English
新闻公告
More
化学进展 2014, Vol. 26 Issue (05): 772-783 DOI: 10.7536/PC131104 前一篇   后一篇

• 综述与评论 •

三维有序大孔炭的设计构筑、性能及应用研究

仇实1, 郑景伟1, 杨贵堂2, 郑经堂*1, 吴明铂*1, 吴文婷*1   

  1. 1. 中国石油大学(华东)重质油国家重点实验室 青岛 266580;
    2. 山西新华化工有限责任公司 太原 030008
  • 收稿日期:2013-11-01 修回日期:2014-01-01 出版日期:2014-05-15 发布日期:2014-03-13
  • 通讯作者: 郑经堂,e-mail:jtzheng03@163.com;吴明铂,e-mail:wumb@upc.edu.cn;吴文婷,e-mail:wuwt@upc.edu.cn E-mail:jtzheng03@163.com;wumb@upc.edu.cn;wuwt@upc.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21376268,21176260);国家重点基础研究发展计划(973)项目(No. 2011CB605703)和泰山学者资助计划(No. ts20130929)资助

Synthesis and Application of Three-Dimensionally Ordered Macroporous Carbon with Designed Pore Architecture

Qiu Shi1, Zheng Jingwei1, Yang Guitang2, Zheng Jingtang*1, Wu Mingbo*1, Wu Wenting*1   

  1. 1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China;
    2. Shanxi Xinhua Chemicals Co., Ltd., Taiyuan 030008, China
  • Received:2013-11-01 Revised:2014-01-01 Online:2014-05-15 Published:2014-03-13
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21376268, 21176260), the National Basic Research Development Program of China (973 Program) (No. 2011CB605703) and the Taishan Scholar Foundation (No. ts20130929)

多孔炭材料具有高的比表面积、发达的孔结构、耐热、耐腐蚀、无毒无害、价廉、易操作等特点,以其为研究核心,在学术界和工业界均具有广阔的应用前景。通过胶晶模板法合成孔径在亚微米范围内的三维有序大孔炭,其高度规整的孔道结构,在吸附分离、催化和电极等领域已展现出巨大的应用潜能。利用双模板法将介孔结构融汇于三维有序大孔炭的孔壁中,设计构筑出三维有序大孔-介孔炭,势必会显著增强其应用价值。本文主要阐述了以胶晶为主体模板制备三维有序大孔炭的各种路径;采用双模板法将介孔引入大孔通道内获取三维有序大孔-介孔炭;探索影响孔结构参数的主要因素,并与各种功能材料复合增强其性能;着重对三维有序大孔炭及大孔-介孔炭在环境净化和新型能源转化与储备领域的应用进行概述。

Porous carbon materials have been widely studied due to their remarkable physicochemical properties, including the high specific surface area, extensively pore structure, good thermal stability, high corrosion resistance, easy handling and low cost of manufacture. In order to reap the full benets of designer porous carbons, it is necessary to develop controlled surface properties and structural ordering from fundamental and application point of view. Three-dimensionally ordered macroporous (3DOM) carbon materials, prepared by colloidal crystal templating (CCT) methods, using so-called hard templates, possess well-ordered periodicity and interconnected pore systems that are of interest for numerous applications, such as sorption and controlled release, catalysts and power sources. Recent breakthroughs have resulted in the development of CCT methods for the preparation of macro-mesoporous carbon by combining CCT with additional templating techniques. This review surveys literatures and highlights recent progress in the synthesis routes of 3DOM carbon by CCT methods, and the hierarchical pore structure by a dual-templating method. It discusses aspects of the main performance parameters, including the choice of colloidal particles, precursors, deposition techniques, and other necessary modications to enhance the functionality of 3DOM carbon materials, and puts emphasis on overviewing the applications in environmental purification and advanced energy conversion and storage.

Contents
1 Introduction
2 Morphological control and structural design of 3DOM carbon materials
2.1 Microstructure
2.2 Macroscopic feature
3 Designing and constructing of 3DOM carbon materials
3.1 Hard templating pathways by colloidal crystal
3.2 Dual-templating methods
4 Key factors in the preparation of 3DOM carbon materials
4.1 Types of colloidal crystal templates
4.2 Types of carbon precursors
5 Application
5.1 Environmental purification
5.2 Advanced energy conversion and storage
6 Conclusion and outlook

中图分类号: 

()

[1] Velev O D, Jede T A, Lobo R F, Lenhoff A M. Nature, 1997, 389: 447.
[2] Holland B T, Blanford C F, Stein A. Science, 1998, 281 (5376): 538.
[3] Zakhidov A A, Baughman R H, Iqbal Z, Cui C, Khayrullin I, Dantas S O, Marti J, Ralchenko V G. Science, 1998, 282 (5390): 897.
[4] Knox J H, Kaur B, Millward G. J. Chromator. A, 1986, 352: 3.
[5] Qiu S, Zheng J T, Jiang B. 10th China-Japan-Korea Joint Symposium on Carbon Materials to Save the Earth. Guangzhou, 2012. 173.
[6] Yu J S, Kang S, Yoon S B, Chai G. J. Am. Chem. Soc., 2002, 124 (32): 9382.
[7] Su F B, Zhao X S, Wang Y, Zeng J H, Zhou Z C, Lee J Y. J. Phys. Chem. B, 2005, 109 (43): 20200.
[8] Zhao Y, Zheng M B, Cao M J, Ke X F, Liu J S, Chen Y P, Tao J. Mater. Lett., 2008, 62(3): 548.
[9] Woo S W, Dokkoa K, Nakanoa H, Kanamura K. ECS Transactions, 2007, 3(36): 223.
[10] Hoa M L K, Lu M H, Zhang Y. Adv. Colloid Interface Sci., 2006, 121 (1/3): 9.
[11] 仇实(Qiu S), 郑经堂(Zheng J T), 苏美慧(Su M H). 第十一届新型炭材料学术研讨会论文集(Processing of the 11th National Symposium on New Carbon Materials). 太原(Taiyuan), 2013. 246.
[12] Tabata S, Isshiki Y, Watanabe M. J. Electrochem. Soc., 2008, 155(2): 42.
[13] Lee K T, Lytle J C, Ergang N S, Oh S M, Stein A. Adv. Funct. Mater., 2005, 15(4): 547.
[14] Zhang J M, Zhang Y X, Lian S Y, Liu Y, Kang Z H, Lee S T. J. Colloid Interface Sci., 2011, 361 (2): 503.
[15] 李石(Li S). 中国石油大学(华东)博士论文(Doctoral Dissertation of China University of Petroleum (East China)), 2009.
[16] Cai Z Y, Teng J H, Wan Y, Zhao X S. J. Colloid Interface Sci., 2012, 380 (1): 42.
[17] Dai Z F, Li Y, Duan G T, Jia L C, Cai W P. ACS Nano, 2012, 6 (8): 6706.
[18] Chai G S, Shin I S, Yu J S. Adv. Mater., 2004, 16 (22): 2057.
[19] Woo S W, Dokko K, Nakano H, Kanamura K. J. Mater. Chem., 2008, 18 (14): 1674.
[20] Kim J H, Fang B Z, Kim M S, Yoon S B, Bae T S, Ranade D R, Yu J S. Electrochim. Acta, 2010, 55 (26): 7628.
[21] Sui W B, Zheng J T, Yang Z, Wu M B. Mater. Lett., 2011, 65 (15): 2534.
[22] Zhang S L, Chen L, Zhou S X, Zhao D Y, Wu L M. Chem. Mater., 2010, 22 (11): 3433.
[23] Meng Y, Gu D, Zhang F Q, Shi Y F, Yang H F, Li Z, Yu C Z, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2005, 117 (43): 7215.
[24] Tanaka S, Nishiyama N, Egashira Y, Ueyama K. Chem. Commun., 2005, (16): 2125.
[25] Petkovich N D, Stein A. Chem. Soc. Rev., 2013, 42 (9): 3721.
[26] Deng Y H, Liu C, Yu T, Liu F, Zhang F Q, Wan Y, Zhang L J, Wang C C, Tu B, Webley P A, Wang H T, Zhao D Y. Chem. Mater., 2007, 19 (13): 3271.
[27] Wang Z Y, Kiesel E R, Stein A. J. Mater. Chem., 2008, 18 (19): 2194.
[28] 周颖(Zhou Y), 王志超(Wang Z C), 王春雷(Wang C L), 王六平(Wang L P), 许钦一(Xu Q Y), 邱介山(Qiu J S). 无机材料学报(Journal of Inorganic Materials), 2011, 26 (2): 145.
[29] Li N W, Zheng M B, Feng S Q, Lu H L, Zhao B, Zheng J F, Zhang S T, Ji G B, Cao J M. J. Phys. Chem. C, 2013, 117 (17): 8784.
[30] Meng Y, Gu D, Zhang F Q, Shi Y F, Cheng L, Feng D, Wu Z X, Chen Z X, Wan Y, Stein A, Zhao D Y. Chem. Mater., 2006, 18 (18): 4447.
[31] Huang X, Chen J, Lu Z Y, Yu H, Yan Q Y, Hng H H. Sci. Rep., 2013, 3: 2317.
[32] Franklin R E. Proc. R. Soc. Lond. A, 1951, 209 (1097): 196.
[33] Yoon S B, Chai G S, Kang S K, Yu J S, Gierszal K P, Jaroniec M. J. Am. Chem. Soc., 2005, 127 (12): 4188.
[34] Wang Z Y, Li F, Ergang N S, Stein A. Carbon, 2008, 46 (13): 1702.
[35] Huang C H, Doong R A, Gu D, Zhao D Y. Carbon, 2011, 49 (9): 3055.
[36] Kang D Y, Lee Y, Cho C Y, Moon J H. Langmuir, 2012, 28 (17): 7033.
[37] Yu J S, Yoon S B, Chai G S. Carbon, 2001, 39 (9): 1442.
[38] Lai C Z, Fierke M A, Stein A, Bühlmann P. Anal. Chem., 2007, 79 (12): 4621.
[39] Huang C H, Doong R A, Gu D, Zhao D Y. Carbon, 2011, 49 (9): 3055.
[40] Chu Y, Pan Q M. ACS Appl. Mater. Interfaces, 2012, 4 (5): 2420.
[41] Yuan R S, Guan R B, Shen W Z, Zheng J T. J. Colloid Interface Sci., 2005, 282 (1): 87.
[42] Jiang B, Zheng J T, Qiu S, Wu M B, Zhang Q H, Yan Z F, Xue Q Z. Chem. Eng. J., 2014, 236 (15): 348.
[43] Qu X F, Zheng J T, Zhang Y Z. J. Colloid Interface Sci., 2007, 309 (2): 429.
[44] Xiong A F, Yin Z L, Zhou Y J, Peng X Z, Yan W B, Liu Z X, Zhang X Y. Bull. Korean Chem. Soc., 2013, 34 (10): 3039.
[45] Li S, Zhao D F, Zheng J T, Wan Y, Zhao X S, Zhao C C, Liu Y, Liu F, Lu L, Wang Y Q. Mater. Res. Bull., 2010, 45 (9): 1069.
[46] 隋吴彬(Sui W B), 郑经堂(Zheng J T), 仇实(Qiu S), 吴明铂(Wu M B). 天津工业大学学报(Journal of Tianjin Polytechnic University), 2012, 31 (2): 47.
[47] Sui W B, Zheng J T, Pittman C U Jr, Bensalah N, Wu M B, Zhao Y C. Funct. Mater. Lett., 2014, DOI: 10.1142/S1793604713500689.
[48] 肖义(Xiao Y). 辽宁师范大学硕士论文(Master Dissertation of Liaoning Normal University), 2008.
[49] Kang D Y, Kim S O, Chae Y J, Lee J K, Moon J H. Langmuir, 2013, 29 (4): 1192.
[50] Wang Z Y, Li F, Ergang N S, Stein A. Chem. Mater., 2006, 18 (23): 5543.
[51] Conway B. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. NY: Kluwer Academic/Plenum, 1999.
[52] Yamada H, Nakamura H, Nakahara F, Moriguchi I, Kudo T. J. Phys. Chem. C, 2007, 111 (1): 227.
[53] Zhang L L, Li S, Zhang J T, Guo P Z, Zheng J T, Zhao X S. Chem. Mater., 2010, 22 (3): 1195.
[54] Fang B Z, Kim J H, Kim M, Yu J S. Chem. Mater., 2009, 21 (5): 789.
[55] Fan S Q, Fang B, Kim J H, Jeong B, Kim C, Yu J S, Ko J. Langmuir, 2010, 26 (16): 13644.
[56] Lai C Z, Joyer M M, Fierke M A, Petkovich N D, Stein A, Bühlmann P. J. Solid State Electrochem., 2009, 13 (1): 123.
[57] Fierke M A, Lai C Z, Bühlmann P, Stein A. Anal. Chem., 2010, 82 (2): 680.:3318.
[125] Su D S, Delgado J, Liu X, Wang D, Schlögl R, Wang L, Zhang Z, Shan Z, Xiao F S. Chem - An Asian J., 2009, 4:1108.
[126] Wang L F, Zhang J, Su D S, Ji Y Y, Cao X J, Xiao F S. Chem. Mater., 2007, 19:2894.
[127] Liu L, Deng Q F, Agula B, Zhao X, Ren T Z, Yuan Z Y. Chem. Commun., 2011, 47:8334.
[128] Liu L, Deng Q F, Liu Y P, Ren T Z, Yuan Z Y. Catal. Commun., 2011, 16:81.
[129] Liu L, Deng Q F, Agula B, Ren T Z,Liu Y P, Zhaorigetu B, Yuan Z Y. Catal. Today, 2012, 186:35.
[130] Ma T Y, Liu L, Yuan Z Y. Chem. Soc. Rev., 2013, 42:3977.

 

[1] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[2] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[3] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[4] 黄晚秋, 高苗苗, 窦红静. 聚吡咯及其纳米复合材料在光热治疗领域的应用[J]. 化学进展, 2020, 32(4): 371-380.
[5] 贾潞, 马建中, 高党鸽, 吕斌. 层状双氢氧化物/聚合物纳米复合材料[J]. 化学进展, 2018, 30(2/3): 295-303.
[6] 茹静, 耿璧垚, 童聪聪, 王海英, 吴胜春, 刘宏治. 纳米纤维素基吸附材料[J]. 化学进展, 2017, 29(10): 1228-1251.
[7] 高党鸽, 梁志扬, 吕斌, 马建中. 细乳液聚合法制备有机/无机纳米复合材料[J]. 化学进展, 2016, 28(7): 1076-1083.
[8] 张勇杰, 李化毅, 董金勇, 胡友良. 聚烯烃共价键接枝纳米材料及其聚烯烃纳米复合材料[J]. 化学进展, 2015, 27(1): 47-58.
[9] 周素坤, 毛健贞, 许凤. 微纤化纤维素的制备及应用[J]. 化学进展, 2014, 26(10): 1752-1762.
[10] 张力, 吴俊涛, 江雷. 石墨烯及其聚合物纳米复合材料[J]. 化学进展, 2014, 26(04): 560-571.
[11] 漆志刚, 宫琛亮*, 梁宇, 李辉, 张树江, 李彦锋. 中温质子交换膜燃料电池高质子传导率磺化芳香族聚合物膜[J]. 化学进展, 2013, 25(12): 2103-2111.
[12] 李广录, 何涛, 李雪梅. 核壳结构纳米复合材料的制备及应用[J]. 化学进展, 2011, 23(6): 1081-1089.
[13] 龚光明, 吴俊涛, 江雷. 静电纺丝法制备聚酰亚胺新型材料[J]. 化学进展, 2011, 23(4): 750-759.
[14] 柏嵩 沈小平. 石墨烯基无机纳米复合材料*[J]. 化学进展, 2010, 22(11): 2106-2118.
[15] 李伟 王锐 刘守新. 纳米微晶纤维素制备*[J]. 化学进展, 2010, 22(10): 2060-2070.