English
新闻公告
More
化学进展 2016, Vol. 28 Issue (8): 1148-1155 DOI: 10.7536/PC160335 前一篇   后一篇

• 综述与评论 •

锂硫电池用多孔碳/硫复合正极材料的研究

张松涛1, 郑明波2*, 曹洁明1, 庞欢2*   

  1. 1. 南京航空航天大学材料科学与技术学院 南京 210016;
    2. 扬州大学化学化工学院 扬州 225002
  • 收稿日期:2016-03-01 修回日期:2016-04-01 出版日期:2016-08-15 发布日期:2016-05-26
  • 通讯作者: 郑明波, 庞欢 E-mail:mbzheng@yzu.edu.cn;huanpangchem@hotmail.com
  • 基金资助:
    国家自然科学基金项目(No.51202106)和江苏高校优势学科建设工程项目资助

Porous Carbon/Sulfur Composite Cathode Materials for Lithium-Sulfur Batteries

Zhang Songtao1, Zheng Mingbo2*, Cao Jieming1, Pang Huan2*   

  1. 1. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
  • Received:2016-03-01 Revised:2016-04-01 Online:2016-08-15 Published:2016-05-26
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51202106) and the Priority Academic Program Development of Jiangsu Higher Education Institutions
锂硫电池具有高的理论比容量和理论能量密度,被认为是当前最有前景的二次电池体系之一。现阶段锂硫电池的研究工作主要集中于高性能硫正极材料的设计与合成。具有优良的导电性、良好的结构稳定性和多孔结构的纳米碳材料,比如活性碳、介孔碳、超小微孔碳、多级结构多孔碳、空心碳球和空心碳纤维,充分满足了锂硫电池正极材料对碳基体的要求。本文综述了近年来多孔碳/硫复合材料作为硫正极的研究进展。总结了以具有不同结构特征的多孔碳基体负载硫组装的锂硫电池的电化学性能,并分析了不同多孔结构对性能的影响。最后在此基础上,从多孔碳/硫复合正极材料的设计和合成的角度,展望了其未来的发展趋势。
Advanced rechargeable batteries with high energy densities may soon power portable electronic devices and electric vehicles in the future. Among all candidates, lithium-sulfur (Li-S) batteries are considered one of the most promising next-generation secondary batteries because of their high theoretical specific capacity and theoretical energy density. At present, the research and development of Li-S batteries mainly focus on the design and synthesis of high performance sulfur cathode materials. Porous carbon materials with good electronic conductivity, high structural stability, and well-developed porous structure, such as the activated carbon, mesoporous carbon, ultra-microporous carbon, hierarchical porous carbon, hollow carbon sphere, and hollow carbon fiber, have been proved to be the effective carbon matrix materials for sulfur cathodes. This article presents the recent developments of the porous carbon/sulfur composite materials for Li-S battery cathodes. The electrochemical performances of the porous carbons with tailored pore structure characteristics for the impregnation of sulfur are summarized. Furthermore, the impacts of various porous structures on the Li-S battery performances have been discussed. Accordingly, the future developments of Li-S battery platforms are discussed from the perspectives of the advanced engineering and synthesis of porous carbon/sulfur composite cathode materials.

Contents
1 Introduction
2 Porous carbon/sulfur composite cathode materials
2.1 Activated carbon/sulfur composites
2.2 Mesoporous carbon/sulfur composites
2.3 Ultra-microporous carbon/sulfur composites
2.4 Hierarchical porous carbon/sulfur composites
2.5 Hollow carbon sphere/sulfur composites
2.6 Hollow carbon fiber/sulfur composites
3 Conclusion

中图分类号: 

()
[1] He P,Zhang T,Jiang J,Zhou H.J.Phys.Chem.Lett.,2016,7:1267.
[2] Yao Y,Wu F.Nano Energy, 2015, 17:91.
[3] Xue H,Wu S,Tang J,Gong H,He P,He J,Zhou H.ACS Appl.Mater.Interfaces,2016,8:8427.
[4] Feng N,He P,Zhou H.Adv.Energy Mater.,2016,DOI:10.1002/aenm.201502303.
[5] Xue H,Zhao J,Tang J,Gong H,He P,Zhou H,Yamauchi Y,He J.Chem.-Eur.J.,2016,22:4915.
[6] Tong S,Zheng M,Lu Y,Lin Z,Li J,Zhang X,Shi Y,He P,Zhou H.J.Mater.Chem.A,2015,3:16177.
[7] Suo L,Hu Y S,Li H,Armand M,Chen L.Nat.Commun.,2013,4:1481.
[8] Li N,Zheng M,Lu H,Hu Z,Shen C,Chang X,Ji G,Cao J,Shi Y.Chem.Commun.,2012,48:4106.
[9] 蔡克迪(Cai K D),赵雪(Zhao X),仝钰进(Tong Y J),肖尧(Xiao Y),高勇(Gao Y),王诚(Wang C).化学进展(Progress in Chemistry),2015,27(12):1722.
[10] Manthiram A,Fu Y,Chung S H,Zu C,Su Y S.Chem.Rev.,2014,114:11751.
[11] Song M K,Cairns E J,Zhang Y.Nanoscale,2013,5:2186.
[12] Chen S,Sun B,Xie X,Mondal A K,Huang X,Wang G.Nano Energy,2015,16:268.
[13] Zhou G,Li L,Ma C,Wang S,Shi Y,Koratkar N,Ren W,Li F,Cheng H M.Nano Energy,2015,11:356.
[14] Yu M,Li R,Tong Y,Li Y,Li C,Hong J D,Shi G.J.Mater.Chem.A,2015,3:9609.
[15] Ding Y L,Kopold P,Hahn K,Aken P A,Maier J,Yu Y.Adv.Funct.Mater.,2015,DOI:10.1002/adfm.201504294.
[16] Zhou G,Pei S,Li L,Wang D W,Wang S,Huang K,Yin L C,Li F,Cheng H M.Adv.Mater.,2014,26:625.
[17] Miao L X,Wang W K,Wang A B,Yuan K G,Yang Y S.J.Mater.Chem.A,2013,1:11659.
[18] Li G C,Li G R,Ye S H,Gao X P.Adv.Energy Mater.,2012,2:1238.
[19] Meyer B.Chem.Rev.,1976,76:367.
[20] 苗力孝(Miao L X),王维坤(Wang W K),王梦佳(Wang M J),段博超(Duan B C),杨裕生(Yang Y S),王安邦(Wang A B).化学进展(Progress in Chemistry),2013,25(11):1867.
[21] Ye H,Yin Y X,Guo Y G.Electrochim.Acta,2015,185:62.
[22] Zhang S,Li N,Lu H,Zheng J,Zang R,Cao J.RSC Adv.,2015,5:50983.
[23] He G,Evers S,Liang X,Cuisinier M,Garsuch A,Nazar L F.ACS Nano,2013,7:10920.
[24] Zhang F F,Huang G,Wang X X,Qin Y L,Du X C,Yin D M,Liang F,Wang L M.Chem.-Eur.J.,2014,20:17523.
[25] Wang X,Zhang Z,Qu Y,Lai Y,Li J. J.Power Sources,2014,256:361.
[26] Qiu Y,Li W,Li G,Hou Y,Zhou L,Li H,Liu M,Ye F,Yang X,Zhang Y.Nano Res.,2014,7:1355.
[27] Zhang C,Lv W,Zhang W,Zheng X,Wu M B,Wei W,Tao Y,Li Z,Yang Q H.Adv.Energy Mater.,2014,4:DOI:10.1002/aenm.201301565.
[28] Li Z,Huang Y,Yuan L,Hao Z,Huang Y.Carbon,2015,92:41.
[29] Wang C,Chen H,Dong W,Ge J,Lu W,Wu X,Guo L,Chen L. Chem.Commun., 2014,50:1202.
[30] 王维坤(Wang W K),余仲宝(Yu Z B),苑克国(Yuan K G),王安邦(Wang A B),杨裕生(Yang Y S).化学进展(Progress in Chemistry),2011,23(2/3):540.
[31] Du W C,Yin Y X,Zeng X X,Shi J L,Zhang S F,Wan L J,Guo Y G.ACS Appl.Mater.Interfaces,2016,8:3584.
[32] Xiao Z,Yang Z,Wang L,Nie H,Zhong M,Lai Q,Xu X,Zhang L,Huang S. Adv.Mater.,2015,27:2891.
[33] Hu J J,Long G K,Liu S,Li G R,Gao X P. Chem.Commun.,2014,50:14647.
[34] Li N W,Yin Y X,Yang C P,Guo Y G. Adv.Mater.,2016,28:1853.
[35] Wang L,Wang Y,Xia Y.Energy Environ.Sci.,2015,8:1551.
[36] Li N,Weng Z,Wang Y,Li F,Cheng H M,Zhou H. Energy Environ.Sci.,2014,7:3307.
[37] Yang C P,Yin Y X,Ye H,Jiang K C,Zhang J,Guo Y G.ACS Appl.Mater.Interfaces,2014,6:8789.
[38] Lyu Z,Xu D,Yang L,Che R,Feng R,Zhao J,Li Y,Wu Q,Wang X,Hu Z.Nano Energy,2015,12:657.
[39] Qiu Y,Li W,Zhao W,Li G,Hou Y,Liu M,Zhou L,Ye F,Li H,Wei Z,Yang S,Duan W,Ye Y,Guo J,Zhang Y.Nano Lett.,2014,14:4821.
[40] Zhu P,Song J,Lv D,Wang D,Jaye C,Fischer D A,Wu T,Chen Y.J.Phys.Chem.C,2014,118:7765.
[41] 赖超(Lai C),李国春(Li G C),叶世海(Ye S H),高学平(Gao X P).化学进展(Progress in Chemistry),2011,23(2/3):527.
[42] Chen Y,Lu S,Wu X,Liu J.J.Phys.Chem.C,2015,119:10288.
[43] Yu X,Zhao J,Lv R,Liang Q,Zhan C,Bai Y,Huang Z H,Shen W,Kang F.J.Mater.Chem.A,2015,3:18400.
[44] Zhang F,Zhang X,Dong Y,Wang L.J.Mater.Chem.,2012,22:11452.
[45] Yu M,Wang A,Tian F,Song H,Wang Y,Li C,Hong J D,Shi G.Nanoscale,2015,7:5292.
[46] Li H,Yang X,Wang X,Liu M,Ye F,Wang J,Qiu Y,Li W,Zhang Y.Nano Energy,2015,12:468.
[47] Wang M,Wang W,Wang A,Yuan K,Miao L,Zhang X,Huang Y,Yu Z,Qiu J. Chem.Commun., 2013,49:10263.
[48] Miao L,Wang W,Yuan K,Yang Y,Wang A. Chem.Commun.,2014,50:13231.
[49] Zhang Z,Jing H K,Liu S,Li G R,Gao X P. J.Mater.Chem.A,2015,3:6827.
[50] Ji X,Lee K T,Nazar L F.Nat.Mater.,2009,8:500.
[51] Zhang S,Zheng M,Lin Z,Li N,Liu Y,Zhao B,Pang H,Cao J,He P,Shi Y.J.Mater.Chem.A,2014,2:15889.
[52] Werner J G,Johnson S S,Vijay V,Wiesner U.Chem.Mater.,2015,27:3349.
[53] Xin S,Gu L,Zhao N H,Yin Y X,Zhou L J,Guo Y G,Wan L J.J.Am.Chem.Soc.,2012,134:18510.
[54] Liang C,Dudney N J,Howe J Y.Chem.Mater.,2009,21:4724.
[55] Jayaprakash N,Shen J,Moganty S S,Corona A,Archer L A.Angew.Chem.,Int.Ed.,2011,123:6026.
[56] Chen S,Huang X,Liu H,Sun B,Yeoh W,Li K,Zhang J,Wang G.Adv.Energy Mater., 2014,4:1301761.
[57] Ji L,Rao M,Aloni S,Wang L,Cairns E J,Zhang Y.Energy Environ.Sci.,2011,4:5053.
[58] Niu S,Lv W,Zhou G,He Y,Li B,Yang Q H,Kang F. Chem.Commun.,2015,51:17720.
[59] Chen S,Huang X,Sun B,Zhang J,Liu H,Wang G.J.Mater.Chem.A, 2014,2:16199.
[60] Yin Y X,Xin S,Guo Y G,Wan L J.Angew.Chem.Int.Ed.,2013,52:13186.
[61] Sevilla M,Mokaya R. Energy Environ.Sci.,2014,7:1250.
[62] Wang J,Kaskel S.J.Mater.Chem.,2012,22:23710.
[63] Karthikeyan K,Amaresh S,Lee S N,Sun X,Aravindan V,Lee Y G,Lee Y S.ChemSusChem,2014,7:1435.
[64] Zhu Y,Murali S,Stoller M D,Ganesh K J,Cai W,Ferreira P J,Pirkle A,Wallace R M,Cychosz K A,Thommes M,Su D,Stach E A,Ruoff R S.Science,2011,332:1537.
[65] Zhao S,Li C,Wang W,Zhang H,Gao M,Xiong X,Wang A,Yuan K,Huang Y,Wang F.J.Mater.Chem.A,2013,1:3334.
[66] Wei S,Zhang H,Huang Y,Wang W,Xia Y,Yu Z.Energy Environ.Sci.,2011,4:736.
[67] Ye H,Yin Y X,Xin S,Guo Y G.J.Mater.Chem.A,2013,1:6602.
[68] Ding B,Yuan C,Shen L,Xu G,Nie P,Lai Q,Zhang X.J.Mater.Chem.A,2013,1:1096.
[69] You Y,Zeng W,Yin Y X,Zhang J,Yang C P,Zhu Y,Guo Y G.J.Mater.Chem.A,2015,3:4799.
[70] He G,Ji X,Nazar L.Energy Environ.Sci.,2011,4:2878.
[71] Li X,Cao Y,Qi W,Saraf L V,Xiao J,Nie Z,Mietek J,Zhang J G,Schwenzer B,Liu J.J.Mater.Chem., 2011,21:16603.
[72] Park M S,Jeong B O,Kim T J,Kim S,Kim K J,Yu J S,Jung Y,Kim Y J.Carbon,2014,68:265.
[73] Zhang B,Qin X,Li G R,Gao X P.Energy Environ.Sci.,2010,3:1531.
[74] Li Z,Yuan L,Yi Z,Sun Y,Liu Y,Jiang Y,Shen Y,Xin Y,Zhang Z,Huang Y.Adv.Energy Mater.,2014,4:1301473.
[75] Xu Y,Wen Y,Zhu Y,Gaskell K,Cychosz K A,Eichhorn B,Xu K,Wang C.Adv.Funct.Mater.,2015,25:4312.
[76] Wang J,He Y S,Yang J.Adv.Mater.,2015,27:569.
[77] Strubel P,Thieme S,Biemelt T,Helmer A,Oschatz M,Brückner J,Althues H,Kaskel S.Adv.Funct.Mater.,2015,25:287.
[78] Jung D S,Hwang T H,Lee J H,Koo H Y,Shakoor R A,Kahraman R,Jo Y N,Park M S,Choi J W.Nano Lett.,2014,14:4418.
[79] Li Z,Jiang Y,Yuan L,Yi Z,Wu C,Liu Y,Strasser P,Huang Y. ACS Nano,2014,8:9295.
[80] Sun Q,He B,Zhang X Q,Lu A H.ACS Nano,2015,9:8504.
[81] Xu F,Tang Z,Huang S,Chen L,Liang Y,Mai W,Zhong H,Fu R,Wu D. Nat.Commun.,2015,6:7221.
[82] Zheng G,Yang Y,Cha J J,Hong S S,Cui Y.Nano Lett.,2011,11:4462.
[83] Moon S,Jung Y H,Jung W K,Jung D S,Choi J W,Kim D K.Adv.Mater.,2013,25:6547.
[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[3] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[4] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[9] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[10] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[11] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[12] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[13] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[14] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[15] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.