English
新闻公告
More
化学进展 2013, Vol. 25 Issue (12): 2080-2092 DOI: 10.7536/PC130442 前一篇   后一篇

• 综述与评论 •

介孔二氧化钛功能纳米材料的合成与应用

胡金林1, 杨其浩1, 陈静1, 王太亚1, 林鹤1, 钱海生*2   

  1. 1. 浙江师范大学化学与生命科学学院 金华 321004;
    2. 合肥工业大学医学工程学院 合肥 230009
  • 收稿日期:2013-04-01 修回日期:2013-07-01 出版日期:2013-12-15 发布日期:2013-09-17
  • 通讯作者: 钱海生 E-mail:shqian@hfut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 2110140);浙江省钱江人才计划(No.2012R10062)和中央高校基本科研业务费专项资金项目(No.2013HGCH0001)资助

Synthesis and Applications of Mesoporous TiO2 Functional Nanomaterials

Hu Jinlin1, Yang Qihao1, Chen Jing1, Wang Taiya1, Lin He1, Qian Haisheng*2   

  1. 1. Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China;
    2. School of Medical Engineering, Hefei University of Technology, Hefei 230009, China
  • Received:2013-04-01 Revised:2013-07-01 Online:2013-12-15 Published:2013-09-17

本文系统概括了介孔TiO2纳米材料的制备方法、形貌、掺杂及其应用。介孔TiO2纳米材料的制备方法一般包括水热法、溶剂热法、模板法、溶胶-凝胶法以及自组装法等。不同的合成方法可以得到不同形貌的介孔TiO2纳米材料,其中最常见的形貌有介孔球、纳米管、纳米线、纳米片以及由二维结构组装而成的三维介孔微球等结构。同时本文还系统阐明了不同形貌的介孔TiO2纳米材料在实际生产中的应用。空心的TiO2介孔球可广泛应用于微反应器;具有有序结构的TiO2纳米管材料能有效的缩短光程,被广泛应用于太阳能电池;具有较高的结晶性和大比表面积的介孔TiO2材料在光降解有机染料方面有很好的应用。本文基于介孔TiO2的合成方法对其生长形貌与结构性能的影响,综述了介孔TiO2纳米材料的最新制备方法与应用研究进展,并展望了其应用前景。

In this review, the prepared methods, morphologies, dopant and applications of mesoporous TiO2 nanomaterials are summarized. The synthetic methods of the mesoporous TiO2 nanomaterials include hydrothermal method, solvothermal method, template method, sol-gel method, self-assembly method and so on. Mesoporous TiO2 functional nanomaterials with various morphologies including mesoporous microspheres, nanotubes, nanowires, nanosheet and three-dimensional mesoporous microspheres composed of the assembly of the two-dimensional structure, etc. could be achieved via different preparation methods. At the same time, the mesoporous TiO2 with various morphologies are widely used in many fields. The mesoporous TiO2 microspheres with hollow structure can be used as microreactor, and the TiO2 nanotubes with ordered structure can be applied to solar cell for the shorter transmission distance than the disordered structure. The mesoporous TiO2 will be capable of dealing with the photodegradation of the organic dye due to the mesoporous TiO2 with excellent crystallization as well as high specific surface area. The applications of the mesoporous TiO2 in photocatalysis, solar cell, lithium ion battery, and sewage treatment are given in this review. Meanwhile, research advances in synthetic methods and applications of the mesoporous TiO2 nanomaterials are summarized owing to the performance of the mesoporous TiO2 depending on their synthetic conditions. Furthermore, the applications of mesoporous TiO2 nanomaterials in the future are prospected.

Contents
1 Introduction
2 Preparation of the mesoporoous TiO2
2.1 Hydrothermal method
2.2 Template method
2.3 Solvothermal method
2.4 Sol-gel method
2.5 Chemical deposition method
2.6 Sacrificial template method
3 Dopant of the mesoporous TiO2
3.1 Non-metal doping
3.2 Metal doping
3.3 Codope
4 Application of the mesoporous TiO2
4.1 Photocatalyst
4.2 Solar cell
4.3 Lithium ion battery
4.4 Ionic adsorption
5 Conclusion and outlook

中图分类号: 

()

[1] Chiola V, Ritsko J E, Vanderpool C D. US 3556725, 1971
[2] Kresge C T, Leonowicz M E, Roth J C, Beck J S. Nature, 1992, 359: 710—712
[3] Fujishima A, Honda K. Nature, 1972, 238: 37—38
[4] Oregan B, Grätzel M. Nature, 1991, 353: 737—740
[5] Zhong L S, Hu J S, Wan L J, Song W G. Chem. Commun., 2008, 1184—1186
[6] Wu N, Wei H H, Zhang L Z. Environ. Sci. Technol., 2012, 46: 419—425
[7] Fang Y N, Wu Q Z, Dickerson M B, Cai Y, Shian S, Berrigan J D, Poulsen N, Kroöger N, Sandhage K H. Chem. Mater., 2009, 21: 5704—5710
[8] Sun Z Q, Kim J H, Zhao Y, Bijarbooneh F, Malgras V, Lee Y, Kang Y M, Dou S X. J. Am. Chem. Soc., 2011, 133: 19314—19317
[9] Li Z L, Wnetrzak R, Kwapinski W, Leahy J J. ACS Appl. Mater. Interfaces, 2012, 4: 4499—4505
[10] Ding S J, Wang Y M, Hong Z L, Lv X J, Wan D Y, Huang F Q. Chem. Eur. J., 2011, 17: 11535—11541
[11] Cui Y M, Liu L, Li B, Zhou X F, Xu N P. J. Phys. Chem. C, 2010, 114: 2434—2439
[12] Chen J F, Hua Z J, Yan Y S, Zakhidov A A, Baughmand R H, Xu L B. Chem. Commun., 2010, 46: 1872—1874
[13] Crossland E J W, Noel N, Sivaram V, Leijtens T, Alexander-Webber J A, Snaith H J. Nature, 2013, 495: 215—220
[14] Tang Y F, Yang L, Chen J Z, Qiu Z. Langmuir, 2010, 26: 10111—10114
[15] Wang Z Y, Lou X W. Adv. Mater., 2012, 24: 4124—4129
[16] Li W, Deng Y H, Wu Z X, Qian X F, Yang J P, Wang Y, Gu D, Zhang F, Tu B, Zhao D Y. J. Am. Chem. Soc., 2011, 133: 15830—15833
[17] Chen J S, Chen C P, Liu J, Xu R, Qiao S Z, Lou X W. Chem. Commun., 2011, 47: 2631—2633
[18] 靳艳艳(Jin Y Y), 王鹏(Wang P). 化工新型材料(New Chemical Materials), 2012, 40(2): 10—13
[19] Wang J, Zhou Y K, Hu Y Y, O'Hayre R, Shao Z P. J. Phys. Chem. C, 2011, 115: 2529—2536
[20] Feng Y C, Li L, Ge M, Guo C S, Wang J F, Liu L. ACS Appl. Mater. Interfaces, 2010, 2: 3134—3140
[21] Zheng Z K, Huang B B, Qin X Y, Zhang X Y, Dai Y. Chem. Eur. J., 2010, 16: 11266—11270
[22] Ye J F, Liu W, Cai J G, Chen S, Zhao X W, Zhou H H, Qi L M. J. Am. Chem. Soc., 2011, 133: 933—940
[23] Li H X, Bian Z F, Zhu J, Zhang D Q, Li G S, Huo Y N, Li H, Lu Y F. J. Am. Chem. Soc., 2007, 129: 8406—8407
[24] Shang S Q, Jiao X L, Chen D R. ACS Appl. Mater. Interfaces, 2012, 4: 860—865
[25] Joo J B, Zhang Q, Lee I, Dahl M, Zaera F, Yin Y D. Adv. Funct. Mater., 2012, 22: 166—174
[26] Chen D H, Huang F Z, Cheng Y B, Caruso R A. Adv. Mater., 2009, 21: 2206—2210
[27] Miyata H, Fukushima Y, Okamoto K, Takahashi M, Watanabe M, Kubo W, Komoto A, Kitamura S, Kanno Y, Kuroda K. J. Am. Chem. Soc., 2011, 133: 13539—13544
[28] Zhang J Y, Zhu H L, Zheng S K, Pan F, Wang T M. ACS Appl. Mater. Interfaces, 2009, 1: 2111—2114
[29] Hou J W, Yang X C, Lv X Y, Huang M, Wang Q Y, Wang J. J. Alloy. Compd., 2012, 511: 202—208
[30] Dadgostar S, Tajabadi F, Taghavinia N. ACS Appl. Mater. Interfaces, 2012, 4: 2964—2968
[31] Araujo P Z, Luca V, Bozzano P B, Bianchi H L, Soler-Illia G J Á A, Blesa M A. ACS Appl. Mater. Interfaces, 2010, 2: 1663—1673
[32] Yu J G, Zhang J. Dalton Trans., 2012, 39: 5860—5867
[33] Hu Y X, Ge J P, Sun Y G, Zhang T R, Yin Y D. Nano Lett., 2007, 7: 1832—1836
[34] Yu H G, Yu J G, Cheng B, Liu S W. Nanotechnology, 2007, 18: art. no. 065604
[35] Fan J J, Zhao L, Yu J G, Liu G. Nanoscale, 2012, 4: 6597—6603
[36] Liu B S, Nakata K, Sakai M, Saito H, Ochiai T, Murakami T, Takagi K, Fujishima A. Langmuir, 2011, 27: 8500—8508
[37] Chandra D, Ohji T, Kato K, Kimura T. Langmuir, 2011, 27: 11436—11443
[38] Shibata H, Ogura T, Mukai T, Ohkubo T, Sakai H, Abe M. J. Am. Chem. Soc., 2005, 127: 16396—16397
[39] Ahmed S, Pasquier A D, Birnie D P, Asefa T. ACS Appl. Mater. Interfaces, 2011, 3: 3002—3010
[40] Coquil T, Reitz C, Brezesinski T, Nemanick E J, Tolbert S H, Pilon L. J. Phys. Chem. C, 2010, 114: 12451—12458
[41] Li L, Liu C Y. J. Phys. Chem. C, 2010, 114: 1444—1450
[42] Chen D H, Cao L, Huang F Z, Imperia P, Cheng Y B, Caruso R A. J. Am. Chem. Soc., 2010, 132: 4438—4444
[43] Szeifert J M, Feckl J M, Dina F R, Liu Y J, Kalousek V, Rathousky J, Bein T. J. Am. Chem. Soc., 2010, 132: 12605—12611
[44] Chen J S, Tan Y L, Li C M, Cheah Y L, Luan D Y, Madhavi S, Boey F Y C, Archer L A, Lou X W. J. Am. Chem. Soc., 2010, 132: 6124—6130
[45] Yoon S, Manthiram A. J. Phys. Chem. C, 2011, 115: 9410—9416
[46] Lin Y C, Liu S H, Syu H R, Ho T H. Spectrochim Acta A Mol. Biomol. Spectrosc., 2012, 95: 300—304
[47] Mukherjee B, Karthik C, Ravishankar N. J. Phys. Chem. C, 2009, 113: 18204—18211
[48] Zhou Y, Antonietti M. J. Am. Chem. Soc., 2003, 125: 14960—14961
[49] Ho W, Yu J C, Lee S. Chem. Commun., 2006, 1115—1117
[50] Li D, Haneda H, Labhsetwar N K, Hishita S, Ohashi N. Chem. Phys. Lett., 2005, 401: 579—584
[51] Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Nature, 2008, 453: 638—642
[52] Liu S W, Yu J G, Jaroniec M. J. Am. Chem. Soc., 2010, 132: 11914—11916
[53] Kontos A I, Kontos A G, Raptis Y S, Falaras P. Phys. Stat. Sol., 2008, 2: 83—85
[54] Anna K, Eric P, Samy O C, Christophe G, Pierre D, Pavel A. Chem. Mater., 2012, 24: 636—642
[55] Collazzo G C, Foletto E L, Jahn S L, Villetti M A. J. Environ. Manage., 2012, 98: 107—111
[56] Gurkan Y Y, Turkten N, Hatipoglu A, Cinar Z. Chem. Eng. J., 2012, 184: 113—124
[57] Wang Q Y, Yang X C, Wang X L, Huang M, Hou J W. Electrochim. Acta, 2012, 62: 158—162
[58] Wang D H, Jia L, Wu X L, Lu L Q, Xu A W. Nanoscale, 2012, 4: 576—584
[59] 刘时铸(Liu S Z), 孙丰强(Sun F Q). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2010, 26(12): 2215—2220
[60] Lu N, Quan X, Li J Y, Chen S, Yu H T, Chen G H. J. Phys. Chem. C, 2007, 111: 11836—11842
[61] Tojo S, Tachikawa T, Fujitsuka M, Majima T. J. Phys. Chem. C, 2008, 112: 14948—4954
[62] Pan D Y, Xu G L, Wan J G, Shi Z T, Han M, Wang G H. Langmuir, 2006, 22: 5537—5540
[63] Kumaresan L, Mahalakshmi M, Palanichamy M. Ind. Eng. Chem. Res., 2010, 49: 1480-1485
[64] Duan Y D, Fu N Q, Liu Q P, Fang Y Y, Zhou X W, Zhang J B, Lin Y. J. Phys. Chem. C, 2012, 116: 8888—8893
[65] Xu M, Da P M, Wu H Y, Zhao D Y, Zheng G F. Nano Lett., 2012, 12: 1503—1508
[66] Zhang J, Peng W Q, Chen Z H, Chen H, Han L Y. J. Phys. Chem. C, 2012, 116: 19182—19190
[67] Wu X F, Song H Y, Yoon J M, Yu Y T, Chen Y F. Langmuir, 2009, 25: 6438—6447
[68] Rodolfo Z, Vicente R G, Yamin A, Albino M R. ACS Catal., 2012, 2: 1—11
[69] Wang R H, Wang X W, Xin J H. ACS Appl. Mater. Interfaces, 2010, 2: 82—85
[70] Zhang J, Liu X H, Wang S R, Wu S H, Cao B Q, Zheng S H. Powder Technology, 2012, 217: 585—590
[71] Kochuveedu S T, Kim D P, Kim D H. J. Phys. Chem. C, 2012, 116: 2500—2506
[72] Hamal D B, Haggstrom J A, Marchin G L, Ikenberry M A, Hohn K, Klabunde K J. Langmuir, 2010, 26: 2805—2810
[73] Chen D M, Jiang Z Y, Geng J Q, Wang Q, Yang D. Ind. Eng. Chem. Res., 2007, 46: 2741—2746
[74] Wang W L, Shang Q K, Zheng W, Yu H, Feng X J, Wang Z D, Zhang Y B, Li G Q. J. Phys. Chem. C, 2010, 114: 13663—13669
[75] Cong Y, Zhang J L, Chen F, Anpo M, He D N. J. Phys. Chem. C, 2007, 111: 10618—10623
[76] Xu P, Lu J, Xu T, Gao S M, Huang B B, Dai Y. J. Phys. Chem. C, 2010, 114: 9510—9517
[77] Zhang R Y, Tu B, Zhao D Y. Chem. Eur. J., 2010, 16: 9977—9981
[78] 李锦丽(Li J L), 付宁 (Fu N), 吕功煊(Lv G X). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2010, 26(12): 2175—2181
[79] Liu X L, Gao Y F, Cao C X, Luo H J, Wang W Z. Langmuir, 2010, 26: 7671—7674
[80] Tian G H, Fu H G, Jing L Q, Xin B F, Pan K. J. Phys. Chem. C, 2008, 112: 3083—3089
[81] Hartmann P, Lee D K, Smarsly B M, Janek J. ACS Nano, 2010, 4: 3147—3154
[82] 王会香(Wang H X), 姜东(Jiang D), 吴东(Wu D), 李德宝(Li D B), 孙予罕(Sun Y H). 化学进展(Progress in Chemistry), 2012, 24(11): 2116—2123
[83] 程萍(Cheng P), 顾明元(Gu P Y), 金燕苹(Jin Y P). 化学进展(Progress in Chemistry), 2005, 17(1): 8—14
[84] Gratzel M. Prog. Photovoltaics, 2006, 14: 429—442
[85] Zhang R Y, Elzatahry A A, Al-Deyab S S, Zhao D Y. Nanotoday, 2012, 7: 344—366
[86] Shao F, Sun J, Gao L, Yang S W, Luo J Q. ACS Appl. Mater. Interfaces, 2011, 3: 2148—2153
[87] 唐泽坤(Tang Z K), 黄欢(Huang H), 管杰(Guan J), 于涛(Yu T), 邹志刚(Zou G G). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2012, 28: 2401—2406
[88] Zhang J Y, Deng Y H, Gu D, Wang S T, She L, Che R C, Wang Z S, Tu B, Xie S H, Zhao D Y. Adv. Energy Mater., 2011, 1: 241—248
[89] Lou X W, Archer L A. Adv. Mater., 2008, 20: 1853—1858
[90] Jézéquel, H, Chu K H. Environ. Chem. Lett., 2005, 3: 132—135
[91] Pena M E, Korfiatis G P, Patel M, Lippincott L, Meng X G. Water Res., 2005, 39: 2327—2337
[92] Brammer K S, Oh S, Gallagher J O, Jin S. Nano Lett., 2008, 8: 786—793
[93] Peng L, Eltgroth M L, LaTempa T J, Grimes C A, Desai T A. Biomaterials, 2009, 30: 1268—1272
[94] Peng L, Barczak A J, Barbeau R A, Xiao Y Y, LaTempa T J, Grimes C A, Desai T A. Nano Lett., 2010, 10: 143—148
[95] Qiu X Q, Miyauchi M, Sunada K, Minoshima M, Liu M, Lu Y, Li D, Shimodaira Y, Hosogi Y, Kuroda Y, Hashimoto K. ACS Nano, 2012, 6: 1609—1618
[96] Peyre J, Humblot V, Méthivier C, Berjeaud J M, Pradier C M. J. Phys. Chem. B, 2012, 116: 13839—13847
[97] Girshevitz O, Nitzan Y, Sukenik C N. Chem. Mater., 2008, 20: 1390—1396
[98] Guin D, Manorama S V, Latha N L, Singh S. J. Phys. Chem. C, 2007, 111: 13393—13397
[99] Dutta S, Patra A K, De S, Bhaumik A, Saha B. ACS Appl. Mater. Interfaces, 2012, 4: 1560—1564
[100] Lee S W, Takahara N, Korposh S, Yang D H, Toko K, Kunitake T. Anal. Chem., 2010, 82: 2228—2236
[101] Liang F X, Kelly T L, Luo L B, Li H, Sailor M J, Li Y Y. ACS Appl. Mater. Interfaces, 2012, 4: 4177—4183
[102] Pan J, Shen H, Werner U, Prades J D, Ramirez F H, Soldera F, Mücklich F, Mathur S. J. Phys. Chem. C, 2011, 115: 15191—15197

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[6] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[7] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[8] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[11] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[12] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[13] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[14] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[15] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.