English
新闻公告
More
化学进展 2013, Vol. 25 Issue (12): 2103-2111 DOI: 10.7536/PC130438 前一篇   后一篇

• 综述与评论 •

中温质子交换膜燃料电池高质子传导率磺化芳香族聚合物膜

漆志刚, 宫琛亮*, 梁宇, 李辉, 张树江, 李彦锋*   

  1. 兰州大学化学化工学院 功能有机分子化学国家重点实验室 兰州 730000
  • 收稿日期:2013-04-01 修回日期:2013-07-01 出版日期:2013-12-15 发布日期:2013-09-17
  • 通讯作者: 宫琛亮,李彦锋 E-mail:gongchl@lzu.edu.cn;liyf@lzu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21204033);甘肃省青年科技基金计划(No. 1208RJYA016)和中央高校基本科研业务费专项资金项目(No.2022012zr0023)资助

Highly Proton-Conductive Sulfonated Aromatic Polymers for Medium-Temperature Proton Exchange Membrane Fuel Cells

Qi Zhigang, Gong Chenliang*, Liang Yu, Li Hui, Zhang Shujiang, Li Yanfeng*   

  1. College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
  • Received:2013-04-01 Revised:2013-07-01 Online:2013-12-15 Published:2013-09-17

磺化的芳香类聚合物由于具有良好的耐热性能、化学稳定性、机械性能、加工性能以及较低的燃料渗透性而受到燃料电池质子交换膜领域广泛的关注。然而,与已经应用的Nafion膜相比,大部分磺化的无规离聚物的质子传导率仍然比较低。通过设计聚合物的结构可以提高质子交换膜在高温及低相对湿度(RH)下的质子传导性能。本文分别从磺化嵌段共聚物、侧链型磺化聚合物、局部磺酸基稠密的聚合物三方面综述了磺化芳香类聚合物膜的设计、合成及相关质子传导率之间的关系。同时,为进一步提高膜的质子传导率及其他性能,对制备掺杂无机质子导体或酸化的无机颗粒的复合质子交换膜进行了概述。

Sulfonated aromatic polymers have attracted lots of attention owning to their high thermal and chemical stability, excellent mechanical strength, low fuel permeability and easy manufacturing. For these reasons, sulfonated aromatic proton exchange membranes (PEMs) have been recognized as promising electrolyte materials. However, proton conduction in the majority of randomly sulfonated ionomers is too low as compared with Nafion (DupontTM) which have been currently widely used. Redesign of the polymer chemical structure is demanded for improving the properties of ionomers at elevated temperatures and reduced relative humidity (RH). This paper embarks from sulfonated aromatic block copolymers, grafted sulfonated aromatic copolymers and locally and densely sulfonated aromatic copolymers, and reviews the relationship between the structure and proton conductivities of sulfonated aromatic polymers. Meanwhile, in order to improve the proton conductivities and other properties, inorganic proton conductors or acidic inorganic materials are doped into membranes to prepare composite membranes.

Contents
1 Introduction
2 Morphological phase-separation of PEMs
2.1 Sulfonated aromatic block copolymers
2.2 Pendant sulfonic acid of aromatic copolymers
2.3 Locally and densely sulfonated aromatic copolymers
3 Organic-inorganic composite PEMs
3.1 PEMs composited with inorganic solid proton conductor
3.2 PEMs doped with acidified inorganic particles
4 Conclusions and outlook

中图分类号: 

()

[1] 高鹏(Gao P), 郭晓霞(Guo X X), 徐宏杰(Xu H J), 房建华(Fang J H). 高分子通报(Polymer Bulletin), 2007, 4: 1—22
[2] Park C H, Lee C H, Guiver M. D, Lee Y M. Prog. Polym. Sci., 2011, 36(11): 1443—1498
[3] Kim J, Kim B, Jung B. J. Membr. Sci., 2002, 207(1): 129—137
[4] Anonymous. Multi-year Research, Development and Demonstration Plan: Planned Program Activities for 2005—2015. Washington: EIA Office of Oil and Gas DOE, 2007
[5] Smitha B, Sridhar S, Khan A. A. J. Membr. Sci., 2005, 259(1/2): 10—26
[6] Kim J, Kim B, Jung B. J. Membr. Sci., 2002, 207(1): 129—137
[7] Sangeetha D. Eur. Polym. J., 2005, 41(11): 2644—2651
[8] Won J, Choi S W, Kang Y K, Ha H Y, Oh I H, Kim H S, Kim K T, Jo W H. J. Membr. Sci., 2003, 214(2): 245—257
[9] Woo Y, Oh S Y, Kang Y S, Jung B. J. Membr. Sci., 2003, 220(1/2): 31—45
[10] Okamoto K I, Yin Y, Yamada O, Islam M N, Honda T, Mishima T, Suto Y, Tanaka K, Kita H. J. Membr. Sci., 2005, 258(1/2): 115—122
[11] Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, Watanabe M. J. Am. Chem. Soc., 2006, 128(5): 1762—1769
[12] Guo X X, Fang J H, Watari T, Tanaka K, Kita H, Okamoto K I. Macromolecules, 2002, 35(17): 6707—6713
[13] Dimitrova P G, Baradie B, Foscallo D, Poinsignon C, Sanchez J Y. J. Membr. Sci., 2001, 185(1): 59—71
[14] Yang J S, Li Q F, Jensen J O, Pan C, Cleemann L N, Bjerrum N J, He R H. J. Power Sources, 2012, 205(1): 114—121
[15] Ismail A F, Othman N H, Mustafa A. J. Membr. Sci., 2009, 329(1/2): 18—29
[16] Nie L L, Wang J T, Xu T, Dong H, Wu H, Jiang Z Y. J. Power Sources, 2012, 213(1): 1—9
[17] Xing P X, Robertson G P, Guiver M D, Mikhailento S D, Wang K P, Kaliaguine S. J. Membr. Sci., 2004, 229(1/2): 95—106
[18] Xing P X, Robertson G P, Guiver M D, Mikhailento S D, Kaliaguine S. Polymer, 2005, 46(10): 3257—3263
[19] Kreuer K D, Rabenau A, Weppner W. Angew. Chem. Int. Engl., 1982, 21(3): 208—209
[20] Kreuer K D. J. Membr. Sci., 2001, 185(1): 29—39
[21] Litt M, Granados-Focil S, Kang J. ACS Symp. Ser., 2010, 1040: 49—63
[22] Si K, Dong D X, Wycisk R, Litt M. J. Mater. Chem., 2012, 22: 20907—20917
[23] Si K, Wycisk R, Dong D X, Cooper K, Rodgers M, Brooker P, Slattery D, Litt M. Macromolecules, 2013, 46(2): 422—433
[24] Takimoto N, Wu L B, Ohira A, Takeoka Y. Polymer, 2009, 50(2): 534—540
[25] Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, Watanabe M. J. Am. Chem. Soc., 2006, 128(5): 1762—1769
[26] Elabd Y A, Hickner M A. Macromolecules, 2011, 44: 1—11
[27] 冯少广(Feng S G), 谢晓峰(Xie X F), 尚玉明(Shang Y M), 靳豪(Jin H), 徐景明(Xu J M), 周其凤(Zhou Q F). 化学进展(Progress In Chemistry), 2008, 20(1): 117—125
[28] Einsla M L, Kim Y S, Hawley M, Lee H S, McGrath J E, Liu B J, Guiver M D, Pivovar B S. Chem. Mater., 2008, 20(17): 5636—5642
[29] Kim J, Kim B, Jung B. J. Membr. Sci., 2002, 207(1): 129—137
[30] Kim B, Kim J, Jung B. J. Membr. Sci., 2005, 250(1/2): 175—182
[31] Moore H D, Saito T, Hicker M A. J. Mater. Chem., 2010, 20: 6316—6321
[32] Li N W, Lee S Y, Liu Y Y, Lee Y M, Guiver M D. Energy Environ. Sci., 2012, 5: 5346—5355
[33] Hu Z X, Yin Y, Yaguchi K, Endo N, Hign M, Okamoto K I. Polymer, 2009, 50(13): 2933—2943
[34] Chen K C, Chen X B, Yaguchi K, Endo N, Hign M. Polymer, 2009, 50(2): 510—518
[35] Yin Y, Suto Y, Sakabe T, Chen S W, Hayashi S, Mishima T, Yamada O, Tanaka K, Kita H, Okamoto K I. Macromolecules, 2006, 39(3): 1189—1198
[36] Chen K C, Hu Z X, Endo N, Higa M, Okamoto K I. Polymer, 2011, 52(10): 2255—2262
[37] Miyatake K, Oyaizu K, Tsuchida E, Hay A S. Macromolecules, 2001, 34(7): 2065—2071
[38] Zhu J, Shao K, Zhang G, Zhao C J, Zhang Y, Li H T, Han M M, Lin H D, Xu D, Yu H B, Na H. Polymer, 2010, 51(14): 3047—3053
[39] Zhang Y, Zhang G, Wan Y, Zhao C J, Shao K, Li H T, Han M M, Zhu J, Xu S, Liu Z G, Na H. J. Polym. Sci. Part. A: Poly Chem., 2010, 48: 5824—5832
[40] Shao K, Zhu J, Zhao C J, Li X F, Cui Z M, Zhang Y, Li H T, Xu D, Zhao G, Fu T Z, Wu J, Na H, Xing W. J. Polym. Sci. Part A: Poly. Chem., 2009, 47: 5772—5783
[41] Wang C Y, Lee S Y, Shin D W, Kang N R, Lee Y M, Guiver M D. J. Membr. Sci., 2013, 427: 443—450
[42] Sun F, Wang T P, Yang S Y, Fan L. Polymer., 2010, 51: 3887—3898
[43] Lafitte B, Jannasch P. Adv. Fun. Mater, 2007, 17(15): 2823—2834
[44] Jutemar E P, Jannasch P. J. Membr. Sci., 2010, 351(1/2): 87—95
[45] Pang J H, Shen K Z, Ren D F, Feng S N, Jiang Z H. J. Power Sources, 2013, 226: 179—185
[46] Feng S N, Shen K Z, Wang Y, Pang J H, Jiang Z H. J. Power Sources, 2013, 224(1): 42—49
[47] Sforca M L, Yoshida I V P, Nunes S P. J. Membr. Sci., 1999, 159(1/2): 197—207
[48] Laberty-Robert C, Valle K, Pereira F, Sanchez C. Chem. Soc. Rev., 2011, 40(2): 961—1005
[49] Tripathi B P, Shahi V K. Prog. Poly. Sci., 2011, 36(7): 945—979
[50] Shao Z G, Joghee P, Hsing I M. J. Membr. Sci., 2004, 229(1/2): 43—51
[51] Kim D S, Liu B, Guiver M D. Polymer, 2006, 47(23): 7871—7880
[52] Su Y H, Liu Y L, Sun Y M, Lai J Y, Guiver M D, Gao Y. J. Power Sources., 2006, 155(2): 111—117
[53] Li K, Ye G B, Pan J J, Zhang H N, Pan M. J. Membr. Sci., 2010, 347(1/2): 26—31
[54] Sacca A, Gatto I, Carbone A, Pedicini R, Passalacqua E. J. Power Sources, 2006, 16(1): 47—51
[55] 陈林 (Chen L), 唐浩林 (Tang H L), 潘牧 (Pan M). 电源技术 (Chinese Journal of Power Sources), 2011, 35(10): 1313—1316
[56] 许晶 (Xu J), 管蓉 (Guan R), 余建佳 (Yu J J), 代化 (Dai H). 化工新型材料 (New Chemical Materials), 2007, 35(3): 23—24
[57] Zaidi S M J, Mikhailenko S D, Robertson G. P, Guiver M D, Kaliaguine S. J. Membr. Sci., 2000, 173(1/2): 17—34
[58] Amirinejad M, Madaeni S S, Lee K S, Ko U, Rafiee E, Lee J S. Electro. Acta, 2012, 62(15): 227—233
[59] Colicchio I, Wen F, Keul H, Simon U, Moeller M. J. Membr. Sci., 2009, 326(1): 45—57
[60] Yu D M, Yoon Y J, Kim T H, Lee J Y, Hong Y T. Solid State Ionics, 2013, 233: 55—61
[61] Decker B, Thompson C H, Carver P I, Keinath S E, Santurri P R. Chem. Mater., 2010, 22(3): 942—948
[62] Miyatake K, Tombe T, Chikashige Y, Uchida H, Watanabe M. Angew. Chem., 2007, 119(35): 6766—6769
[63] Sun Y P, Fu K F, Lin Y, Huang W J. Acc. Chem. Res., 2002, 35(12): 1096—1104
[64] Maab H, Shishatskiy S, Nunes S P. J. Membr. Sci., 2009, 326(1): 27—35
[65] Thomassin J M, Kollar J, Caldarella G, Germain A, Jerome R, Detrembleur C. J. Membr. Sci., 2007, 303(1/2): 252—257
[66] Heo W, Yun S J, Im H, Kim J. Appl. Polym. Sci., 2012, 126(s2): E513—E521
[67] Tripathi B P, Schieda M, Shahi V K, Nunes S P. J. Power Source., 2011, 196(3): 911—919

[1] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[2] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[3] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[4] 黄晚秋, 高苗苗, 窦红静. 聚吡咯及其纳米复合材料在光热治疗领域的应用[J]. 化学进展, 2020, 32(4): 371-380.
[5] 贾潞, 马建中, 高党鸽, 吕斌. 层状双氢氧化物/聚合物纳米复合材料[J]. 化学进展, 2018, 30(2/3): 295-303.
[6] 茹静, 耿璧垚, 童聪聪, 王海英, 吴胜春, 刘宏治. 纳米纤维素基吸附材料[J]. 化学进展, 2017, 29(10): 1228-1251.
[7] 高党鸽, 梁志扬, 吕斌, 马建中. 细乳液聚合法制备有机/无机纳米复合材料[J]. 化学进展, 2016, 28(7): 1076-1083.
[8] 张勇杰, 李化毅, 董金勇, 胡友良. 聚烯烃共价键接枝纳米材料及其聚烯烃纳米复合材料[J]. 化学进展, 2015, 27(1): 47-58.
[9] 周素坤, 毛健贞, 许凤. 微纤化纤维素的制备及应用[J]. 化学进展, 2014, 26(10): 1752-1762.
[10] 仇实, 郑景伟, 杨贵堂, 郑经堂, 吴明铂, 吴文婷. 三维有序大孔炭的设计构筑、性能及应用研究[J]. 化学进展, 2014, 26(05): 772-783.
[11] 张力, 吴俊涛, 江雷. 石墨烯及其聚合物纳米复合材料[J]. 化学进展, 2014, 26(04): 560-571.
[12] 李广录, 何涛, 李雪梅. 核壳结构纳米复合材料的制备及应用[J]. 化学进展, 2011, 23(6): 1081-1089.
[13] 龚光明, 吴俊涛, 江雷. 静电纺丝法制备聚酰亚胺新型材料[J]. 化学进展, 2011, 23(4): 750-759.
[14] 柏嵩 沈小平. 石墨烯基无机纳米复合材料*[J]. 化学进展, 2010, 22(11): 2106-2118.
[15] 李伟 王锐 刘守新. 纳米微晶纤维素制备*[J]. 化学进展, 2010, 22(10): 2060-2070.