1149/2.0651509jes     URL    
[65]
Yang H C, Peng Y, Jiang L X, Liu F Y, Jia M. Chem. Phys. Lett., 2020, 739: 137025.

doi: 10.1016/j.cplett.2019.137025     URL    
[66]
Zheng H J, Niu P, Zhao Z F. RSC Adv., 2017, 7(43): 26943.

doi: 10.1039/C7RA01867C     URL    
[67]
Xie X, Yang Y H, Xiao Y H, Huang X M, Shi Q S, Zhang W D. Int. J. Hydrog. Energy, 2018, 43(14): 6954.

doi: 10.1016/j.ijhydene.2018.02.099     URL    
[68]
Yi S S, Yan J M, Jiang Q. J. Mater. Chem. A, 2018, 6(21): 9839.

doi: 10.1039/C8TA01908H     URL    
[69]
Han H, Karlicky F, Pitchaimuthu S, Shin S H R, Chen A P. Small, 2019, 15(40): 1902771.

doi: 10.1002/smll.201902771     URL    
[70]
Miao S H, Liang K, Zhu J J, Yang B, Zhao D Y, Kong B. Nano Today, 2020, 33: 100879.

doi: 10.1016/j.nantod.2020.100879     URL    
[71]
Liao F, Shi Y D, Dang Q, Yang H W, Huang H, Kang Z H, Shao M W. J. Colloid Interface Sci., 2022, 606: 1274.

doi: 10.1016/j.jcis.2021.08.131     URL    
[72]
Jiang X, Zhang Z M, Mei J F, Han D Y, Xie M Z, Wang F C, Xie E Q, Han W H. Electrochimica Acta, 2018, 273: 208.

doi: 10.1016/j.electacta.2018.04.052     URL    
[73]
Zhang Y, Wang Q, Lu J N, Wang Q, Cong Y Q. Chemosphere, 2016, 162: 55.

doi: 10.1016/j.chemosphere.2016.07.064     pmid: 27479456
[74]
Gao B W, Sun M X, Ding W, Ding Z P, Liu W Z. Appl. Catal. B Environ., 2021, 281: 119492.

doi: 10.1016/j.apcatb.2020.119492     URL    
[75]
Wang H, Han B X, Lu J R, Wu P F, Cui W Q. Mater. Lett., 2020, 260: 126906.

doi: 10.1016/j.matlet.2019.126906     URL    
[76]
Atchudan R, Edison T N J I, Mani S, Perumal S, Vinodh R, Thirunavukkarasu S, Lee Y R. Dalton Trans., 2020, 49(48): 17725.

doi: 10.1039/d0dt02756a     pmid: 33237044
[77]
Luo H, Dimitrov S, Daboczi M, Kim J S, Guo Q, Fang Y X, Stoeckel M A, Samorì P, Fenwick O, Jorge Sobrido A B, Wang X C, Titirici M M. ACS Appl. Nano Mater., 2020, 3(4): 3371.

doi: 10.1021/acsanm.9b02412     URL    
[78]
Su Y H, Liu G L, Zeng C P, Lu Y B, Luo H P, Zhang R D. Chemosphere, 2020, 251: 126381.

doi: 10.1016/j.chemosphere.2020.126381     URL    
[79]
Lin F F, Gu Y Y, Li H J, Wang S J, Zhang X X, Dong P, Li S, Wang Y Q, Fu R B, Zhang J Q, Zhao C C, Sun H Q. Sci. Total. Environ., 2021, 796: 148931.

doi: 10.1016/j.scitotenv.2021.148931     URL    
[80]
Jiang G D, Lin Z F, Zhu L H, Ding Y B, Tang H Q. Carbon, 2010, 48(12): 3369.

doi: 10.1016/j.carbon.2010.05.029     URL    
[81]
You S M, El Rouby W M A, Thamilselvan A, Tsai C K, Darmanto W, Doong R A, Millet P. Nanomaterials, 2020, 10(9): 1688.

doi: 10.3390/nano10091688     URL    
[82]
Zhao D, Li A C, Wu M M, Du M F. React. Kinetics Mech. Catal., 2018, 124(1): 347.
[83]
Khan M E, Khan M M, Cho M H. J. Colloid Interface Sci., 2016, 482: 221.

doi: 10.1016/j.jcis.2016.07.070     URL    
[84]
Yang L X, Li Z Y, Jiang H M, Jiang W J, Su R K, Luo S L, Luo Y. Appl. Catal. B Environ., 2016, 183: 75.

doi: 10.1016/j.apcatb.2015.10.023     URL    
[85]
Zhou Q X, Xing A, Li J, Zhao D C, Zhao K F, Lei M. Electrochimica Acta, 2016, 209: 379.

doi: 10.1016/j.electacta.2016.05.094     URL    
[86]
Li Z Y, Gao B, Chen G Z, Mokaya R, Sotiropoulos S, Li Puma G. Appl. Catal. B Environ., 2011, 110: 50.

doi: 10.1016/j.apcatb.2011.08.023     URL    
[87]
Li H, Xiao S N, Zhou J C, Zhao J J, Liu F F, Li G S, Zhang D Q. Chem. Commun., 2019, 55(19): 2741.

doi: 10.1039/C9CC00050J     URL    
[88]
Liu S X, Zheng L X, Yu P P, Han S C, Fang X S. Adv. Funct. Mater., 2016, 26(19): 3331.

doi: 10.1002/adfm.201505554     URL    
[89]
Wang H, Qi F, Chen X J, Guo H X, Cui W Q. Mater. Lett., 2021, 302: 130432.

doi: 10.1016/j.matlet.2021.130432     URL    
[90]
Wang H G, Zhou H H, Hu L, Zhang Y. J. Alloys Compd., 2022, 891: 161875.

doi: 10.1016/j.jallcom.2021.161875     URL    
[91]
Chen D M, Yang J J, Zhu Y, Zhang Y M, Zhu Y F. Appl. Catal. B Environ., 2018, 233: 202.

doi: 10.1016/j.apcatb.2018.04.004     URL    
[92]
Zhang Y, Cui W Q, An W J, Liu L, Liang Y H, Zhu Y F. Appl. Catal. B Environ., 2018, 221: 36.

doi: 10.1016/j.apcatb.2017.08.076     URL    
[93]
Zhang M, Xuan X X, Wang W L, Ma C Y, Lin Z Q. Adv. Funct. Mater., 2020, 30(52): 2005983.

doi: 10.1002/adfm.202005983     URL    
[94]
Cheng Q F, Xu J, Wang T, Fan L, Ma R F, Yu X Z, Zhu J, Xu Z, Lu B G. Appl. Surf. Sci., 2017, 422: 528.

doi: 10.1016/j.apsusc.2017.05.225     URL    
[95]
Chen X J, Chen Q, Jiang W J, Wei Z, Zhu Y F. Appl. Catal. B Environ., 2017, 211: 106.

doi: 10.1016/j.apcatb.2017.03.061     URL    
[96]
Gan G Q, Li X Y, Fan S Y, Wang L, Qin M C, Yin Z F, Chen G H. Eur. J. Inorg. Chem., 2019, 2019(27): 3126.

doi: 10.1002/ejic.201801512     URL    
[97]
Fan Z Y, Shi H J, Zhao H Y, Cai J Z, Zhao G H. Carbon, 2018, 126: 279.

doi: 10.1016/j.carbon.2017.10.009     URL    
[98]
Huang X F, Shen Q, Liu J B, Yang N J, Zhao G H. Energy Environ. Sci., 2016, 9(10): 3161.

doi: 10.1039/C6EE00968A     URL    
[99]
Xue J Q, Cheng W, Shi L, Li Y Q, Sheng M J, Shi Y Z, Bi Q. Appl. Surf. Sci., 2022, 571: 151325.

doi: 10.1016/j.apsusc.2021.151325     URL    
[100]
Guo S J, Dong S J. Chem. Soc. Rev., 2011, 40(5): 2644.

doi: 10.1039/c0cs00079e     URL    
[101]
Lei F C, Liu W, Sun Y F, Xu J Q, Liu K T, Liang L, Yao T, Pan B C, Wei S Q, Xie Y. Nat. Commun., 2016, 7: 12697.

doi: 10.1038/ncomms12697     URL    
[102]
Zhu M S, Zhai C Y, Sun M J, Hu Y F, Yan B, Du Y K. Appl. Catal. B Environ., 2017, 203: 108.

doi: 10.1016/j.apcatb.2016.10.012     URL    
[103]
Nada A A, Orimolade B O, El-Maghrabi H H, Koiki B A, Rivallin M, Bekheet M F, Viter R, Damberga D, Lesage G, Iatsunskyi I, Coy E, Cretin M, Arotiba O A, Bechelany M. Appl. Mater. Today, 2021, 24: 101129.
[104]
Li S P, Liu C L, Chen P, Lv W Y, Liu G G. J. Catal., 2020, 382: 212.

doi: 10.1016/j.jcat.2019.12.030     URL    
[105]
Koo B, Byun S, Nam S W, Moon S Y, Kim S, Park J Y, Ahn B T, Shin B. Adv. Funct. Mater., 2018, 28(16): 1705136.

doi: 10.1002/adfm.201705136     URL    
[1] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[2] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[3] 张旭强, 吕功煊. 光电催化分解水Ⅲ-Ⅴ族半导体光电极薄膜保护策略[J]. 化学进展, 2020, 32(9): 1368-1375.
[4] 张冀宁, 曹爽, 胡文平, 朴玲钰. 光电催化海水分解制氢[J]. 化学进展, 2020, 32(9): 1376-1385.
[5] 王洪红, 雷文, 李孝建, 黄仲, 贾全利, 张海军. 催化还原降解Cr(Ⅵ)[J]. 化学进展, 2020, 32(12): 1990-2003.
[6] 肖瑶, 胡文娟, 任衍彪, 康旭, 刘健. 仿生光电催化固氮[J]. 化学进展, 2018, 30(4): 325-337.
[7] 杨钰昆, 王小敏, 方国臻, 云雅光, 郭婷, 王硕. 基于分子印迹技术的电化学发光分析[J]. 化学进展, 2016, 28(9): 1351-1362.
[8] 张凌峰, 胡忠攀, 高泽敏, 刘亚录, 袁忠勇. 有序介孔碳基金属复合材料的制备及催化应用[J]. 化学进展, 2015, 27(8): 1042-1056.
[9] 周文理, 谢青季, 廉世勋. 太阳能光解水的光阳极材料[J]. 化学进展, 2013, 25(12): 1989-1998.
[10] 周天辰, 何川, 张亚男, 赵国华*. CO2的光电催化还原[J]. 化学进展, 2012, (10): 1897-1905.