English
新闻公告
More
化学进展 2022, Vol. 34 Issue (5): 1203-1217 DOI: 10.7536/PC210520 前一篇   后一篇

• 综述 •

碳材料修饰零价铝的作用机制

杨世迎1,2,3,*(), 范丹阳3, 保晓娟3, 傅培瑶3   

  1. 1.海洋环境与生态教育部重点实验室 青岛 266100
    2.山东省海洋环境地质工程重点实验室 青岛 266100
    3.中国海洋大学环境科学与工程学院 青岛 266100
  • 收稿日期:2021-05-12 修回日期:2021-06-22 出版日期:2022-05-24 发布日期:2021-07-29
  • 通讯作者: 杨世迎
  • 基金资助:
    国家自然科学基金项目(21677135); 山东省自然科学基金(ZR2020MB093)

Modification Mechanism of Zero-Valent Aluminum by Carbon Materials

Shiying Yang1,2,3(), Danyang Fan3, Xiaojuan Bao3, Peiyao Fu3   

  1. 1. The Key Laboratory of Marine Environment & Ecology, Ministry of Education,Qingdao 266100, China
    2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE),Qingdao 266100,China
    3. College of Environmental Science and Engineering, Ocean University of China,Qingdao 266100, China
  • Received:2021-05-12 Revised:2021-06-22 Online:2022-05-24 Published:2021-07-29
  • Contact: Shiying Yang
  • Supported by:
    National Natural Science Foundation of China(21677135); National Natural Science Foundation of Shandong Provincial(ZR2020MB093)

零价铝(Zero-Valent Aluminum, ZVAl)因具有极低的氧化还原电位,使其成为良好的电子供体,是环境工程污染物降解领域中极具潜势的零价金属。然而,由于ZVAl的强还原活性,其表面易形成致密的氧化薄膜、破膜后易再次钝化和电子的利用率低等缺点,制约了其与污染物的反应。研究表明,碳材料在修饰ZVAl时,不仅可以引发电偶和晶间腐蚀、强化传质过程、加速电子转移,提高ZVAl的反应效率;还能赋予材料优异的机械强度,克服ZVAl自身的弊端,阻滞氧气和腐蚀介质的侵蚀,维持材料的长效性;此外,碳材料的亲疏水性质、带电荷和表面官能团的可调性提高了材料对污染物的特异性吸附,高催化活性使底物实现定向转化,提高了ZVAl体系的电子利用效率。鉴于此,本文系统总结了活性炭、石墨、碳纳米管和石墨烯等碳材料在不同修饰方法下对ZVAl的作用机制、产生的功能效用,探讨了修饰参数(碳材料的种类和比例、过程控制剂的种类、热处理的温度和时间、ZVAl的几何形态等)对复合材料的影响规律,并就精确控制参数、深入研究机理,实现功能化复合材料的定向制备以拓宽其应用价值进行了展望。以期通过不同学科相关领域的深入了解,促进铝碳复合材料在环境污染治理领域的进一步发展。

Zero-valent aluminum (ZVAl), an excellent electron donor due to its chemical properties of very low redox potential, which is a potential zero-valent metal in the field of environmental engineering. However, because of its strong reducibility, ZVAl can be easily to form a dense oxide layer, passivated again when expose to oxygen or water medium even if the surface oxide film has destroyed, and react with impurities in medium to reduce utilization of electrons, which will constrain the reaction with pollutants. The studies have shown that ZVAl modified by carbon materials could not only improve the reaction efficiency of ZVAl by initiating galvanic and intergranular corrosion, strengthening mass transfer; but also endow the composite with excellent mechanical strength, overcome its own disadvantages, shield against oxygen and corrosive media, maintaining the durability of composite; moreover, the adjustable hydrophobic properties, surface charge, functional groups of carbon materials improve the specific adsorption to pollutants, the high catalytic activity enables the substrate to achieve directional transformation, which improves the electron utilization efficiency of the ZVAl system. Above all, this paper systematically summarizes the effects of carbon materials such as activated carbon, graphite, carbon nanotubes and graphene on ZVAl under different modification methods; and discusses the influence by parameters that include the ratio and type of carbon materials, the type of process control agents temperature and time of heat treatment, the geometry of ZVAl during the modified process, furthermore based on accurately control processing parameters and deeply explore underlying mechanism to realize the selective preparation of functionalized composites to broaden their application value. Through the in-depth understanding of related fields of different disciplines to promote the further application of aluminum-carbon composites in the field of environmental pollution control.

Contents

1 Introduction

2 Carbon materials

2.1 Activated carbon

2.2 Graphite

2.3 Carbon nanotubes

2.4 Graphene

3 Major modification methods

3.1 Ball milling

3.2 Chemical vapor deposition

3.3 Ultrasonic atomization process

3.4 High pressure torsion

3.5 Friction stir processing

3.6 Melt method

3.7 Spark plasma sintering

4 Enhanced reaction activity

4.1 Galvanic cells

4.2 Local corrosion

4.3 Accelerating electron transfer

5 Maintaining long-term effectiveness

5.1 Improving mechanical properties

5.2 Improving stability

6 Increased the efficiency of electronic utilization

6.1 Channels for electron transfer to target

6.2 Hydrophilic or hydrophobic surface

6.3 Catalyzer

7 Fabricated parameters

7.1 Type of carbon material

7.2 Carbon material ratio

7.3 Process control agents

7.4 Temperature and time of heat treatment

7.5 The geometry of ZVAl

8 Conclusion and outlook

()
图1 Al-Gr多孔复合材料合成示意图[33]
Fig. 1 Diagram of the Al-Gr porous materials[33]
图2 Al0-CNTs-Cu2O复合材料合成示意图[35]
Fig. 2 Diagram of the synthesis procedure of Al0-CNTs-Cu2O composite[35]
图3 复合涂层制备工艺方案[73]
Fig. 3 Scheme of the process for fabricating composite film[73]
图4 PP-CVD法合成CNT/Al复合粉末示意图[89]
Fig. 4 Fabrication procedures for synthesizing CNT/Al composite powders[89]
表1 基于碳材料修饰ZVAl的作用机制的典型案例汇总
Table 1 Typical cases study of carbon material modification ZVAl in aqueous media
Mechanism Carbon Methods Results ref
Increased electronic utilization AC mixing Promoting cementation and recovered over 99% of dissolved Au from the thiosulfate solution. 55
Gr(10 wt%) ball milling ( 400 r/min, 3 h ) + heat-treated ( 600~
720 ℃, 0.5 ~ 2 h )
High efficient production of H2O2 through selective O2 reduction at a wide pH range. 33
MWCNTs ball milling ( 400 r/min, 4 h ) + heat-treated ( 500~
920 ℃, 1 h )
The removal efficiency of TOC and total phosphorus was 68.35% and 73.27%, respectively
The accumulative concentration of H2O2 reached 947?mg L-1 in Al-CNTs/O2 system
34
35
AC (5 wt%) ball milling ( 300 r/min, 1 h ) The AC@mZVAlbm/NaCl enables a novel two-step adsorption and reductive degradation process for treating HBCD 36
Enhanced reaction activity Bi-NPs@GO ball milling ( 800 r/min, 4 h ) The better hydrogen generation performance and reacted with tap water even at 0 ℃ 37
Gr (10 wt%) high pressure torsion ( P = 6 GPa, N = 1, 5, 10 ) The hydrogen generation rate as fast as 270 mL·min-1·g-1 in water 38
Gr (23 wt%) ball milling ( 450 r/min ) The maximum hydrogen generation rate of 40 cm3·min-1·g-1 39
EG ball milling + heat-treated ( 550 ℃, 0.5h ) The C@Al-EG composites exhibited high capacity, excellent cycle stability and rate performance 57
rGO(50 wt%) ultrasonic atomization process The high-efficiency hydrogen production in pure water under the infrared light irradiation 40
GNS (2.5 wt%) ball milling ( 800r/min, 4h ) The maximum hydrogen generation rate could reach 23.3 mL·s-1·g-1 at 30 ℃ 56
CNTs (0.5 vol%) spark plasma sintering ( P = 20 MPa ) The maximum hydrogen generation rate of 120 ml/min g without any undesirable CO 41
Maintain long-term effectiveness of material GO spin-coating method The water contact angle on the surface was (153.7 ± 2)° with mechanical abrasion and corrosion resistance 45
rGO-Ag pulsed laser (850 mJ) Enhancing the current density to 96.60 μA·cm-2 and corrosion potential to -395.4 mV 72
SLG chemical vapor deposited The corrosion protection of aluminum alloys even after 120 days of exposure to seawater 74
rGO-SnO2 self-assembly and hydrothermal methods The resulting protection efficiency was up to 99.7% 73
CNTs (2.13 wt%) hot-pressing The composites enhanced strength, which was almost two times that of the matrix. 89
CNTs polymer pyrochemical chemical vapor deposited ( 600 ℃ ) + high energy ball milling The results show that the CNTs in CNT-Al composite powder synthesized at 600 ℃ showed the highest crystallinity with a reinforcement content of 7 wt% 90
CNTs ball milling ( 423 r/min ) The composite with tensile strength of 435 MPa and plasticity of 6% was fabricated 79
CNT(1.5 vol%) vacuum induction melting technique The strengthening efficiency of composites improved by ~ 80% compared to the unreinforced pure Al 91
GNP (1.0 wt%) ball milling + hot pressing + hot extrusion The strength and ultimate tensile strength of the composite were increased by 50% compared with Al5083. 78
GE (0.1 wt%) hot accumulative roll bonding Tensile strength and hardness were increased up to 25% and 20% respectively in comparison to Al 92
rGO (0.3 wt%) thermal annealing The harness over baseline compacted pure Al samples of 32% 76
GNS (0.15 wt%) Sintering The harness over baseline sintered pure Al samples of 43%
GNS (0.5 vol%) ball milling ( 200 r, 6 h + 500 r, 0.5 h ) Exceptional properties were achieved with a good ductility of 13.5% at a tensile strength of 295 MPa 46
图5 石墨烯薄膜的缺陷促进对金属的腐蚀[86]
Fig. 5 Defects of graphene films promote the corrosion of metals[86]
图6 石墨烯薄膜对腐蚀介质的阻隔效应[86]
Fig. 6 Barrier effect on corrosive media of graphene[86]
图7 ZVAl与活性炭间电子转移示意图[55]
Fig. 7 Diagram of possible electron transfer mechanism between ZVAl and activated carbon[55]
图8 MWCNT-Al0/O2体系原位生成H2O2示意图[34]
Fig. 8 Diagram of situ generation of H2O2 using MWCNT-Al0/O2 system[34]
图9 石墨烯增强铝水反应的机理[40]
Fig. 9 The mechanism of enhancing the Al-water reaction by wrapping graphene[40]
图10 Al0-CNT-Cu2O/O2降解污染物示意图[35]
Fig. 10 Diagram of degradation of pollutants using Al0-CNT-Cu2O/O2 system[35]
[1]
Lien H L, Yu C C, Lee Y C. Chemosphere, 2010, 80(8): 888.

doi: 10.1016/j.chemosphere.2010.05.013     URL    
[2]
Fu F L, Han W J, Cheng Z H, Tang B. Desalination Water Treat., 2016, 57(12): 5592.

doi: 10.1080/19443994.2015.1006259     URL    
[3]
Yang S Y, Zheng D, Chang S Y, Shi C. Prog. Chem., 2016, 28(5): 754.
(杨世迎, 郑迪, 常书雅, 石超. 化学进展, 2016, 28(5): 754.)

doi: 10.7536/PC151047    
[4]
Yang S Y, Zhang Y S, Zheng D, Xin J. Progress in Chemistry, 2017, 29(8): 879.
(杨世迎, 张艺萱, 郑迪, 辛佳, 化学进展, 2017, 29(8): 879.)

doi: 10.7536/PC170537    
[5]
Zhang Y X, Yang S Y, Zhang Y Q, Wu S, Xin J. Chem. Eng. J., 2018, 353: 760.

doi: 10.1016/j.cej.2018.07.174     URL    
[6]
Zhang Y Q, Yang S Y, Ren T F, Zhang Y X, Jiang Y T, Xue Y C, Wang M Q, Chen H, Chen Y Y. J. Clean. Prod., 2019, 238: 117943.

doi: 10.1016/j.jclepro.2019.117943     URL    
[7]
Yuan C, Li L, Sun Y L, Wang B D, Xu H, Wang Y. Research of Environmental Sciences, 2016, (7): 1067.
(袁超, 李磊, 孙应龙, 王邦达, 徐辉, 王毅. 环境科学研究, 2016, (7): 1067.)
[8]
Jiang Y T, Yang S Y, Liu J Q, Ren T F, Zhang Y X, Sun X R. Chemosphere, 2020, 244: 125536.

doi: 10.1016/j.chemosphere.2019.125536     URL    
[9]
Lin C J, Wang S L, Huang P M, Tzou Y M, Liu J C, Chen C C, Chen J H, Lin C. Water Res., 2009, 43(20): 5015.

doi: 10.1016/j.watres.2009.08.015     pmid: 19729183
[10]
Jiang B, Xin S S, Gao L, Luo S Y, Xue J L, Wu M B. Chem. Eng. J., 2017, 308: 588.

doi: 10.1016/j.cej.2016.09.098     URL    
[11]
Lin K Y A, Lin C H. Chem. Eng. J., 2016, 297: 19.

doi: 10.1016/j.cej.2016.03.136     URL    
[12]
Zhang H H, Cao B P, Liu W P, Lin K D, Feng J. J. Environ. Sci., 2012, 24(2): 314.

doi: 10.1016/S1001-0742(11)60769-9     URL    
[13]
Wu S, Yang S Y, Li Q F, Wang M Q, Xue Y C, Zhao D Y. Chemosphere, 2021, 274: 129767.

doi: 10.1016/j.chemosphere.2021.129767     URL    
[14]
Wang A Q, Guo W L, Hao F F, Yue X X, Leng Y Q. Ultrason. Sonochemistry, 2014, 21(2): 572.

doi: 10.1016/j.ultsonch.2013.10.015     URL    
[15]
Cai M Q, Wei X Q, Song Z J, Jin M C. Ultrason. Sonochemistry, 2015, 22: 167.

doi: 10.1016/j.ultsonch.2014.06.023     URL    
[16]
Wu C C, Hus L C, Chiang P N, Liu J C, Kuan W H, Chen C C, Tzou Y M, Wang M K, Hwang C E. Water Res., 2013, 47(7): 2583.

doi: 10.1016/j.watres.2013.02.024     pmid: 23497977
[17]
Cheng Z H, Fu F L, Dionysiou D D, Tang B. Water Res., 2016, 96: 22.

doi: 10.1016/j.watres.2016.03.020     URL    
[18]
Fan J H, Liu X, Ma L M. Chem. Eng. J., 2015, 263: 71.

doi: 10.1016/j.cej.2014.10.082     URL    
[19]
Fan J H, Wang H W, Ma L M. Environ. Sci. Pollut. Res., 2016, 23(16): 16686.

doi: 10.1007/s11356-016-6628-y     URL    
[20]
Cheng Z H, Fu F L, Pang Y S, Tang B, Lu J W. Chem. Eng. J., 2015, 260: 284.

doi: 10.1016/j.cej.2014.09.012     URL    
[21]
Arslan-Alaton I, Olmez-Hanci T, Khoei S, Fakhri H. Catal. Today, 2017, 280: 199.

doi: 10.1016/j.cattod.2016.04.039     URL    
[22]
Ren T F, Yang S Y, Jiang Y T, Sun X R, Zhang Y X. Chem. Eng. J., 2018, 348: 350.

doi: 10.1016/j.cej.2018.04.216     URL    
[23]
Zhang B, Jiang X, Li S, Wu C Z, Xu X H. Chinese Journal of Environmental Engineering, 2016, (8): 4271.
(张波, 蒋霞, 李顺, 吴春笃, 许小红. 环境工程学报, 2016, (8): 4271.)
[24]
Yang S Y, Zheng D, Ren T F, Zhang Y X, Xin J. Water Res., 2017, 123: 704.

doi: 10.1016/j.watres.2017.07.013     URL    
[25]
Qian J S, Gao X, Pan B C. Environ. Sci. Technol., 2020, 54(14): 8509.

doi: 10.1021/acs.est.0c01065     URL    
[26]
Chauhan D S, Quraishi M A, Ansari K R, Saleh T A. Prog. Org. Coat., 2020, 147: 105741.
[27]
Gong X Z, Liu G Z, Li Y S, Yu D Y W, Teoh W Y. Chem. Mater., 2016, 28(22): 8082.

doi: 10.1021/acs.chemmater.6b01447     URL    
[28]
Dong G H, Ai Z H, Zhang L Z. RSC Adv., 2014, 4(11): 5553.

doi: 10.1039/c3ra46068a     URL    
[29]
Wang S C, Song Y D, Sun Y K. Progress in Chemistry, 2019, 31(2/3): 422.
(王舒畅, 宋亚丹, 孙远奎, 化学进展, 2019, 31(2/3): 422.)

doi: 10.7536/PC180726    
[30]
Yang S Y, Ren T F, Zhang Y S, Zheng D, Xin J. Progress in Chemistry, 2017, 29(4): 388.
(杨世迎, 任腾飞, 张艺萱, 郑迪, 辛佳. 化学进展, 2017, 29(4): 388.)

doi: 10.7536/PC170133    
[31]
Gao J, Wang W, Rondinone A J, He F, Liang L Y. J. Hazard. Mater., 2015, 300: 443.

doi: 10.1016/j.jhazmat.2015.07.038     URL    
[32]
Chen Y L, Ai Z H, Zhang L Z. J. Hazard. Mater., 2012, 235/236: 92.

doi: 10.1016/j.jhazmat.2012.07.015     URL    
[33]
Liu Y, Guo J R, Chen Y, Tan N, Wang J L. Environ. Sci. Technol., 2020, 54(21): 14085.

doi: 10.1021/acs.est.0c05974     URL    
[34]
Tan N, Yang Z, Gong X B, Wang Z R, Fu T, Liu Y. Sci. Total. Environ., 2019, 650: 2567.

doi: 10.1016/j.scitotenv.2018.09.353    
[35]
Liu Y, Tan N, Guo J R, Wang J L. J. Hazard. Mater., 2020, 396: 122751.

doi: 10.1016/j.jhazmat.2020.122751     URL    
[36]
Jiang Y T, Yang S Y, Wang M Q, Xue Y C, Liu J Q, Li Y, Zhao D Y. Chemosphere, 2021, 279: 130520.

doi: 10.1016/j.chemosphere.2021.130520     URL    
[37]
Xiao F, Yang R J, Li J M. Int. J. Hydrog. Energy, 2020, 45(11): 6082.

doi: 10.1016/j.ijhydene.2019.12.105     URL    
[38]
Zhang F, Edalati K, Arita M, Horita Z. Int. J. Hydrog. Energy, 2017, 42(49): 29121.

doi: 10.1016/j.ijhydene.2017.10.057     URL    
[39]
Huang X N, Lv C J, Wang Y, Shen H Y, Chen D, Huang Y X. Int. J. Hydrog. Energy, 2012, 37(9): 7457.

doi: 10.1016/j.ijhydene.2012.01.126     URL    
[40]
Zhang L Q, Tang Y S, Duan Y L, Hou L Q, Cui L S, Yang F, Zheng Y J, Li Y F, Huang J Y. Chem. Eng. J., 2017, 320: 160.

doi: 10.1016/j.cej.2017.03.025     URL    
[41]
Yu M, Kim M, Yoon B, Oh S, Nam D H, Kwon H. Int. J. Hydrog. Energy, 2014, 39(34): 19416.

doi: 10.1016/j.ijhydene.2014.09.109     URL    
[42]
Streletskii A N, Kolbanev I V, Borunova A B, Butyagin P Y. J. Mater. Sci., 2004, 39(16/17): 5175.

doi: 10.1023/B:JMSC.0000039205.46608.1a     URL    
[43]
Liu Y, Zeng Y P, Guo Q, Zhang J, Li Z Q, Xiong D B, Li X Y, Zhang D. Acta Mater., 2020, 196: 17.

doi: 10.1016/j.actamat.2020.06.018     URL    
[44]
Punith Kumar M K, Laxmeesha P M, Ray S, Srivastava C. Appl. Surf. Sci., 2020, 533: 147512.

doi: 10.1016/j.apsusc.2020.147512     URL    
[45]
Liu Y, Zhang J J, Li S Y, Wang Y M, Han Z W, Ren L Q. RSC Adv., 2014, 4(85): 45389.

doi: 10.1039/C4RA06051B     URL    
[46]
Jiang Y Y, Tan Z Q, Xu R, Fan G L, Xiong D B, Guo Q, Su Y S, Li Z Q, Zhang D. Compos. A: Appl. Sci. Manuf., 2018, 111: 73.

doi: 10.1016/j.compositesa.2018.05.022     URL    
[47]
Li H P, Kang J L, He C N, Zhao N Q, Liang C Y, Li B E. Mater. Sci. Eng. A, 2013, 577: 120.

doi: 10.1016/j.msea.2013.04.035     URL    
[48]
Kang K, Bae G, Kim B, Lee C. Mater. Chem. Phys., 2012, 133(1): 495.

doi: 10.1016/j.matchemphys.2012.01.071     URL    
[49]
Liu Z Y, Xiao B L, Wang W G, Ma Z Y. Carbon, 2012, 50(5): 1843.

doi: 10.1016/j.carbon.2011.12.034     URL    
[50]
Lim D K, Shibayanagi T, Gerlich A P. Mater. Sci. Eng. A, 2009, 507(1/2): 194.

doi: 10.1016/j.msea.2008.11.067     URL    
[51]
Esawi A M K, Morsi K, Sayed A, Taher M, Lanka S. Compos. A: Appl. Sci. Manuf., 2011, 42(3): 234.

doi: 10.1016/j.compositesa.2010.11.008     URL    
[52]
Ma J L, Zhang Y, Qin C H, Ren F Z, Wang G X. Int. J. Hydrog. Energy, 2020, 45(23): 13025.

doi: 10.1016/j.ijhydene.2020.02.222     URL    
[53]
Cao M, Luo Y Z, Xie Y Q, Tan Z Q, Fan G L, Guo Q, Su Y S, Li Z Q, Xiong D B. Adv. Mater. Interfaces, 2019, 6(13): 1900468.

doi: 10.1002/admi.201900468     URL    
[54]
Zhou W W, Zhou Z X, Kubota K, Ono H, Nomura N, Kawasaki A. Mater. Sci. Eng. A, 2020, 798: 140331.

doi: 10.1016/j.msea.2020.140331     URL    
[55]
Jeon S, Tabelin C B, Takahashi H, Park I, Ito M, Hiroyoshi N. Hydrometallurgy, 2020, 191: 105165.

doi: 10.1016/j.hydromet.2019.105165     URL    
[56]
Xiao F, Yang R J, Gao W B, Hu J H, Li J M. J. Alloys Compd., 2020, 817: 152800.

doi: 10.1016/j.jallcom.2019.152800     URL    
[57]
Zhao X, Zhao T K, Peng X R, Yang L, Shu Y, Jiang T, Ahmad I. Nanotechnol. Rev., 2020, 9(1): 436.

doi: 10.1515/ntrev-2020-0033     URL    
[58]
Tasis D, Tagmatarchis N, Bianco A, Prato M. Chem. Rev., 2006, 106(3): 1105.

doi: 10.1021/cr050569o     URL    
[59]
Polizu, Stefania, Savadogo, Oumarou, Poulin, Philippe, Yahia, L’Hocine. Journal of Nanoscience and Nanotechnology. 2006, 6: 7.
[60]
Ruoff R S, Lorents D C. Carbon, 1995, 33(7): 925.

doi: 10.1016/0008-6223(95)00021-5     URL    
[61]
Lau K T, Lu M, Lam C K, Cheung H Y, Sheng F L, Li H L. Compos. Sci. Technol., 2005, 65(5): 719.

doi: 10.1016/j.compscitech.2004.10.005     URL    
[62]
Salvetat-Delmotte J P, Rubio A. Carbon, 2002, 40(10): 1729.

doi: 10.1016/S0008-6223(02)00012-X     URL    
[63]
Thostenson E T, Ren Z F, Chou T W. Compos. Sci. Technol., 2001, 61(13): 1899.

doi: 10.1016/S0266-3538(01)00094-X     URL    
[64]
Esawi A, Morsi K. Compos. A: Appl. Sci. Manuf., 2007, 38(2): 646.

doi: 10.1016/j.compositesa.2006.04.006     URL    
[65]
Kondoh K, Fukuda H, Umeda J, Imai H, Fugetsu B. Carbon, 2014, 72: 15.

doi: 10.1016/j.carbon.2014.01.013     URL    
[66]
Liu Z Y, Zhao K, Xiao B L, Wang W G, Ma Z Y. Mater. Des., 2016, 97: 424.

doi: 10.1016/j.matdes.2016.02.121     URL    
[67]
Jiang L, Fan G L, Li Z Q, Kai X Z, Zhang D, Chen Z X, Humphries S, Heness G, Yeung W Y. Carbon, 2011, 49(6): 1965.

doi: 10.1016/j.carbon.2011.01.021     URL    
[68]
Georgakilas V, Perman J A, Tucek J, Zboril R. Chem. Rev., 2015, 115: 4744.

doi: 10.1021/cr500304f     pmid: 26012488
[69]
Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S. Prog. Mater. Sci., 2011, 56(8): 1178.

doi: 10.1016/j.pmatsci.2011.03.003     URL    
[70]
Galashev A Y, Rakhmanova O R. Phys. Lett. A, 2020, 384(31): 126790.

doi: 10.1016/j.physleta.2020.126790     URL    
[71]
Lee C, Wei X D, Kysar J W, Hone J. Science, 2008, 321(5887): 385.

doi: 10.1126/science.1157996     URL    
[72]
Alwahib A A, Muttlak W H, Mahdi B S, Mohammed A Z. Surf. Interfaces, 2020, 20: 100557.
[73]
Yang L H, Wan Y X, Qin Z L, Xu Q J, Min Y L. Corros. Sci., 2018, 130: 85.

doi: 10.1016/j.corsci.2017.10.031     URL    
[74]
Yu F, Camilli L, Wang T, MacKenzie D M A, Curioni M, Akid R, Bøggild P. Carbon, 2018, 132: 78.

doi: 10.1016/j.carbon.2018.02.035     URL    
[75]
Zhang L, Hou G M, Zhai W, Ai Q, Feng J K, Zhang L, Si P C, Ci L J. J. Alloys Compd., 2018, 748: 854.

doi: 10.1016/j.jallcom.2018.03.237     URL    
[76]
Liu J H, Khan U, Coleman J, Fernandez B, Rodriguez P, Naher S, Brabazon D. Mater. Des., 2016, 94: 87.

doi: 10.1016/j.matdes.2016.01.031     URL    
[77]
Zhao Z Y, Bai P K, Li L, Li J, Wu L Y, Huo P C, Tan L. Materials, 2019, 12(2): 330.

doi: 10.3390/ma12020330     URL    
[78]
Zhang H P, Xu C, Xiao W L, Ameyama K, Ma C L. Mater. Sci. Eng. A, 2016, 658: 8.

doi: 10.1016/j.msea.2016.01.076     URL    
[79]
Jiang L, Li Z Q, Fan G L, Cao L L, Zhang D. Carbon, 2012, 50(5): 1993.

doi: 10.1016/j.carbon.2011.12.057     URL    
[80]
Yu Z H, Yang W S, Zhou C, Zhang N B, Chao Z L liu H, Cao Y F, Sun Y, Shao P Z, Wu G H. Carbon, 2019, 141: 25.

doi: 10.1016/j.carbon.2018.09.041     URL    
[81]
PÉrezBustamante R, BolañosMorales D, BonillaMartínez J, EstradaGuel I, MartínezSánchez R. J. Alloys Compd., 2014, 615: S578.

doi: 10.1016/j.jallcom.2014.01.225     URL    
[82]
Wu Y F, Kim G Y, Russell A M. Mater. Sci. Eng. A, 2012, 538: 164.

doi: 10.1016/j.msea.2012.01.025     URL    
[83]
Xiao F, Yang R J, Li J M. J. Alloys Compd., 2018, 761: 24.

doi: 10.1016/j.jallcom.2018.05.087     URL    
[84]
Liu Z Y, Xu S J, Xiao B L, Xue P, Wang W G, Ma Z Y. Compos. A: Appl. Sci. Manuf., 2012, 43(12): 2161.

doi: 10.1016/j.compositesa.2012.07.026     URL    
[85]
Wu Y F, Kim G Y. J. Mater. Process Technol., 2011, 211(8): 1341.

doi: 10.1016/j.jmatprotec.2011.03.007     URL    
[86]
Ding R, Li W H, Wang X, Gui T J, Li B J, Han P, Tian H W, Liu A, Wang X, Liu X J, Gao X, Wang W, Song L Y. J. Alloys Compd., 2018, 764: 1039.

doi: 10.1016/j.jallcom.2018.06.133     URL    
[87]
Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J. Phys. Rev. Lett., 2008, 101(2): 026803.

doi: 10.1103/PhysRevLett.101.026803     URL    
[88]
Mišković-Stanković V, Jevremović I, Jung I, Rhee K. Carbon, 2014, 75: 335.

doi: 10.1016/j.carbon.2014.04.012     URL    
[89]
Cao L L, Li Z Q, Fan G L, Jiang L, Zhang D, Moon W J, Kim Y S. Carbon, 2012, 50(3): 1057.

doi: 10.1016/j.carbon.2011.10.011     URL    
[90]
Zhang Y P, Wang Q, Ramachandran C S. Diam. Relat. Mater., 2020, 104: 107748.

doi: 10.1016/j.diamond.2020.107748     URL    
[91]
Liu X H, Li J J, Liu E Z, Li Q Y, He C N, Shi C S, Zhao N Q. Mater. Sci. Eng. A, 2018, 718: 182.

doi: 10.1016/j.msea.2018.01.065     URL    
[92]
Tiwari J K, Mandal A, Rudra A, Mukherjee D, Sathish N. J. Alloys Compd., 2019, 801: 49.

doi: 10.1016/j.jallcom.2019.06.127     URL    
[93]
Mishra R S, Ma Z Y. Mater. Sci. Eng. R: Rep., 2005, 50(1/2): 1.

doi: 10.1016/j.mser.2005.07.001     URL    
[94]
Noguchi T, Magario A, Fukazawa S, Shimizu S, Beppu J, Seki M. Mater. Trans., 2004, 45(2): 602.

doi: 10.2320/matertrans.45.602     URL    
[95]
Zhang X X, Shen Y B, Deng C F, Wang D Z, Geng L. Key Eng. Mater., 2007, 353/358: 1414.

doi: 10.4028/www.scientific.net/KEM.353-358.1414     URL    
[96]
Zhan G D, Kuntz J D, Wan J L, Mukherjee A K. Nat. Mater., 2003, 2(1): 38.

doi: 10.1038/nmat793     URL    
[97]
Eom K S, Kwon J Y, Kim M J, Kwon H S. J. Mater. Chem., 2011, 21(34): 13047.

doi: 10.1039/c1jm11329a     URL    
[98]
Deng C F, Zhang X X, Wang D Z, Lin Q, Li A B. Mater. Lett., 2007, 6(8/9): 1725.
[99]
Wang X, Xiao W, Wang L G, Shi J M, Sun L, Cui J D, Wang J W. Phys. E: Low Dimensional Syst. Nanostructures, 2020, 123: 114172.

doi: 10.1016/j.physe.2020.114172     URL    
[100]
Park J K, Lucas J P. Scr. Mater., 1997, 37(4): 511.

doi: 10.1016/S1359-6462(97)00133-4     URL    
[101]
Schriver M, Regan W, Gannett W J, Zaniewski A M, Crommie M F, Zettl A. ACS Nano, 2013, 7(7): 5763.

doi: 10.1021/nn4014356     pmid: 23755733
[102]
Hu X Y, Zhu G Z, Zhang Y J, Wang Y M, Gu M S, Yang S, Song P X, Li X J, Fang H J, Jiang G S, Wang Z F. Int. J. Hydrog. Energy, 2012, 37(15): 11012.

doi: 10.1016/j.ijhydene.2012.04.141     URL    
[103]
Chaklader A, WO2002014213 A2, 2002.
[104]
Wu Y H, Zhu X Y, Zhao W J, Wang Y J, Wang C T, Xue Q J. J. Alloys Compd., 2019, 777: 135.

doi: 10.1016/j.jallcom.2018.10.260     URL    
[105]
Zhou N, Gong K D, Hu Q, Cheng X, Zhou J Y, Dong M Y, Wang N, Ding T, Qiu B, Guo Z H. Chemosphere, 2020, 242: 125235.

doi: 10.1016/j.chemosphere.2019.125235     URL    
[106]
Su J X, Zhang Z, Cao F H, Zhang J Q, Cao C N. Journal of Chinese Society for Corrosion and Protection, 2005, (3): 187.
(苏景新, 张昭, 曹发和, 张鉴清, 曹楚南. 中国腐蚀与防护学报, 2005, (3): 187.)
[107]
Brown R H, Fink W L, Hunter M S. Trans. AIME, 2021, 143.
[108]
Zhang D, Zhang Z, Pan Y L, Jiang Y B, Zhuang L Z, Zhang J S, Zhang X F. J. Mater. Sci. Technol., 2020, 53: 132.

doi: 10.1016/j.jmst.2020.01.071    
[109]
Hsieh Y P, Hofmann M, Chang K W, Jhu J G, Li Y Y, Chen K Y, Yang C C, Chang W S, Chen L C. ACS Nano, 2014, 8(1): 443.

doi: 10.1021/nn404756q     pmid: 24359599
[110]
Prasai D, Tuberquia J C, Harl R R, Jennings G K, Bolotin K I. ACS Nano, 2012, 6(2): 1102.

doi: 10.1021/nn203507y     URL    
[111]
Zhou F, Li Z T, Shenoy G J, Li L, Liu H T. ACS Nano, 2013, 7(8): 6939.

doi: 10.1021/nn402150t     URL    
[112]
Awad M K, Metwally M S, Soliman S A, El-Zomrawy A A, Bedair M A. J. Ind. Eng. Chem., 2014, 20(3): 796.
[113]
Chen B, Li S F, Imai H, Jia L, Umeda J, Takahashi M, Kondoh K. J. Alloys Compd., 2015, 651: 608.

doi: 10.1016/j.jallcom.2015.08.178     URL    
[114]
Hjortstam O, Isberg P, Söderholm S, Dai H. Appl. Phys. A, 2004, 78(8): 1175.

doi: 10.1007/s00339-003-2424-x     URL    
[115]
Araujo P T, Barbosa Neto N M, Sousa M E S, AngÉlica R S, Simões S, Vieira M F G, Dresselhaus M S, Leite dos Reis M. Carbon, 2017, 124: 348.

doi: 10.1016/j.carbon.2017.08.041     URL    
[116]
Seth R S, Woods S B. Phys. Rev. B, 1970, 2(8): 2961.

doi: 10.1103/PhysRevB.2.2961     URL    
[117]
Onishi T, Iwamura E, Takagi K, Yoshikawa K. J. Vac. Sci. Technol. A: Vac. Surf. Films, 1996, 14(5): 2728.

doi: 10.1116/1.580194     URL    
[118]
Wang G X, Yang J, Park J, Gou X L, Wang B, Liu H, Yao J. J. Phys. Chem. C, 2008, 112(22): 8192.

doi: 10.1021/jp710931h     URL    
[119]
Zhou W W, Bang S, Kurita H, Miyazaki T, Fan Y C, Kawasaki A. Carbon, 2016, 96: 919.

doi: 10.1016/j.carbon.2015.10.016     URL    
[120]
Awad A S, El-Asmar E, Tayeh T, Mauvy F, Nakhl M, Zakhour M, Bobet J L. Energy, 2016, 95: 175.

doi: 10.1016/j.energy.2015.12.004     URL    
[121]
Al Bacha S, Zakhour M, Nakhl M, Bobet J L. Int. J. Hydrog. Energy, 2020, 45(11): 6102.

doi: 10.1016/j.ijhydene.2019.12.162     URL    
[122]
Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L. Nano Lett., 2008, 8(8): 2458.

doi: 10.1021/nl801457b     URL    
[123]
Xiao F, Yang R J, Li J M. Energy, 2019, 170: 159.

doi: 10.1016/j.energy.2018.12.135    
[124]
Xie Y Y, Hu X H, Zhang Y W, Wahid F, Chu L Q, Jia S R, Zhong C. Carbohydr. Polym., 2020, 229: 115456.

doi: 10.1016/j.carbpol.2019.115456     URL    
[125]
Clarizia L, Russo D, Di Somma I, Marotta R, Andreozzi R. Appl. Catal. B: Environ., 2017, 209: 358.

doi: 10.1016/j.apcatb.2017.03.011     URL    
[126]
Hu S Z, Qu X Y, Li P, Wang F, Li Q, Song L J, Zhao Y F, Kang X X. Chem. Eng. J., 2018, 334: 410.

doi: 10.1016/j.cej.2017.10.016     URL    
[127]
Wang Z Y, Lv X, Chen Y T, Liu D, Xu X H, Palmore G T R, Hurt R H. Nanoscale, 2015, 7(22): 10267.

doi: 10.1039/C5NR00963D     URL    
[128]
Bakshi S R, Singh V, Seal S, Agarwal A. Surf. Coat. Technol., 2009, 203(10/11): 1544.

doi: 10.1016/j.surfcoat.2008.12.004     URL    
[129]
Liao J Z, Tan M J, Sridhar I. Mater. Des., 2010, 31: S96.

doi: 10.1016/j.matdes.2009.10.022     URL    
[130]
Kondoh K, Fukuda H, Umeda J, Imai H, Fugetsu B, Endo M. Mater. Sci. Eng. A, 2010, 527(16/17): 4103.

doi: 10.1016/j.msea.2010.03.049     URL    
[131]
Zhou W W, Yamaguchi T, Kikuchi K, Nomura N, Kawasaki A. Acta Mater., 2017, 125: 369.

doi: 10.1016/j.actamat.2016.12.022     URL    
[132]
Vanitha M, Joni I M, Panatarani C, Subramanian B. Diamond Relat. Mater., 2018, 88: 129.

doi: 10.1016/j.diamond.2018.07.009     URL    
[133]
Zhang W Y, Wei P G, Chen M F, Han L, Zhao Y X, Yan J C, Qian L B, Gu M Y, Li J. J. Hazard. Mater., 2021, 417: 125993.

doi: 10.1016/j.jhazmat.2021.125993     URL    
[134]
Zhu F, Wu Y Y, Liang Y K, Li H H, Liang W J. Chem. Eng. J., 2020, 389: 124276.

doi: 10.1016/j.cej.2020.124276     URL    
[135]
Liu Y, Chen Y, Deng J H, Wang J L. Appl. Catal. B: Environ., 2021, 297: 120407.

doi: 10.1016/j.apcatb.2021.120407     URL    
[136]
Lv H, Niu H Y, Zhao X L, Cai Y Q, Wu F C. Appl. Catal. B: Environ., 2021, 286: 119940.

doi: 10.1016/j.apcatb.2021.119940     URL    
[137]
Yang S Y, Zhang A, Ren T F, Zhang Y T. Prog. Chem., 2017, 29(5): 539.
(杨世迎, 张翱, 任腾飞, 张宜涛. 化学进展, 2017, 29(5): 539.)

doi: 10.7536/PC170310    
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[4] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[5] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[6] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[7] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[8] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[9] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[10] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[11] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[12] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[13] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[14] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[15] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
阅读次数
全文


摘要

碳材料修饰零价铝的作用机制