English
新闻公告
More
化学进展 2020, Vol. 32 Issue (4): 371-380 DOI: 10.7536/PC190906 前一篇   后一篇

• •

聚吡咯及其纳米复合材料在光热治疗领域的应用

黄晚秋, 高苗苗, 窦红静*()   

  1. 上海交通大学材料科学与工程学院 金属基复合材料国家重点实验室 上海 200240
  • 收稿日期:2019-09-03 修回日期:2019-11-01 出版日期:2020-04-05 发布日期:2020-03-30
  • 通讯作者: 窦红静
  • 作者简介:
    * 通信作者 Correspondingauthore-mail:

Polypyrrole and Its Nanocomposites Applied in Photothermal Therapy

Wanqiu Huang, Miaomiao Gao, Hongjing Dou*()   

  1. State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2019-09-03 Revised:2019-11-01 Online:2020-04-05 Published:2020-03-30
  • Contact: Hongjing Dou

光热治疗是近年来兴起的一种治疗方法,具有靶向性强、适应性广的特点。在光热治疗中,通过光热剂对光的吸收将光能转化为热能,从而实现治疗作用,因而光热剂的光热转化性能直接决定了光热治疗的效果。光热剂的种类丰富,涵盖由无机到有机等组成和性能各异的多种材料。其中,聚吡咯具备良好的生物相容性、优异的光稳定性以及光热转化性能,在光热治疗领域受到广泛关注,是一种拥有巨大应用潜力的光热剂,然而其在光热治疗领域的发展趋势及前景却鲜有报道。本文综述了聚吡咯及其纳米复合材料的制备方法,详述了聚吡咯及其纳米复合材料在光热治疗领域中的应用情况,包括聚吡咯基纳米材料的自身性能和实际光热治疗的效果,指出以聚吡咯为基体或修饰材料来制备具有CT、磁共振、光声显影及光热治疗性能的聚吡咯基复合材料已成为发展趋势。在此基础上,本文还总结了聚吡咯基纳米复合材料在制备和应用中存在的问题,并分析了其在发展过程中遇到的挑战以及在生物医学应用中的前景。

Photothermal therapy is a new emerging treatment method in recent years, which has the characteristics of strong targeting and wide adaptability. In photothermal therapy, light energy is converted into heat energy through the absorption of light by photothermal agents, thus realizing the therapeutic effect. Therefore, the photothermal conversion performance of photothermal agents directly determines the effect of photothermal therapy. There are many kinds of photothermal agents, which cover a variety of materials with different compositions and properties from inorganic to organic. Among them, polypyrrole has good biocompatibility, excellent photostability and photothermal conversion performance, which is a photothermal agent with great application potential and has attracted wide attention in the field of photothermal therapy. However, its development trend and prospects in the field of photothermal therapy are rarely reported. In this paper, the preparation methods of polypyrrole and its nanocomposites are reviewed, and the applications of polypyrrole and its nanocomposites in the field of photothermal therapy are described in detail, including the properties of polypyrrole-based nanomaterials and the effect of photothermal treatment. It is pointed out that polypyrrole matrix composites with CT, magnetic resonance imaging, photoacoustic imaging and photothermal properties have become the corresponding development trend. On this basis, the problems in the preparation and application of polypyrrole-based nanocomposites are revealed, then the challenges encountered in the development process and the prospects for biomedical applications are analyzed.

Contents

1 Introduction

2 Synthesis and application of polypyrrole Nanoparticles

2.1 Synthesis mechanism

2.2 Preparation method

2.3 Photothermal therapy and photoacoustic imaging of polypyrrole nanoparticles

3 Synthesis and multifunctional application of polypyrrole composite nanomaterials

3.1 Polypyrrole nanoparticles as matrix materials

3.2 Polypyrrole as modified material

4 Conclusion and outlook

()
图1 聚吡咯的合成机理示意图2.2 制备方法
Fig. 1 Schematic diagram of synthetic mechanism of Polypyrrole
图2 聚乙烯醇包裹聚吡咯纳米颗粒合成示意图[28]
Fig. 2 Schematic to illustrate the synthesis of PVA-coated PPy nanoparticles[28]. Copyright 2012, John Wiley and Sons
图3 聚吡咯纳米颗粒在水溶性聚合物/金属阳离子复合物水溶液中的形成示意图[45]
Fig. 3 Schematic illustration of the formation of PPy nanoparticles in an aqueous dispersion of water-soluble polymer/metal cation complexes[45]. Copyright 2013, John Wiley and Sons
图4 聚吡咯二氧化硅复合物与戊二醛(GTA)结合形成的示意图,用于靶向杀灭细菌[29]
Fig. 4 Schematic illustration of the formation of PPy-SiO2 composites conjugated with glutaraldehyde (GTA) for targeted killing of bacteria[29]. Copyright 2013, Royal Society of Chemistry
图5 GNR@PPy@Fe3O4-DOX-FA纳米复合材料的合成路线和化学光热疗法示意图[42]
Fig. 5 Schematic illustration of synthetic route and chemo-photothermal therapy for GNR (Gold Nanorod) @PPy@Fe3O4-DOX-FA nanocomposites[42]. Copyright 2019, Royal Society of Chemistry
图6 壳聚糖聚吡咯纳米复合材料制备示意图[47]2.3 聚吡咯纳米颗粒的光热治疗与光声显影应用
Fig. 6 Schematic for the preparation of chitosan-polypyrrole nanocomposites (CS-PPy NCs)[47]. Copyright 2017, John Wiley and Sons
图7 4T1、U937和293T细胞在不同浓度聚吡咯培养24 h后的相对存活率(a)。 不同组小鼠治疗后肿瘤生长曲线(b)[28]
Fig. 7 Relative viabilities of 4T1, U937, and 293T cells after being incubated with various concentrations of PPy for 24 h (a). The tumor growth curves of different groups of mice after treatment (b)[28]. Copyright 2012, John Wiley and Sons
图8 不同浓度的聚吡咯纳米粒在1 W·cm-2 808 nm激光照射下的光热效应(a)。不同治疗组的肿瘤生长率(b)[46](2)光声显影
Fig. 8 Photothermal e?ect of pure water and PPy NPs with di?erent concentrations upon the irradiation of 1 W·cm-2 808 nm laser(a). Tumor growth rates of groups after di?erent treatments(b)[46]. Copyright 2012, Royal Society of Chemistry
图9 (a) 数据采集前裸鼠肿瘤照片。(b)实验装置照片。(c)和(d)小鼠尾静脉注射聚吡咯纳米颗粒溶液(100 μL,5 mg·mL-1)24 h后的光声图像。白色圆圈突出肿瘤部位。(e)为(c)和(d)中肿瘤部位光声信号的定量数据[48]
Fig. 9 (a) Photograph of the nude mice tumor before the data acquisition. (b) Photograph of experimental setup. Photoacoustic images of mice before (c) and (d) 24 h after the tail intravenous injection of Gd-PPy-PEG NPs (100 μL, 5 mg·mL-1). White circles highlight the tumor site. (e) The quanti? cation of photoacoustic signals from the tumor site in (c) and (d)[48]. Copyright 2015, John Wiley and Sons
图10 IONP@PPy-PEG纳米复合材料制备工艺的示意图[60]
Fig. 10 A schematic showing the fabrication process of IONP (iron oxide nanoparticles)@PPy-PEG nanocomposite[60]. Copyright 2014, John Wiley and Sons
图11 聚吡咯纳米颗粒形成和近红外热分析应用示意图(a),小鼠不同治疗后的肿瘤生长情况(平均值±标准差, n=5)(b)[50]3.2 以聚吡咯为修饰材料
Fig. 11 Schematic illustration of the formation and NIR theranostic applications of PPI NPs (a). Tumor growth profile of mice after different treatments as noted (mean ± SD, n=5) (b)[50]. Copyright 2019, American Chemical Society
图12 多功能mTiO2@PPyHNK用于肿瘤治疗和双成像诊断的示意图[13]
Fig. 12 Schematic illustration of multifunctional mTiO2 (mesoporous TiO2 nanoparticles) @PPy-HNK for tumor therapy and dual-imaging diagnosis[13]. Copyright 2019, John Wiley and Sons
图13 注射前和注射后24 h,GNR@PPyFe3O4-FA纳米复合物的体内CT图像(a)、MR图像(b)和PA图像(c)。(d) 不同治疗组肿瘤生长曲线[42]
Fig. 13 In vivo CT images (a), MR images (b) and PA images (c) of GNR@PPy@Fe3O4-FA nanocomposites before and 24 h after injection. (d) Tumor growth curves of different groups after various treatments[42]. Copyright 2019, Royal Society of Chemistry
[1]
Daniel L , Daniel P . Retina, 2015,35:213. http://journals.lww.com/00006982-201502000-00006

doi: 10.1097/IAE.0000000000000340     URL    
[2]
Peng Z Y , Qin J , Li B , Ye K , Zhang Y , Yang X , Yuan F , Huang L , Hu J , Lu X . Nanoscale, 2015,7:7682. http://xlink.rsc.org/?DOI=C5NR00542F

doi: 10.1039/C5NR00542F     URL    
[3]
Han S , Kim Y . Colloid Surface A, 2019,570:414.
[4]
Zhao P H , Jin Z K , Chen Q , Yang T , Chen D Y , Meng J , Lu X F , Gu Z , He Q J. Nat. Commun., 2018,9:4241.
[5]
Liu Y , Ai K , Liu J , Deng M , He Y , Lu L. . Adv. Mater, 2013,25:1353.
[6]
Lyu Y , Zeng J , Jiang Y , Zhen X , Wang T , Qiu S , Lou X , Gao M , Pu K . ACS Nano, 2018,12:1801. https://pubs.acs.org/doi/10.1021/acsnano.7b08616

doi: 10.1021/acsnano.7b08616     URL    
[7]
Liu Y , Bhattarai P , Dai Z , Chen X. Chem. Soc. Rev., 2019,48:2053.
[8]
Zou L , Wang H , He B , Zeng L , Tan T , Cao H , He X , Zhang Z , Guo S , Li Y . Theranostics, 2016,6:762.
[9]
Liao J F , Li W T , Peng Jin R , Yang Q , Li H , Wei Y Q , Zhang X N , Qian Z Y . Theranostics, 2015,5:345.
[10]
Huang P , Lin J , Li W , Rong P , Wang Z , Wang S , Wang X , Sun X , Aronova M , Niu G . Angewandte Chemie International Edition, 2013,125:13958.
[11]
Wang J , Han J , Zhu C , Han N , Xi J , Fan L , Guo R . Langmuir, 2018,34:14661.
[12]
Cai Q , Xu J , Yang D , Dai Y , Yang G , Zhong C , Gai S , He F , Yang P . Journal of Materials Chemistry B, 2018,6:8148. http://xlink.rsc.org/?DOI=C8TB02407C

doi: 10.1039/C8TB02407C     URL    
[13]
He Y , Wan J , Yang Y , Yuan P , Yang C , Wang Z , Zhang L . Advanced Healthcare Materials, 2019,8:1801254.
[14]
Liu Y , Wang D , Zhao L , Lin M , Sun H , Sun H , Yang B . RSC Advances, 2016,6:15854.
[15]
Rajora M A , Lou J , Zheng G . Chemical Society Reviews, 2017,46:6433.
[16]
Bhattarai P , Dai Z . Advanced Healthcare Materials, 2017,6:1700262.
[17]
Zhang C , Pan H , Wang X , Sun S . Biomaterials Science, 2018,6:2750.
[18]
George P M , Lyckman A W , Lavan D A , Hegde A , Leung Y , Avasare R , Testa C , Alexander P M , Langer R , Sur M . Biomaterials, 2005,26:3511.
[19]
Fahlgren A , Bratengeier C , Gelmi A , Semeins C M , Klein-Nulend J , Jager E W , Bakker A D . Plos One, 2015,10:e0134023.
[20]
Gandhi M R , Murray P , Spinks G M , Wallace G G . Synthetic Metals, 1995,73:247.
[21]
Guo B Q , Zhao J , Wu C , Zheng Y , Ye C , Huang M , Wang S . Colloids and Surfaces B-Biointerfaces, 2019,177:346.
[22]
Lin M , Guo C , Li J , Zhou D , Liu K , Zhang X , Xu T , Zhang H , Wang L , Yang B . ACS Applied Materials & Interfaces, 2014,6:5860.
[23]
Zou Q , Huang J , Zhang X . Small, 2018,14:1803101. http://doi.wiley.com/10.1002/smll.v14.45

doi: 10.1002/smll.v14.45     URL    
[24]
Wang J , Neoh K G , Kang E T . Thin Solid Films, 2004,446:205.
[25]
Islam S , Lakshmi G B V S , Zulfequar M, Husain M, Siddiqui A M Pramana, 2015,84:653.
[26]
Groenewoud L M H , Engbers G H M , White R , Feijen J . Synthetic Metals, 2002,125:429.
[27]
Cruz G J , Morales J , Castillo-Ortega M M , Olayo R Synthetic Metals, 1997,88:213.
[28]
Yang K , Xu H , Cheng L , Sun C , Wang, Liu Z . Advanced Materials, 2012,24:5586. http://doi.wiley.com/10.1002/adma.201202625

doi: 10.1002/adma.201202625     URL    
[29]
Ju E G , Li Z , Li M , Dong K , Ren J , Qu X . Chemical Communications, 2013,49:9048. 8514378b-e48c-4a1f-99cc-701c1afb8f98 http://dx.doi.org/10.1039/c3cc45290e

doi: 10.1039/c3cc45290e     URL    
[30]
Feng W , Zhou X , Nie W , Chen L , Qiu K , Zhang Y , He C . ACS Applied Materials & Interfaces, 2015,7:4354. https://pubs.acs.org/doi/10.1021/am508837v

doi: 10.1021/am508837v     URL    
[31]
Liu M , Xu N , Liu W , Xie Z . RSC Advances, 2016,6:84269.
[32]
Sadki S , Schottland P , Brodie N , Sabouraud G . Chemical Society Reviews, 2000,29:283.
[33]
Pletcher D . Electrochimica Acta, 1974,19:47.
[34]
Genies E M , Bidan G , Diaz A F . Journal of Electroanalytical Chemistry, 1983,149:101.
[35]
Armes S P . Synthetic Metals, 1987,20:365.
[36]
Arms S P , Vincent B . Journal of the Chemical Society Chemical Communications, 1987,4:288.
[37]
Xiao Z , Peng C , Jiang X , Peng Y , Huang X , Guan G , Zhang W , Liu X , Qin Z , Hu J . Nanoscale, 2016,8:12917.
[38]
Wang J , Rong J , Fang Z , Wang M , Asif A , Wu Q , Zhou X , Ge X . Particle & Particle Systems Characterization, 2017,34:1600430.
[39]
Liu H , Li W , Cao Y , Guo Y , Kang Y . J Nanopart Res., 2018,20:57.
[40]
Xu L , Wang J , Lu S , Wang X , Cao Y , Wang M , Liu F , Kang Y , Liu H . Langmuir: the ACS Journal of Surfaces and Colloids, 2019,35:9246.
[41]
Tuan H T , Hanh T N , Thi T P T , Ku S K, Jeong J, Choi H, Yong C S, Kim J O Nanomedicine, 2017,12:1511.
[42]
Cao W , Wang X , Song L , Wang P , Hou X , Zhang H , Tian X , Liu X , Zhang Y . RSC Advances, 2019,9:18874.
[43]
Su C , Zhong H , Chen H , Guo Y , Guo Z , Huang D , Zhang W , Wu Q , Yang B , Liu Z . New Journal of Chemistry, 2019,43:8620.
[44]
Yang Q , Li P , Ran H , Wan J , Chen H , Chen H , Wang Z , Zhang L . Acta Biomaterialia, 2019,90:337.
[45]
Zha Z B , Yue X , Ren Q , Dai Z . Advanced Materials, 2013,25:777. http://doi.wiley.com/10.1002/adma.201202211

doi: 10.1002/adma.201202211     URL    
[46]
Chen M , Fang X , Tang S , Zheng N . Chemical Communications, 2012,48:8934. a68aad81-3297-4d59-80c2-863aafb5c95c http://dx.doi.org/10.1039/c2cc34463g

doi: 10.1039/c2cc34463g     URL    
[47]
Manivasagan P , Nhat Q B , Bharathiraja S , Moorthy M S , Oh Y , Song K , Seo H , Yoon M , Oh J . Scientific Reports, 2017,7:1.
[48]
Liang X , Li Y , Li X , Jing L , Deng Z , Yue X , Li C , Dai Z . Advanced Functional Materials, 2015,25:1451.
[49]
Jin Y S , Li Y , Ma X , Zha Z , Shi L , Tian J , Dai Z . Biomaterials, 2014,35:5795. https://linkinghub.elsevier.com/retrieve/pii/S0142961214003615

doi: 10.1016/j.biomaterials.2014.03.086     URL    
[50]
Li W , Wang X , Wang J , Guo Y , Lu S , Li C M , Kang Y , Wang Z , Ran H , Cao Y , Liu H . Biomacromolecules, 2019,20:401.
[51]
Yan D , Liu X , Deng G , Yuan H , Wang Q , Zhang L , Lu J . Journal of Colloid and Interface Science, 2018,530:547. https://linkinghub.elsevier.com/retrieve/pii/S0021979718307495

doi: 10.1016/j.jcis.2018.07.001     URL    
[52]
Yang Z , He W , Zheng H , Wei J , Liu P , Zhu W , Lin L , Zhang L , Yi C , Xu Z , Ren J . Biomaterials, 2018,161:1.
[53]
Zhou Y , Hu Y , Sun W , Lu S , Cai C , Peng C , Yu J , Popovtzer R , Shen M , Shi X . Biomacromolecules, 2018,19:2034.
[54]
Burnouf T , Chen C , Tan S , Tseng C , Lu K , Chang L , Nyambat B , Huang S , Jheng P , Aditya R N , Mi F , Chuang E . Acta Biomaterialia, 2019,96:468.
[55]
Chen Y , Xiang S , Wang L , Wang M , Wang C , Liu S , Zhang K , Yang B . Chempluschem, 2018,83:1127.
[56]
Hathout R M , Metwally A A , El-Ahmady S H , Metwally E S, Ghonim N A, Bayoumy S A, Erfan T, Ashraf R, Fadel M, El-Kholy A I, Hardy J G Journal of Drug Delivery Science and Technology, 2018,47:176.
[57]
Wang S , Zhou Z , Yu G , Lu N , Liu Y , Dai Y , Fu X , Wang J , Chen X . ACS Applied Materials & Interfaces, 2018,10:28382.
[58]
Guan H , Ding T , Zhou W , Wang Z , Zhang J , Cai K . Chemical Communications, 2019,55:4359.
[59]
Huang J X , Wang S , Xing Y X , Zhou W , Zhang J X , Cai K Y . Macromolecular Rapid Communications, 2019,40(19):1900263.
[60]
Song X , Gong H , Yin S , Cheng L , Wang C , Li Z , Li Y , Wang X , Liu G , Liu Z . Advanced Functional Materials, 2014,24:1194.
[61]
Han L , Zhang Y , Zhang Y , Shu Y , Chen X , Wang J . Talanta, 2017,171:32.
[62]
Zhao R Y , Sun X , Sun J , Wanga L , Han J . RSC Advances, 2017,7:10143.
[63]
Wang X , Ma Y , Sheng X , Wang Y , Xu H . Nano Letters, 2018,18:2217.
[64]
Zhao J L , Zhou C , Wu C , Wu H , Zhu C , Ye C , Wang S , Zou D . ACS Applied Materials & Interfaces, 2018,10:41947.
[1] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[2] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[3] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[4] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[5] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[6] 贾潞, 马建中, 高党鸽, 吕斌. 层状双氢氧化物/聚合物纳米复合材料[J]. 化学进展, 2018, 30(2/3): 295-303.
[7] 茹静, 耿璧垚, 童聪聪, 王海英, 吴胜春, 刘宏治. 纳米纤维素基吸附材料[J]. 化学进展, 2017, 29(10): 1228-1251.
[8] 高党鸽, 梁志扬, 吕斌, 马建中. 细乳液聚合法制备有机/无机纳米复合材料[J]. 化学进展, 2016, 28(7): 1076-1083.
[9] 张勇杰, 李化毅, 董金勇, 胡友良. 聚烯烃共价键接枝纳米材料及其聚烯烃纳米复合材料[J]. 化学进展, 2015, 27(1): 47-58.
[10] 周素坤, 毛健贞, 许凤. 微纤化纤维素的制备及应用[J]. 化学进展, 2014, 26(10): 1752-1762.
[11] 仇实, 郑景伟, 杨贵堂, 郑经堂, 吴明铂, 吴文婷. 三维有序大孔炭的设计构筑、性能及应用研究[J]. 化学进展, 2014, 26(05): 772-783.
[12] 张力, 吴俊涛, 江雷. 石墨烯及其聚合物纳米复合材料[J]. 化学进展, 2014, 26(04): 560-571.
[13] 漆志刚, 宫琛亮*, 梁宇, 李辉, 张树江, 李彦锋. 中温质子交换膜燃料电池高质子传导率磺化芳香族聚合物膜[J]. 化学进展, 2013, 25(12): 2103-2111.
[14] 李广录, 何涛, 李雪梅. 核壳结构纳米复合材料的制备及应用[J]. 化学进展, 2011, 23(6): 1081-1089.
[15] 龚光明, 吴俊涛, 江雷. 静电纺丝法制备聚酰亚胺新型材料[J]. 化学进展, 2011, 23(4): 750-759.