English
新闻公告
More
化学进展 2023, Vol. 35 Issue (3): 445-457 DOI: 10.7536/PC220905 前一篇   后一篇

• 综述 •

多孔电磁波吸收材料

杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮*(), 张海军*()   

  1. 武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081
  • 收稿日期:2022-09-07 修回日期:2022-12-19 出版日期:2023-03-24 发布日期:2023-02-20
  • 作者简介:

    李发亮 博士,副教授。2013年于香港理工大学获博士学位。2013年至今在武汉科技大学省部共建耐火材料与冶金国家重点实验室工作,主要研究方向为微波催化、微波辅助合成以及多孔陶瓷,在Angewandte Chemie International Edition (IF:16.8)和Chemical Engineering Journal (IF:16.7)等国内外学术刊物及会议上发表各类学术论文50余篇,其中SCI收录20余篇,获授权发明专利12项,主持国家及省部级项目4项,获湖北省自然科学二等奖一项。

    张海军 博士研究生导师,楚天学者特聘教授。1999年博士毕业于北京科技大学,2001—2007年在郑州大学工作,先后被评为副教授、教授,2007—2011年在东京理科大学(山口)留学。2011年至今任武汉科技大学省部共建耐火材料与冶金国家重点实验室湖北省“楚天学者”特聘教授。主要研究方向为多孔陶瓷、耐火材料、纳米催化剂和材料计算,在Nature Materials (IF: 47.7)及Advanced Materials (IF: 32.1)等国内外知名刊物及学术会议上发表学术论文470余篇,论文被SCI检索270余篇,被EI检索310余篇,并被SCI引用5000余次。获省部级科技进步奖9项,授权、申请国家发明专利40余项,出版学术专著3部。目前为冶金过程物理化学学会及中国工程陶瓷学会的理事,并担任MaterialsInterceramChinas Refractories的执行编委。

  • 基金资助:
    国家自然科学基金项目(52072274); 国家自然科学基金项目(52272021)

Porous Electromagnetic Wave Absorbing Materials

Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang(), Zhang Haijun()   

  1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology,Wuhan 430081, China
  • Received:2022-09-07 Revised:2022-12-19 Online:2023-03-24 Published:2023-02-20
  • Contact: *e-mail: lfliang@wust.edu.cn (Faliang Li); zhanghaijun@wust.edu.cn (Haijun Zhang)
  • Supported by:
    National Natural Science Foundation of China(52072274); National Natural Science Foundation of China(52272021)

近年来,通过改善孔结构来提升材料的电磁波吸收性能成为研究热点。多孔结构既有利于电磁波进入材料的内部,又能有效地调整材料的电磁参数,提高材料与电磁波间的阻抗匹配,进而增大材料对电磁波的吸收;此外,在电磁波吸收材料中生成的不同尺度的孔隙可以对入射电磁波产生多重散射和反射,延长其传播路径从而增加了损耗过程;同时,多孔材料的相对密度小,为许多性能高但受限于密度太大而不能在电磁波吸收领域高效应用的材料提供了解决问题的途径。基于此,本文综述了零维和三维多孔电磁波吸收材料(PEMAM)的研究现状及亟待解决的问题,同时也展望了多孔电磁波吸收材料未来可能的研究热点及发展方向。

Recently, structure modification has been used more and more widely in enhancing the performance of electromagnetic wave absorbing materials. Porous structure is not only conducive for the incidence of electromagnetic waves into the interior of the material, but also can effectively improve the impedance matching between electromagnetic wave and materials, resulting in enhanced absorption of electromagnetic waves. Additionally, multiple scattering and reflection endowed by the different scale pores in materials extend the propagation path of electromagnetic wave, and further increase its loss. Meanwhile, the lightweight nature of porous material provides a feasible way for the application of some absorbing materials with high performance but unduly density. In this paper, the research status and problem of zero- and three-dimensional porous electromagnetic wave absorbing materials (PEMAM) are summarized and the possible research hotspots and development directions of porous electromagnetic wave absorbing materials in the future are also proposed.

Contents

1 Introduction

2 Zero-dimensional PEMAM

2.1 Magnetic loss type PEMAM

2.2 Dielectric loss type PEMAM

2.3 Magnetoelectric composite type PEMAM

3 Three-dimensional PEMAM

3.1 Graphene/carbon nanosheet and carbon nanotubes-based PEMAM

3.2 Green carbon material-based PEMAM

3.3 Other three-dimensional PEMAM

4 Conclusion and outlook

()
图1 电磁波与电磁波吸收材料的相互作用示意图[32]
Fig. 1 Schematic diagram of interactions between electromagnetic wave and electromagnetic wave absorbing material[32]
表1 常见零维多孔电磁波吸收材料的制备方法与性能
Table 1 Preparation and properties of zero-dimensional porous absorbing materials
图2 PC@PANI-2复合粉体的电磁波吸收机理示意图[41]
Fig. 2 Schematic illustrating electromagnetic wave absorption mechanism of PC@PANI-2 composite powders.[41]
图3 多级孔Fe-Co/NC/rGO复合粉体制备过程示意图[43]
Fig. 3 Schematic illustrating fabrication process of hierarchically porous Fe-Co/NC/rGO composite powders[43]
图4 Fe-Co/NC/rGO复合粉体电磁波吸收机理示意图[43]
Fig. 4 Schematic diagram of electromagnetic wave absorption mechanism of Fe-Co/NC/rGO composite powders[43]
表2 常见三维多孔电磁波吸收材料的制备方法与性能
Table 2 Preparation and properties of three-dimensional porous absorbing materials
Materials Synthesis method Structure Frequency
(GHz)
Reflection loss
(dB)
Thickness
(mm)
Effective bandwidth
(GHz)
ref
NiO/NiFe2O4/Ni Leaven dough route Foam 16.9 -50 2.1 14.24 35
Graphene Freeze drying and solvothermal Foam 34.4 -33.2 1 60.5 38
rGO/α-Fe2O3 Hydrothermal method Foam 7.12 -33.5 5 6.4 64
Fe3O4/C Solvothermal approach and carbon reduction Flower and porous sheet 5.7 -54.6 4.27 6 65
MWCNT/graphene Solvothermal Foam 11.6 -39.5 12 66
MWCNT/WPU Freeze-drying Foam -50.5 2.3 4 67
CNT/graphene Chemical vapor deposition Foam -47.5 1.6 4 68
Carbon Hydrothermal and
pyrolysis process
Foam 15.8 -52.6 2.6 8.6 69
Graphene/carbon fibers Dip-coating Aerogel 14.6 -30.53 1.5 4.1 70
Carbon/Ni Alkaline activation process Hierarchically porous 4.3 -47 1.75 13.5 71
rGO/Ti3C2Tx Self-assembly Hollow core-shell/foam 8.8 -22 3.6 4 72
Al2O3/SiC 3D printing and chemical vapor infiltration Oblique honeycomb 9.8 -63.65 3.5 4.2 73
3D printing Gradient porous structure 2.5 -33 20 14.06 74
CNT/Fe3O4 Freeze drying and low-temperature annealing Aerogel 16.4 -59.85 1.5 3 75
rGO/ZnO Freeze-drying and hydrothermal Foam 9.57 -27.8 4.8 4.2 76
Si—O—C 3D printing Superstructure 11.25 -56.11 2.7 3.76 77
Carbon/MnO2 Carbonization and etching Hollow 14.9 -48.87 2.5 7.8 78
Carbon/MoS2 Carbonization and hydrothermal Honeycomb-like 16.2 -75.94 1.68 4.2 79
Carbon/ZnFe2O4 Pyrolysis carbonization Honeycomb 14.1 -54.1 1.8 5.8 80
Carbon/CuS Carbonization and hydrothermal method Porous/Hollow 8.1 -61.5 2.84 7.8 81
Carbon/Fe/Fe2O3 Hydrothermal and thermal treatment Foam 17.28 -54.7 1.4 6.4 82
Carbon Hydrothermal Nanosheets/Foam 13.5 -56.5 2.3 6.4 83
Carbon/Co Hydrothermal and pyrolysis Mesoporous /Macroporous 15.9 -66.9 5.6 84
rGO-Mo-WO3 Solvothermal Aerogel 16.6 -61.8 1.54 3.6 85
Carbon/CoFe2O4 Lyophilization/Pyrolysis Aerogel 15.58 -52.29 2 5.36 86
Co3O4/N-Carbon Dipping growth Foam 10.72 -46.58 3.3 5.4 87
SiC 3D printing and carbothermal reduction 3D crosslinked
biomimetic porous
9.8 -49.01 2.8 5.1 88
Carbon Low-temperature pre-carbonization/chemical
activation
Hierarchically porous 9.68 -57.75 3.5 7.6 89
Carbon/MnS Electrospinning and high-temperature
processing
Porous fibers 11.1 -68.9 3.6 7.2 90
Carbon Electrostatic spinning and heat treatment Cross-linked fibers 15 -44.44 1.17 5.44 91
CoNi@C Hydrothermal and carbonization Cylindrical pore 11.12 -75.19 2.66 4.56 92
图5 鱼皮衍生碳气凝胶的电磁波吸收示意图[69]
Fig. 5 A schematic illustration of the electromagnetic wave absorption mechanism of the fish skin-derived carbon foams[69]
图6 块状金属、纯镍气凝胶、金属掺杂镍气凝胶和NiFe2O4/NiO/Ni气凝胶复合材料的电磁波吸收机理示意图[35]
Fig. 6 Schematic diagrams of electromagnetic wave absorption mechanisms for bulk metal, bare Ni foam, metal doped Ni foam, and NiFe2O4/NiO/Ni foam composites.[35]
[1]
Li W, Zhang Y Z, Wu T L, Cao J, Chen Z H, Guan J G. Results Phys., 2019, 12: 1964.

doi: 10.1016/j.rinp.2019.01.080     URL    
[2]
Qiao J, Zhang X, Xu D M, Kong L X, Lv L F, Yang F, Wang F L, Liu W, Liu J R. Chem. Eng. J., 2020, 380: 122591.
[3]
Wang W, Deng X J, Liu D Q, Luo F, Cheng H F, Cao T S, Li Y L, Deng Y J, Xie W. Adv. Compos. Hybrid Mater., 2022, 5(1): 525.

doi: 10.1007/s42114-021-00376-0    
[4]
Xie P T, Liu Y, Feng M, Niu M, Liu C Z, Wu N N, Sui K Y, Patil R R, Pan D, Guo Z H, Fan R H. Adv. Compos. Hybrid Mater., 2021, 4(1): 173.

doi: 10.1007/s42114-020-00202-z    
[5]
Huang Z Y, Chen H H, Huang Y, Ge Z, Zhou Y, Yang Y, Xiao P S, Liang J J, Zhang T F, Shi Q, Li G H, Chen Y S. Adv. Funct. Mater., 2018, 28(2): 1704363.
[6]
Li Z J, Lin H, Ding S Q, Ling H L, Wang T, Miao Z Q, Zhang M, Meng A L, Li Q D. Carbon, 2020, 167: 148.

doi: 10.1016/j.carbon.2020.05.070     URL    
[7]
Qiao J, Zhang X, Liu C, Lyu L F, Yang Y F, Wang Z, Wu L L, Liu W, Wang F L, Liu J R. Nano Micro Lett., 2021, 13(1): 75.

doi: 10.1007/s40820-021-00606-6    
[8]
Wen B, Yang H B, Lin Y, Qiu Y cheng Y, Jin L X. J. Colloid Interface Sci., 2022, 605: 657.

doi: 10.1016/j.jcis.2021.07.118     URL    
[9]
Lan D, Zhao Z H, Gao Z G, Kou K C, Wu G L, Wu H J. J. Magn. Magn. Mater., 2020, 512: 167065.
[10]
He Y Y, Xie P Y, Li S, Wang Y N, Liao D G, Liu H X, Zhou L, Chen Y H. J. Mater. Chem. A, 2021, 9(46): 25982.

doi: 10.1039/D1TA07527F     URL    
[11]
Zhao Y H, Lou Z C, Wang Q Y, Wang Y H, Sun W, Li Y J. J. Mater. Sci. Mater. Electron., 2021, 32(21): 26007.

doi: 10.1007/s10854-021-05864-z    
[12]
Fan X A, Guan J G, Li Z Z, Mou F Z, Tong G X, Wang W. J. Mater. Chem., 2010, 20(9): 1676.
[13]
Liu P B, Gao S, Wang Y, Huang Y, He W J, Huang W H, Luo J H. Chem. Eng. J., 2020, 381: 122653.
[14]
Di X C, Wang Y, Lu Z, Cheng R R, Yang L Q, Wu X M. Carbon, 2021, 179: 566.

doi: 10.1016/j.carbon.2021.04.050     URL    
[15]
Yao Y L, Zhang C F, Fan Y Q, Zhan J. Adv. Powder Technol., 2016, 27(5): 2285.

doi: 10.1016/j.apt.2016.08.022     URL    
[16]
Wang Y L, Wang G S, Zhang X J, Gao C. J. Mater. Sci. Technol., 2022, 103: 34.

doi: 10.1016/j.jmst.2021.06.021     URL    
[17]
Feng J T, Hou Y H, Wang Y C, Li L C. ACS Appl. Mater. Interfaces, 2017, 9(16): 14103.

doi: 10.1021/acsami.7b03330     URL    
[18]
Wu M Z, Zhang H J, Yao X, Zhang L Y. J. Phys. D: Appl. Phys., 2001, 34(6): 889.

doi: 10.1088/0022-3727/34/6/310     URL    
[19]
Zhang H J, Yao X, Zhang L Y. Mater. Sci. Eng. B, 2001, 84(3): 252.

doi: 10.1016/S0921-5107(01)00629-8     URL    
[20]
Zhang H J, Yao X, Zhang L Y. J. Eur. Ceram. Soc., 2002, 22(6): 835.

doi: 10.1016/S0955-2219(01)00400-9     URL    
[21]
Zhang H J, Liu Z C, Ma C L, Yao X, Zhang L Y, Wu M Z. Mater. Chem. Phys., 2003, 80(1): 129.

doi: 10.1016/S0254-0584(02)00457-1     URL    
[22]
Zhang H J, Liu Z C, Yao X, Zhang L Y, Wu M Z. Mater. Sci. Eng. B, 2003, 97(2): 160.

doi: 10.1016/S0921-5107(02)00571-8     URL    
[23]
Pei X Y, Zhao M Y, Li R X, Lu H, Yu R R, Xu Z W, Li D S, Tang Y H, Xing W J. Compos. A Appl. Sci. Manuf., 2021, 145: 106363.
[24]
Wang C Z, Li J, Guo S Y. Compos. A Appl. Sci. Manuf., 2019, 125: 105522.
[25]
Wu C, Chen Z F, Wang M L, Cao X, Zhang Y, Song P, Zhang T Y, Ye X L, Yang Y, Gu W H, Zhou J D, Huang Y Z. Small, 2020, 16(30): 2070168.
[26]
Xiang Z, Song Y M, Xiong J, Pan Z B, Wang X, Liu L, Liu R, Yang H W, Lu W. Carbon, 2019, 142: 20.

doi: 10.1016/j.carbon.2018.10.014    
[27]
Wang Y L, Yang S H, Wang H Y, Wang G S, Sun X B, Yin P G. Carbon, 2020, 167: 485.

doi: 10.1016/j.carbon.2020.06.014     URL    
[28]
Feng W, Wang Y M, Zou Y C, Chen J C, Jia D C, Zhou Y. Chem. Eng. J., 2018, 342: 364.

doi: 10.1016/j.cej.2018.02.078     URL    
[29]
Wu N N, Xu D M, Wang Z, Wang F L, Liu J R, Liu W, Shao Q, Liu H, Gao Q, Guo Z H. Carbon, 2019, 145: 433.

doi: 10.1016/j.carbon.2019.01.028     URL    
[30]
Abdalla I, Elhassan A, Yu J Y, Li Z L, Ding B. Carbon, 2020, 157: 703.

doi: 10.1016/j.carbon.2019.11.004     URL    
[31]
Yang W, Li R, Jiang B, Wang T H, Hou L Q, Li Z X, Liu Z C, Yang F, Li Y F. Carbon, 2020, 166: 218.

doi: 10.1016/j.carbon.2020.05.043     URL    
[32]
Wang H. Master’s Dissertation of Harbin Institute of Technology, 2016.
[33]
Cao M S, Song W L, Hou Z L, Wen B, Yuan J. Carbon, 2010, 48(3): 788.

doi: 10.1016/j.carbon.2009.10.028     URL    
[34]
Zhao B, Guo X Q, Zhao W Y, Deng J S, Fan B B, Shao G, Bai Z Y, Zhang R. Nano Res., 2017, 10(1): 331.

doi: 10.1007/s12274-016-1295-3     URL    
[35]
Qin M, Zhang L M, Zhao X R, Wu H J. Adv. Funct. Mater., 2021, 31(30): 2103436.
[36]
Zhao B, Ma C, Liang L Y, Guo W H, Fan B B, Guo X Q, Zhang R. CrystEngComm, 2017, 19(26): 3640.

doi: 10.1039/C7CE00883J     URL    
[37]
Zhao B, Fan B B, Xu Y W, Shao G, Wang X D, Zhao W Y, Zhang R. ACS Appl. Mater. Interfaces, 2015, 7(47): 26217.

doi: 10.1021/acsami.5b08383     URL    
[38]
Zhang Y, Huang Y, Zhang T F, Chang H C, Xiao P S, Chen H H, Huang Z Y, Chen Y S. Adv. Mater., 2015, 27(12): 2049.

doi: 10.1002/adma.v27.12     URL    
[39]
Xu J, Zhang X, Zhao Z B, Hu H, Li B, Zhu C L, Zhang X T, Chen Y J. Small, 2021, 17(33): 2102032.
[40]
Lin Y, Wang Q, Gao S Y, Yang H B, Wang L. J. Alloys Compd., 2018, 745: 761.

doi: 10.1016/j.jallcom.2018.02.237     URL    
[41]
Zhang F, Cui W, Wang B B, Xu B H, Liu X H, Liu X H, Jia Z R, Wu G L. Compos. B Eng., 2021, 204: 108491.

doi: 10.1016/j.compositesb.2020.108491     URL    
[42]
Qiu S, Lyu H L, Liu J R, Liu Y Z, Wu N N, Liu W. ACS Appl. Mater. Interfaces, 2016, 8(31): 20258.

doi: 10.1021/acsami.6b03159     URL    
[43]
Wang S S, Xu Y C, Fu R R, Zhu H H, Jiao Q Z, Feng T Y, Feng C H, Shi D X, Li H S, Zhao Y. Nano Micro Lett., 2019, 11(1): 76.

doi: 10.1007/s40820-019-0307-8    
[44]
Du Y C, Liu W W, Qiang R, Wang Y, Han X J, Ma J, Xu P. ACS Appl. Mater. Interfaces, 2014, 6(15): 12997.

doi: 10.1021/am502910d     URL    
[45]
Wang S S, Zhao Y, Gao M M, Xue H L, Xu Y C, Feng C H, Shi D X, Liu K H, Jiao Q Z. ACS Appl. Mater. Interfaces, 2018, 10(49): 42865.

doi: 10.1021/acsami.8b15416     URL    
[46]
Cui Y H, Yang K, Wang J Q, Shah T, Zhang Q Y, Zhang B L. Carbon, 2021, 172: 1.

doi: 10.1016/j.carbon.2020.09.093     URL    
[47]
Zhang X, Tian X L, Liu C, Qiao J, Liu W, Liu J R, Zeng Z H. Carbon, 2022, 194: 257.

doi: 10.1016/j.carbon.2022.04.001     URL    
[48]
Kong L, Luo S H, Zhang G Q, Xu H L, Wang T, Huang J F, Fan X M. Carbon, 2022, 193: 216.

doi: 10.1016/j.carbon.2022.03.016     URL    
[49]
Liang J, Chen J, Shen H Q, Hu K T, Zhao B N, Kong J. Chem. Mater., 2021, 33(5): 1789.

doi: 10.1021/acs.chemmater.0c04734     URL    
[50]
Guan X M, Yang Z H, Zhu Y T, Yang L J, Zhou M, Wu Y, Yang L, Deng T W, Ji G B. Carbon, 2022, 188: 1.

doi: 10.1016/j.carbon.2021.11.045     URL    
[51]
Wang L, Huang M Q, Qian X, Liu L L, You W B, Zhang J, Wang M, Che R C. Small, 2021, 17(30): 2100970.
[52]
Zhang X, Qiao J, Jiang Y Y, Wang F L, Tian X L, Wang Z, Wu L L, Liu W, Liu J R. Nano Micro Lett., 2021, 13(1): 135.
[53]
Chen J B, Zheng J, Wang F, Huang Q Q, Ji G B. Carbon, 2021, 174: 509.

doi: 10.1016/j.carbon.2020.12.077     URL    
[54]
Ren Y J, Wang X, Ma J X, Zheng Q, Wang L J, Jiang W. J. Mater. Sci. Technol., 2023, 132: 223.

doi: 10.1016/j.jmst.2022.06.013     URL    
[55]
Huang X G, Wei J W, Zhang Y K, Qian B B, Jia Q, Liu J, Zhao X J, Shao G F. Nano Micro Lett., 2022, 14(1): 107.
[56]
Jung K W, Kim J H, Choi J W. Compos. B Eng., 2020, 187: 107867.
[57]
Gao S, Zhang G Z, Wang Y, Han X P, Huang Y, Liu P B. J. Mater. Sci. Technol., 2021, 88: 56.

doi: 10.1016/j.jmst.2021.02.011     URL    
[58]
Zhang C L, Li H, Zhang Q, Cao F H, Xie Y, Lu B R, Zhang W D, Cong H P, Li H,. Chem. Eng. J., 2021, 420: 127705.
[59]
Wu Y, Zhao Y, Zhou M, Tan S J, Peymanfar R, Aslibeiki B, Ji G B. Nano Micro Lett., 2022, 14(1): 171.

doi: 10.1007/s40820-022-00906-5    
[60]
Guan X M, Yang Z H, Zhou M, Yang L, Peymanfar R, Aslibeiki B, Ji G B. Small Struct., 2022, 3(10): 2200102.
[61]
Shu R W, Zhang G Y, Zhang C, Wu Y, Zhang J B. Adv. Electron. Mater., 2021, 7(2): 2001001.
[62]
Kwak B S, Choi W H, Noh Y H, Jeong G W, Yook J G, Kweon J H, Nam Y W. Compos. B Eng., 2020, 191: 107952.

doi: 10.1016/j.compositesb.2020.107952     URL    
[63]
Wu X Y, Tu T X, Dai Y, Tang P P, Zhang Y, Deng Z M, Li L L, Zhang H B, Yu Z Z. Nano Micro Lett., 2021, 13(1): 148.

doi: 10.1007/s40820-021-00665-9    
[64]
Zhang H, Xie A J, Wang C P, Wang H S, Shen Y H, Tian X Y. J. Mater. Chem. A, 2013, 1(30): 8547.

doi: 10.1039/c3ta11278k     URL    
[65]
Wu N N, Liu C, Xu D M, Liu J R, Liu W, Shao Q, Guo Z H. ACS Sustainable Chem. Eng., 2018, 6(9): 12471.

doi: 10.1021/acssuschemeng.8b03097     URL    
[66]
Chen H H, Huang Z Y, Huang Y, Zhang Y, Ge Z, Qin B, Liu Z F, Shi Q, Xiao P S, Yang Y, Zhang T F, Chen Y S. Carbon, 2017, 124: 506.

doi: 10.1016/j.carbon.2017.09.007     URL    
[67]
Zeng Z H, Jin H, Chen M J, Li W W, Zhou L C, Zhang Z. Adv. Funct. Mater., 2016, 26(2): 303.

doi: 10.1002/adfm.v26.2     URL    
[68]
Song Q, Ye F, Yin X W, Li W, Li H J, Liu Y S, Li K Z, Xie K Y, Li X H, Fu Q G, Cheng L F, Zhang L T, Wei B Q. Adv. Mater., 2017, 29(31): 1701583.
[69]
Zhou X F, Jia Z R, Feng A L, Wang X X, Liu J J, Zhang M, Cao H J, Wu G L. Carbon, 2019, 152: 827.

doi: 10.1016/j.carbon.2019.06.080     URL    
[70]
Wang C H, Ding Y J, Yuan Y, He X D, Wu S T, Hu S, Zou M C, Zhao W Q, Yang L S, Cao A Y, Li Y B. J. Mater. Chem. C, 2015, 3(45): 11893.

doi: 10.1039/C5TC03127C     URL    
[71]
Liu C Y, Lin Z, Chen C, Kirk D W, Xu Y J. Chem. Eng. J., 2019, 366: 415.

doi: 10.1016/j.cej.2019.02.082     URL    
[72]
Li X L, Yin X W, Song C Q, Han M K, Xu H L, Duan W Y, Cheng L F, Zhang L T. Adv. Funct. Mater., 2018, 28(41): 1803938.
[73]
Mei H, Zhao X, Zhou S X, Han D Y, Xiao S S, Cheng L F. Chem. Eng. J., 2019, 372: 940.

doi: 10.1016/j.cej.2019.05.011     URL    
[74]
Luo F, Liu D Q, Cao T S, Cheng H F, Kuang J C, Deng Y J, Xie W. Adv. Compos. Hybrid Mater., 2021, 4(3): 591.

doi: 10.1007/s42114-021-00275-4    
[75]
Li Y, Liu X F, Nie X Y, Yang W W, Wang Y D, Yu R H, Shui J L. Adv. Funct. Mater., 2019, 29(10): 1970059.
[76]
Song C Q, Yin X W, Han M K, Li X L, Hou Z X, Zhang L T, Cheng L F. Carbon, 2017, 116: 50.

doi: 10.1016/j.carbon.2017.01.077     URL    
[77]
Zhou R, Wang Y S, Liu Z Y, Pang Y Q, Chen J X, Kong J. Nano Micro Lett., 2022, 14(1): 122.

doi: 10.1007/s40820-022-00865-x    
[78]
Cui Y H, Yang K, Lyu Y T, Liu P, Zhang Q Y, Zhang B L. Carbon, 2022, 196: 49.

doi: 10.1016/j.carbon.2022.04.044     URL    
[79]
Cheng J, Cai L, Shi Y Y, Pan F, Dong Y Y, Zhu X J, Jiang H J, Zhang X, Xiang Z, Lu W. Chem. Eng. J., 2022, 431: 134284.

doi: 10.1016/j.cej.2021.134284     URL    
[80]
Di X C, Wang Y, Fu Y Q, Wu X M, Wang P. Carbon, 2021, 173: 174.

doi: 10.1016/j.carbon.2020.11.006     URL    
[81]
Zhang X, Cai L, Xiang Z, Lu W. Carbon, 2021, 184: 514.

doi: 10.1016/j.carbon.2021.08.026     URL    
[82]
Zhu X J, Dong Y Y, Xiang Z, Cai L, Pan F, Zhang X, Shi Z, Lu W. Carbon, 2021, 182: 254.

doi: 10.1016/j.carbon.2021.06.028     URL    
[83]
Zhao H Q, Cheng Y, Zhang Z, Zhang B S, Pei C C, Fan F Y, Ji G B. Carbon, 2021, 173: 501.

doi: 10.1016/j.carbon.2020.11.035     URL    
[84]
Zhang X, Cheng J, Xiang Z, Cai L, Lu W. Carbon, 2022, 187: 477.

doi: 10.1016/j.carbon.2021.11.044     URL    
[85]
Cheng J B, Wang Y Q, Zhang A N, Zhao H B, Wang Y Z. Carbon, 2021, 183: 205.

doi: 10.1016/j.carbon.2021.07.019     URL    
[86]
Xu R X, Xu D W, Zeng Z, Liu D. Chem. Eng. J., 2022, 427: 130796.
[87]
Lyu L F, Zheng S N, Wang F L, Liu Y, Liu J R. J. Colloid Interface Sci., 2021, 602: 197.

doi: 10.1016/j.jcis.2021.05.184     URL    
[88]
Wang C S, Wu S Q, Li Z Q, Chen S, Chen A N, Yan C Z, Shi Y S, Zhang H B, Fan P Y. Virtual Phys. Prototyp., 2022, 17(3): 718.

doi: 10.1080/17452759.2022.2056950     URL    
[89]
Luo J H, Dai Z Y, Feng M N, Chen X W, Sun C H, Xu Y. J. Mater. Sci. Technol., 2022, 129: 206.

doi: 10.1016/j.jmst.2022.04.047     URL    
[90]
Qiao J, Zhang X, Liu C, Zeng Z H, Yang Y F, Wu L L, Wang F L, Wang Z, Liu W, Liu J R. Carbon, 2022, 191: 525.

doi: 10.1016/j.carbon.2022.02.024     URL    
[91]
Dai B S, Li J Y, Liu X G, Wang N, Dai Y X, Qi Y. Carbon, 2022, 195: 308.

doi: 10.1016/j.carbon.2022.04.035     URL    
[92]
Zhao X X, Yan J, Huang Y, Liu X D, Ding L, Zong M, Liu P B, Li T H. J. Colloid Interface Sci., 2021, 595: 78.

doi: 10.1016/j.jcis.2021.03.109     URL    
[1] 袁思成, 林丹, 张曦光, 汪怀远. SLIPS功能表面的制备及应用[J]. 化学进展, 2021, 33(1): 87-96.
[2] 张松涛, 郑明波, 曹洁明, 庞欢. 锂硫电池用多孔碳/硫复合正极材料的研究[J]. 化学进展, 2016, 28(8): 1148-1155.
[3] 杜鑫, 赵彩霞, 黄洪伟, 温永强, 张学记. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化学进展, 2016, 28(8): 1131-1147.
[4] 张晓敏, 张力, 贺雪英, 吴俊涛. 冷冻干燥法制备聚合物基新型材料及其应用[J]. 化学进展, 2014, 26(11): 1832-1839.
[5] 卢国冬,燕青芝,宿新泰,刘中清,葛昌纯. 多孔水凝胶研究进展*[J]. 化学进展, 2007, 19(04): 485-493.
阅读次数
全文


摘要

多孔电磁波吸收材料