English
新闻公告
More
化学进展 2014, Vol. 26 Issue (10): 1752-1762 DOI: 10.7536/PC140524 前一篇   

• 综述与评论 •

微纤化纤维素的制备及应用

周素坤, 毛健贞, 许凤*   

  1. 北京林业大学林木生物质化学北京市重点实验室 北京 100083
  • 收稿日期:2014-05-01 修回日期:2014-07-01 出版日期:2014-10-15 发布日期:2014-08-12
  • 通讯作者: 许凤 E-mail:xfx315@bjfu.edu.cn
  • 基金资助:

    国家十二五科技支撑计划项目(No. 2012BAD32B06)资助

Preparation and Applications of Microfibrillated Cellulose

Zhou Sukun, Mao Jianzhen, Xu Feng*   

  1. Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
  • Received:2014-05-01 Revised:2014-07-01 Online:2014-10-15 Published:2014-08-12
  • Supported by:

    The work was supported by the National Science and Technology Program of the Twelfth Five-Year Plan Period (No. 2012BAD32B06)

微纤化纤维素(MFC)是一种新型的纳米级功能材料,由于其具有生物相容性、生物可降解性、优良的力学性能、光学性能以及阻隔性能,在纳米纸、气凝胶、复合材料、造纸、医药等诸多领域具有广阔的应用前景。但MFC在制备及应用过程中还存在诸多问题,例如机械处理能耗高,无法工业化生产;MFC极性强,在非极性基质中分散不均,这些都限制了其在纳米复合材料领域的发展,因此需要通过预处理降低机械处理过程中的能耗,同时系统地对MFC与聚合物复合机理进行研究以拓宽MFC的应用领域。本文综述了MFC的制备方法及其在纳米纸、气凝胶及纳米复合材料方面的应用现状,并对MFC的未来发展方向进行了展望。

Microfibrillated cellulose(MFC)is a new kind of functional nano-materials. Due to its advantages of biocompatibility, biodegradable, excellent mechanical, special optical and high barrier properties, it has extensive application prospects such as nanopaper, aerogel, nanocomposite materials, papermaking, medicine, etc. However, there remains many problems of MFC preparation and application. The main challenge is the high energy consumption regarding the mechanical fibrillation, which makes it impossible to industrial production. Meanwhile, the strong polar of MFC restricts its good dispersion in non-polar matrices and limits its applications in nanocomposites production. Accordingly, pretreatments before mechanical isolation are needed to reduce the high energy consumption and the composite mechanism of MFC and polymers should be studied systematically to satisfy more possible applications. This review focuses on MFC preparation and its applications in nanopaper, aerogel, nanocomposites. At last the future development of MFC is prospected.

Contents
1 Introduction
1.1 Nanocrystalline cellulose
1.2 Bacterial nanocellulose
1.3 Microfibrillated cellulose
2 Preparation of MFC
2.1 Mechanical methods
2.2 Pretreatment
3 Applications of MFC
3.1 Nanopaper
3.2 Aerogel
3.3 MFC nanocomposites
3.4 Other applications
4 Conclusion and outlook

中图分类号: 

()

[1] Beck S, Bouchard J, Berry R. Biomacromolecules, 2011, 12: 167.
[2] 江泽慧(Jiang Z H), 王汉坤(Wang H K), 余燕(Yu Y),田根林(Tian G L), 王昊(Wang H). 世界林业研究(World Forestry Research), 2012, 4: 46.
[3] Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A. Angew. Chem. Int. Ed., 2011, 50: 5438.
[4] Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J, Heux L, Dubreuil F, Rochas C. Biomacromolecules, 2008, 9: 57.
[5] Marchessault R H, Morehead, Walter N M. Nature, 1959, 184: 632.
[6] Revol J F, Bradford H, Giasson J, Marchessault R H, Gray D G. Int.J. Biol. Macromol., 1992, 14: 170.
[7] Revol J F, Godbout L, Gray D G. J. Pulp Pap. Sci., 1998, 24:146.
[8] Bodin A. Doctoral Dissertation of Chalmers University, 2007.
[9] Herrick F W, Casebier R L, Hamilton J K, Sandberg K R. Appl. Polym. Sci., 1983, 37: 797.
[10] Kontturi E, Tammelin T, Osterberg M, Chem. Soc. Rev., 2006, 35:1287.
[11] 叶代勇(Ye D Y),黄洪(Huang H),傅和清(Fu H Q). 化工学报(Journal of Chemical Industry and Engineering), 2006, 57: 782.
[12] Saito T, Nishiyama Y, Putaux J L, Vignon M, Isogai A. Biomacromolecules, 2006, 7: 1687.
[13] Stenstad P, Andresen M, Tanem B S, Stenius P. Cellulose, 2007, 15: 35.
[14] Alemdar A, Sain M. Bioresour. Technol., 2008, 99: 1664.
[15] Habibi Y, Vignon M R. Cellulose, 2007, 15: 177.
[16] Mohin S, Suhara P. Ind. Crop. Prod., 2006, 23: 1.
[17] Bendahou A, Kaddami H, Dufresne A. Eur. Polym. J., 2010, 46: 609.
[18] 卢芸(Lu Y), 孙庆丰(Sun Q F), 李坚(Li J). 科技导报 (Science & Technology Review), 2013, 31: 17.
[19] Henriksson M, Berglund L A. Biomacromolecules, 2008, 9: 1579.
[20] Missoum K, Belgacem M N, Bras J. Materials, 2013, 6: 1745.
[21] Frone A N, Panaitescu D M, Donescu D. U. P. B. Science Bulletin Series B, 2011, 73: 133.
[22] Uetani K, Yano H. Biomacromolecules, 2011, 12: 348.
[23] Lavoine N, Desloges I, Dufresne A, Bras J. Carbohyd. Polym., 2012, 90: 735.
[24] 吴雪(Wu X), 刘斌(Liu B), 冯涛(Feng T). 食品与机械(Food and Machinery), 2009, 25: 65.
[25] Ferrer A, Filpponen I, Rodguez A, Laine J, Rojas J. Bioresour. Technol., 2012, 125: 249.
[26] Iwamoto S, Nakagaito A N, Yano N, Nogi M. Appl. Phys. A, 2005, 81: 1109.
[27] Spence K L, Venditti R A, Rojas O J, Habibi Y, Pawlak J J. Cellulose, 2011, 18: 1097.
[28] Abdul Khalil H P S, Davoudpour Y, Sudesh K, Dungani R, Jawaid M. Carbohyd. Polym., 2014, 99: 649.
[29] Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P. Cellulose, 2011, 18: 433.
[30] Wang B, Sain M. Polym. Int., 2007, 56: 538.
[31] Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K. Bioresources, 2009, 4: 626.
[32] Chen P, Yu H, Liu Y, Chen W, Wang X, Yang M. Cellulose, 2013, 20: 149.
[33] Wang S,Cheng Q. J. Appl. Polym. Sci., 2009, 113: 1270.
[34] Zhou Y M, Fu S Y, Zheng L M, Zhan H Y. Express Polym. Lett., 2012, 6: 794.
[35] Eriksen O, Syverud K, Gregersen O. Nordic Pulp & Paper Research Journal, 2008, 23: 299.
[36] Zimmermann T, Pöhler E, Geiger T. Adv. Eng. Mater., 2004, 6: 754.
[37] 钱荣敬(Qian R J). 华南理工大学硕士论文(Master Dissertation of South China University of Technology), 2011.
[38] 杨贯羽(Yang G Y), 武彦春(Wu Y C), 武光辉(Wu G H).化学进展(Progress in Chemistry), 2007, 19:1727.
[39] Rodionova G, Saito T, Lenes M, Kuramae R, Isogai A. J. Polym. Environ., 2013, 21: 207.
[40] Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A. Biomacromolecules, 2009, 10: 1992.
[41] Isogai T, Saito T, Isogai A. Cellulose, 2011, 18: 421.
[42] Isogai A, Saito T, Fukuzumi H. Nanoscale, 2011, 3: 71.
[43] Wagberg L, Decher G, Norgren M, Lindstrom T, Ankerfors M, Axnas K. Langmuir, 2008, 24: 784.
[44] Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J. Cellulose, 2010, 17: 1005.
[45] Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K. Cellulose, 2010, 17: 19.
[46] Siro I, Plackett D. Cellulose, 2010, 17: 459.
[47] Liimatainen H, Visanko M, Sirvio J, Hormi J, Niinimaki J D. Cellulose, 2013, 20: 741.
[48] Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A. Cellulose, 2011, 18: 57.
[49] Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A. Cellulose, 2010, 17: 1147.
[50] Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M. Biomacromolecules, 2007, 8: 1934.
[51] Henriksson M, Henriksson G, Berglund L A, Lindström T. Eur. Polym. J., 2007, 43: 3434.
[52] Wang J, Cheng Q, Lin L, Jiang L. ACS Nano, 2014, 8: 2739.
[53] Olsson R T, Azizi Samir M A S, Salazar-Alvarez G. Nat. Nanotechnol., 2010, 5: 584.
[54] Nystr m G, Razaq A, Strmme M. Nano Lett., 2009, 9: 3635.
[55] Sabrine A, Iskander B, Manuel V. Ind. Crop. Prod., 2013, 41: 250.
[56] Brinchia L, Cotanaa F, Fortunatib E. Carbohyd. Polym., 2013, 94: 154.
[57] Hu L, Liu N, Eskilsson M. Nano Energy, 2013, 2: 138.
[58] Taniguchi T, Okamura K. Polym. Int., 1998, 47: 291.
[59] Liu A D, Berglund L A. Carbohyd. Polym., 2012, 87: 53.
[60] Nogi M, Iwamoto S, Nakagaito A N, Yano H. Adv.Mater., 2009, 21: 1595.
[61] Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Osterberg M, Wagberg L. Langmuir, 2009, 25: 7675.
[62] Wang H, Li D, Zhang R. BioResources, 2013, 8: 1374.
[63] Liu A D, Berglund L A. Eur. Polym. J., 2013, 49: 940.
[64] Mautner A, Lee K, Lahtinen Y P, Hakalahti M, Tammelin T, Li K, Bismarck A. Chem. Commun., 2014, 50: 5778.
[65] Yan C Y, Wang J X, Kang W B, Cui M Q, Wang X, Foo C Y, Chee K, Lee P S. Adv. Mater., 2014, 26: 1950.
[66] Hamedi M M, Hajian A, Fall A, Hakansson K, Salajkova M, Lundell F, Wagberg L, Berglund L A. ACS Nano, 2014, 8: 2467.
[67] 陶丹丹(Tao D D), 白绘宇(Bai H Y), 刘石林(Liu S L), 刘晓亚(Liu X Y). 纤维素科学与技术(Journal of Cellulose Science and Technology), 2011, 19: 64.
[68] Moreno-Castilla C, Maldonado-Hodar F. Carbon, 2005, 43: 455.
[69] Biener J, Stadermann M, Suss M, Worsley M A, Biener M M, Rose K A, Baumann T F. Energ&Environ. Sci., 2011, 4: 656.
[70] Xu Z, Zhang Y, Li P, Gao C. ACS Nano, 2012, 6: 7103.
[71] Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D. Adv. Mater., 2010, 22: 617.
[72] Schwertfeger F, Schubert U. Chem. Mater., 1995, 7: 1909.
[73] Schaefer D W, Keefer K D. Phys. Rev. Let., 1986, 56: 2199.
[74] Chervin C N, Clapsaddle B J, Chiu H W, Gash A E, Satcher J H, Kauzlarich S M. Chem. Mater., 2005, 17: 3345.
[75] Corrias A, Casula M F, Falqui A, Paschina G. Chem. Mater., 2004, 16: 3130.
[76] Gavillon R, Budtova T. Biomacromolecules, 2008, 9: 269.
[77] Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund L A, Ikkala O. Soft Matter, 2008, 4: 2492.
[78] Korhonen J, Kettunen M R, Robin H, Ikkala O. ACS Appl. Mater. Inter., 2011, 3: 1813.
[79] Jiang F, Hsieh Y L. J. Mater. Chem. A, 2014, 2: 350.
[80] Jin H, Kettunen M, Laiho A, Pynnoönen H, Paltakari J, Marmur A, Ras R H. Langmuir, 2011, 27: 1930.
[81] Wang M, Anoshkin I, Nasibulin A, Korhonen J, Seitsonen J, Pere J, Kauppinen E, Ras R H, Ikkala O. Adv. Mater., 2013, 25: 2428.
[82] Lu T H, Li Q, Chen W S, Yu H P. Compos. Sci. Technol., 2014, 94: 132.
[83] Henriksson M, Berglund L A. J. Appl. Polym. Sci., 2007, 106: 2817.
[84] Iwamoto S, Yamamoto S, Lee S H, Endo T. Compos. Part A: Appl. Sci. Manufact., 2014, 59: 26.
[85] Aksoy E A, Akata B, Bac N, Hasirci N J. Appl. Polym. Sci., 2007, 104: 3378.
[86] Bhatnagar A, Sain M J. Reinf. Plast Compos., 2005, 24: 1259.
[87] Dufresne A, Dupeyre D, Vignon M R. J. Appl. Polym. Sci., 2000, 76: 2080.
[88] Nakagaito A N, Yano H. Appl. Phys. A-Mater. Sci. Process, 2004, 78: 547.
[89] Nakagaito A N, Yano H. Cellulose, 2008, 15: 323.
[90] Seydibeyoglu M O, Oksman K. Compos. Sci. Technol., 2008, 68: 599.
[91] Siqueira G, Bras J, Dufresne A. Biomacromolecules, 2009, 10: 425.
[92] Mondragon M, Arroyo K, Romero-Garcia J. Carbohyd. Polym., 2008, 74: 201.
[93] Lopez-Rubio A, Lagaron J M, Ankerfors M, Lindstrom T, Nordqvist D, Mattozzi A, Hedenqvist M S. Carbohyd. Polym., 2007, 68: 718.
[94] Iwamoto S, Nakagaito A N, Yano H. Appl. Phys. A-Mater. Sci. Process, 2007, 89: 461.
[95] Nogi M, Yano H. Adv. Mater., 2008, 20: 1849.
[96] Svagan A J, Hedenqvist M S, Berglund L A. Compos. Sci. Technol., 2009, 69: 500.
[97] Berglund L A. Polymer Composite Materials for Wind Power Turbines, 2006. 1.
[98] Bulota M, Kreitsmann K, Hughes M, Paltakari J. J. Appl. Polym. Sci., 2012, 126: 448.
[99] Martins N, Freire C, Pinto R, Fernandes S, Pascoal Neto C, Silvestre A, Causio J, Baldi G, Sadocco P, Trindade T. Cellulose, 2012, 19: 1425.
[100] Liu A D, Walther A, Ikkala O, Belova L, Berglund L A. Biomacromolecules, 2011, 12: 633.
[101] 欧阳昌礼(Ou Yang Ch L),吴芹(Wu Q),王广河(Wang G H),宋海农(Song H N). 中国造纸学报(Transactions of China Pulp and Paper),2011,26: 1.
[102] 张俊华(Zhang J H). 广西大学硕士论文(Master Dissertation of Guang Xi University), 2008.
[103] Syverud K, Stenius P. Cellulose, 2009, 16: 75.
[104] Aulin C, Gällstedt M, Lindström T. Cellulose, 2010, 17: 559.
[105] Djafari Petroudy S R, Syverud K, Chinga-Carrasco G, Ghasemain A, Resalati H. Carbohyd. Polym., 2014, 99: 311.
[106] Fukui Y, Innami S. US 4659388, 1987.
[107] Bertolla L, Dlouhy I, Philippart A, Boccaccini A R. Mater. Lett., 2014, 118: 204.
[108] Sandberg K R, Snyder F W, Turbak A F. US 4341807, 1982.

[1] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[2] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[3] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[4] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[5] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[6] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[7] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[8] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[9] 李健, 张恩爽, 刘圆圆, 黄红岩, 苏岳锋, 李文静. 超低密度气凝胶的制备及应用[J]. 化学进展, 2020, 32(6): 713-726.
[10] 黄晚秋, 高苗苗, 窦红静. 聚吡咯及其纳米复合材料在光热治疗领域的应用[J]. 化学进展, 2020, 32(4): 371-380.
[11] 黄秉乾, 王立艳, 韦漩, 徐伟超, 孙振, 李庭刚. 低共熔溶剂预处理木质纤维素生产生物丁醇[J]. 化学进展, 2020, 32(12): 2034-2048.
[12] 白蕾, 王艳凤, 霍淑慧, 卢小泉. 金属-有机骨架及其功能材料在食品和水有害物质预处理中的应用[J]. 化学进展, 2019, 31(1): 191-200.
[13] 贾潞, 马建中, 高党鸽, 吕斌. 层状双氢氧化物/聚合物纳米复合材料[J]. 化学进展, 2018, 30(2/3): 295-303.
[14] 蒋叶涛, 宋晓强, 孙勇*, 曾宪海, 唐兴, 林鹿*. 基于木质生物质分级利用的组分优先分离策略[J]. 化学进展, 2017, 29(10): 1273-1284.
[15] 茹静, 耿璧垚, 童聪聪, 王海英, 吴胜春, 刘宏治. 纳米纤维素基吸附材料[J]. 化学进展, 2017, 29(10): 1228-1251.
阅读次数
全文


摘要

微纤化纤维素的制备及应用