English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 259-269 DOI: 10.7536/PC130767 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池富锂过渡金属氧化物xLi2MnO3·(1-x)LiMO2(M=Ni,Co或Mn)正极材料

白莹1,2, 李雨1, 仲云霞1, 陈实1,2, 吴锋1,2, 吴川*1,2   

  1. 1. 北京理工大学化工与环境学院 环境科学与工程北京市重点实验室 北京 100081;
    2. 国家高技术绿色材料发展中心 北京 100081
  • 收稿日期:2013-07-01 修回日期:2013-10-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 吴川,e-mail:chuanwu@bit.edu.cn E-mail:chuanwu@bit.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2009CB220100)和教育部新世纪优秀人才支持计划(No.NCET-12-0047)资助

Li-Rich Transition Metal Oxide xLi2MnO3·(1-x)LiMO2 (M=Ni, Co or Mn) for Lithium Ion Batteries

Bai Ying1,2, Li Yu1, Zhong Yunxia1, Chen Shi1,2, Wu Feng1,2, Wu Chuan*1,2   

  1. 1. Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering & Environment, Beijing Institute of Technology, Beijing 100081, China;
    2. National Development Center for High Technology Green Materials, Beijing 100081, China
  • Received:2013-07-01 Revised:2013-10-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    This work was supported by the State Key Development Program for Basic Resarch of China (No.2009CB220100) and the Program for New Century Excellent Talents in University (No.NCET-12-0047)

作为下一代高比能锂离子电池正极材料的有力竞争者,富锂过渡金属氧化物xLi2MnO3 ·(1-x)LiMO2(M=Ni,Co或Mn)相对于传统的锂离子电池正极材料而言,具有比容量高的显著优势(可超过300 mAh/g),因此近年来得到了广泛关注。本文对富锂过渡金属氧化物xLi2MnO3 ·(1-x)LiMO2(M=Ni,Co或Mn)近几年的研究进展进行了总结,对该类材料的晶体结构特征以及首次充放电机理、不同合成方法的发展以及电化学性能的改善进行了评述,并对这类材料今后的发展方向提出了思考。

As a promising candidate of the cathode materials for the next generation of high energy density lithium-ion batteries, the Li-rich transition metal oxide xLi2MnO3 ·(1-x)LiMO2 (M=Ni, Co or Mn) is superior to the traditional cathode materials for its potential of achieving very high capacity of over 300mAh/g. Therefore, this type of materials is caught more and more attention in recent years. Here we give an overview of recent progress of xLi2MnO3 ·(1-x)LiMO2 in recent years. The research hotspots, the crystal structure characteristics and the mechanism of initial charge and discharge, the development of various synthesis methods, as well as the improvement of the electrochemical performances for xLi2MnO3 ·(1-x)LiMO2(M=Ni, Co or Mn) are commented. The future development trends of the xLi2MnO3 ·(1-x)LiMO2 (M=Ni, Co or Mn) is put forward.

Contents
1 Introduction
2 Research on initial charge-discharge mechanism of Li-rich composite cathode materials
2.1 Crystal structure of Li-rich composite cathode materials
2.2 Initial charge-discharge mechanism of Li-rich composite cathode materials
3 Synthesis methods for xLi2MnO3·(1-x)LiMO2
3.1 Co-precipitation method
3.2 Sol-gel method
3.3 Solid state method
3.4 Sucrose combustion method
3.5 Hydrothermal method
3.6 Low-temperature molten salt method
3.7 Other synthesis methods
4 Improvements on electrochemical properties of Li-rich composite cathode materials
4.1 Doping in the lattice
4.2 Surface coating
4.3 Doping other materials
4.4 Particle nanocrystallization and control of structures or morphologies of cathode materials
4.5 Proposing and exploration of new method
5 Conclusions and outlook

中图分类号: 

()

[1] Nagaura T, Tozawa K. Pro. Batteries Solar Cells, 1990, 9: 209.
[2] 张临超(Zhang L C), 陈春华(Cheng C H). 化学进展(Prog. Chem.), 2011, 23(2/3): 275.
[3] Lu Z, MacNeil D D, Dahn J R. Electrochem. Solid-State Lett., 2001, 4: A200.
[4] MacNeil D, Lu Z, Dahn J R. J. Electrochem. Soc., 2002, 149: A1332.
[5] Sun Y K, Myung S T, Bang H J, Park B C, Park S J, Sung N Y. J. Electrochem. Soc., 2007, 154: A937.
[6] Amriou T, Khelifa B, Aourag H, Aouadi S M, Mathieu C. Mater. Chem. Phys., 2005, 92: 499.
[7] Liu H, Yang Y, Zhang J. J. Power Sources, 2007, 173: 556.
[8] Macneil D D, Lu Z H, Dahn J R. J. Power Sources, 2002, 108: 8.
[9] Rougier A, Bravereau P, Delmas C. J. Electrochem. Soc., 1996, 143(4): 1168.
[10] Stoyanova R, Zhecheva E, Alcantara R, Tirado J L, Bromiley G, Bromiley F, Ballaran T B. Solid State Ionics, 2003, 161: 197.
[11] Whittingham M S. Chem. Rev., 2004, 104(10): 4271.
[12] Liu Z L, Yu A S, Lee J Y. J. Power Sources, 1999, 81/82: 416.
[13] Kim G H, Kim J H, Myung S T, Yoon C S, Sun Y K. J. Electrochem. Soc., 2005, 152: A1707.
[14] Lu W, Belharouak I, Vissers D, Amine K. J. Electrochem. Soc., 2006, 153: A2147.
[15] Myung S T, Komaba S, Hosoya K, Miura Y, Hirosaki N, Kumagai N. Chem. Mater., 2005, 17: 2427.
[16] Johnson C S, Li N, Leef C, Thackeray M M. Electrochem. Commun., 2007, 9: 787.
[17] Johnson C S, Kim J S, Leef C, Li N, Vaughey J T, Thackeray M M. Electrochem. Commun., 2004, 6: 1085.
[18] Wu Y, Manthiram A. Electrochem. Solid-State Lett., 2006, 9: A221.
[19] Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Hackney S A. Electrochem. Commun., 2006, 8: 1531.
[20] Ammundsen B, Paulsen J, Davidson I, Liu R S, Shen C H, Chen J M, Jang L Y, Lee J F. J. Electrochem. Soc., 2002, 149 (4): A431.
[21] Park Y J, Wu X L. Solid State Ionics, 2004, 175: 305.
[22] Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A. J. Mater. Chem., 2007, 17: 3112.
[23] Lu Z H, Dahn J R. J. Electrochem. Soc., 2002, 149: A815.
[24] Bareño J, Lei C H, Wen J G, Kang S H, Petrov I, Abraham D P. Adv. Mater., 2010, 22: 1122.
[25] Yoon W S, Iannopollo S, Grey C P, Carlier D, Gorman J, Reed J, Ceder G. Electrochem. Solid-State Lett., 2004, 7 (7): A167.
[26] Jarvis K A, Deng Z Q, Allard L F, Manthiram A, Ferreira P, Chem. Mater., 2011, 23: 3614.
[27] Pan C J, Lee Y J, Ammundsen B, Grey C P. Chem. Mater., 2002, 14: 2289.
[28] Bréger J, Jiang M, Dupré N, Meng Y S, Shao-Horn Y, Ceder G, Grey C P. J. Solid State Chem., 2005, 178: 2575.
[29] Yoon W S, Kim N, Yang X Q, McBreen J, Grey C P. J. Power Sources, 2003, 119/121: 649.
[30] Park Y J, Hong Y S, Wu X L, Kim M G, Ryu K S, Chang S H. J. Electrochem. Soc., 2004, 151: A720.
[31] Kim J S, Johnson C S, Vaughey J T, Thackeray M M. Chem. Mater., 2004, 16: 1996.
[32] Croy J R, Kang S H, Balasubramanian M, Thackeray M M. Electrochem. Commun., 2011, 13: 1063.
[33] Saint J A, Doeff M M, Reed J. J. Power Sources, 2007, 172: 189.
[34] Guo X J, Li Y X, Zheng M, Zheng J M, Li J, Gong Z L, Yang Y. J. Power Sources, 2008, 184: 414.
[35] Yu L Y, Qiu W H, Lian F, Liu W, Kang X L, Huang J Y. Mater. Lett., 2008, 62: 3010.
[36] Lu Z H, Beaulieu L Y, Donaberger R A, Thomas C L, Dahn J R. J. Electrochem. Soc., 2002, 149: A778.
[37] Robertson A D, Bruce P G. Chem. Commun., 2002, 2790.
[38] Benedek R, Thackeray M M, Walle A. Chem. Mater., 2008, 20: 5485.
[39] Lu Z H, Chen Z H, Dahn J R. Chem. Mater., 2003, 15: 3214.
[40] Koyama K, Tanaka I, Nagao M, Kanno R. J. Power Sources, 2009, 189: 798.
[41] Lim J H, Bang H, Lee K S, Amine K, Sun Y K. J. Power Sources, 2009, 189: 571.
[42] Armstrong A R, Holzapfel M, Novák P, Johnson C S, Kang S H, Thackeray M M, Bruce P G. J. Am. Chem. Soc., 2006, 128: 8694.
[43] Kikkawa J, Akita T, Tabuchi M, Shikano M, Tatsumi K, Kohyama M. Electrochem. Solid-State Lett., 2008, 11: A183.
[44] Kubota K, Kaneko T, Hirayama M, Yonemura M, Imanari Y, Nakane K, Kanno R. J. Power Sources, 2012, 216: 249.
[45] Yoon W S, Grey C P, Balasubramanian M, Yang X Q, Fischer D A, McBreen J. Electrochem. Solid-State Lett., 2004, 7: A53.
[46] Yu D Y W, Yanagida K, Kato Y, Nakamura H. J. Electrochem. Soc., 2009, 156: A417.
[47] Armstrong A R, Robertson A D, Bruce P G. J. Power Sources, 2005, 146: 275.
[48] Xiao R J, Li H, Chen L Q. Chem. Mater., 2012, 24: 4242.
[49] Gong Z L, Liu H S, Guo X J, Zhang Z R, Yang Y. J. Power Sources, 2004, 136: 139.
[50] Santhanam R, Rambabu B. J. Power Sources, 2010, 195: 4313.
[51] Zheng J M, Wu X B, Yang Y. Electrochim. Acta, 2011, 56: 3071.
[52] Li J, Klöpsch R, Stan M C, Nowak S, Kunze M, Winter M, Passerini S. J. Power Sources, 2011, 196: 4821.
[53] Xiang X D, Li X Q, Li W S. J. Power Sources, 2013, 230: 89.
[54] Zheng J M, Wu X B, Yang Y. Electrochimi. Acta, 2011, 56: 3071.
[55] 王昭(Wang Z), 吴锋(Wu F), 苏岳锋(SuY F), 包丽颖(Bao L Y), 陈来(Chen L), 李宁(Li N), 陈实(Chen S). 物理化学学报(Acta Phys. -Chim. Sin.), 2012, 28(4): 823.
[56] 杜柯(Du K), 周伟瑛(Zhou W Y), 胡国荣(Hu G R). 化学学报(Acta Chimica Sinica), 2010, 68: 1391.
[57] Yu L Y, Qiu W H, Lian F, Huang J Y, Kang X L. J. Alloys and Compounds, 2009, 471: 317.
[58] Kim G Y, Yi S B, Park Y J, Kim H G. Mater. Res. Bull., 2008, 43: 3543.
[59] Wei X, Zhang S C, He L, Liu G R, Yang P H. Int. J. Electrochem. Sci., 2013, 8: 1885.
[60] Bai Y, Wang F, Wu F, Wu C, Bao L Y. Electrochimica Acta, 2008, 54: 322.
[61] Yu C, Guan X F, Li G S, Zheng J, Li L P. Scr. Mater., 2012, 66: 300.
[62] West W C, Soler J, Ratnakumar B V. J. Power Sources, 2012, 204: 200.
[63] Kim M G, Jo M, Hong Y S, Cho J. Chem. Commun., 2009, 2: 218.
[64] Park S H, Sun Y K. J. Power Sources, 2003, 119: 161.
[65] Jiao L F, Zhang M, Yuan H T, Zhao M, Guo H, Wang W, Di Zhou X, Wang M. J. Power Sources, 2007, 167: 178.
[66] Lian F, Gao M, Qiu W H, Axmann P, Wohlfahrt-Mehrens M. J. Appl. Electrochem., 2012, 42: 409.
[67] Wu Y, Manthiram A. Solid State Ionics, 2009, 180: 50.
[68] Wang Q Y, Liu J, Mueugan A V, Manthiram A. J. Mater. Chem., 2009, 19: 4965.
[69] Liu J, Reeja-Jayan B, Manthiram A. J. Phys. Chem. C, 2010, 114: 9528.
[70] Liu J, Wang Q, Reeja-Jayan B, Manthiram A. Electrochem. Commun., 2010, 12: 750.
[71] Gao J, Manthiram A. J. Power Sources, 2009, 191: 644.
[72] Zheng J M, Li J, Zhang Z R, Guo X J, Yang Y. Solid State Ionics, 2008, 179: 1794.
[73] Kang S H, Thackeray M M. Electrochem. Commun., 2009, 11: 748.
[74] Wu F, Li N, Su Y F, Lu H Q, Zhang L J, An R, Wang Z, Bao L Y, Chen S. J. Mater. Chem., 2012, 22: 1489.
[75] Gao J, Kim J, Manthiram A. Electrochem. Commun., 2009, 11: 84.
[76] Gao J, Manthiram A. J. Power Sources, 2009, 191: 644.
[77] Wei G Z, Lu X, Ke F S, Huang L, Li J T, Wang Z X, Zhou Z Y, Sun S G. Adv. Mater., 2010, 22: 4364.
[78] Lin J, Mu D B, Jin Y, Wu B R, Ma Y F, Wu F. J. Power Sources, 2013, 230: 76.
[79] Wang D, Belharouak I, Zhou G W, Amine K. Adv. Funct. Mater., 2013, 23: 1070.
[80] 吴锋(Wu F), 陈实(Chen S), 仲云霞(Zhong Y X), 白莹(Bai Y), 吴川(Wu C), 包丽颖(Bao L Y), 吴伯荣(Wu B R). CN102655232A, 2012年.

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[3] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[4] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[5] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[6] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[7] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[8] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[9] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[10] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[11] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[12] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[13] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[14] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[15] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.