English
新闻公告
More
化学进展 2014, Vol. 26 Issue (04): 560-571 DOI: 10.7536/PC130923 前一篇   后一篇

• 综述与评论 •

石墨烯及其聚合物纳米复合材料

张力1, 吴俊涛*1, 江雷1,2   

  1. 1. 北京航空航天大学化学与环境学院 仿生智能界面科学与技术教育部重点实验室 北京 100191;
    2. 中国科学院化学研究所 北京 100190
  • 收稿日期:2013-09-01 修回日期:2013-11-01 出版日期:2014-04-15 发布日期:2014-01-20
  • 通讯作者: 吴俊涛,e-mail:wjt@buaa.edu.cn E-mail:wjt@buaa.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51003004,51373007)、北京市自然科学基金项目(No.2142019)、国家重点基础研究发展计划(973)项目(No. 2010CB934700,2012CB933200)及中央高校基本科研业务费专项资金和教育部留学回国人员科研启动基金资助

Graphene and Its Polymer Nanocomposites

Zhang Li1, Wu Juntao*1, Jiang Lei1,2   

  1. 1. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, College of Chemistry and Environment, Beihang University, Beijing 100191, China;
    2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2013-09-01 Revised:2013-11-01 Online:2014-04-15 Published:2014-01-20
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51003004, 51373007), the Beijing Natural Science Foundation (No.2142019), the National Basic Research Program of China (No. 2010CB934700, 2012CB933200), the Fundamental Research Funds for the Central Universities, and the SRF for ROCS, SEM

石墨烯是一种新型的二维纳米碳材料,具有优异的机械性能、电性能和热性能等,是聚合物纳米复合材料的理想填料。近年来,石墨烯/聚合物纳米复合材料成为聚合物基纳米复合材料的研究热点。本文对石墨烯及其聚合物纳米复合材料的研究进展进行了综述。首先概述了石墨烯的不同制备方法及石墨烯的共价与非共价改性途径。然后重点总结了石墨烯/聚合物纳米复合材料的常用制备方法及其机械性能、导电性、导热性、耐热性及阻隔性能。最后,对该领域所存在的问题进行了总结,并展望了其发展趋势。

Graphene is a new nanomaterial with strict two-dimensional layers structure. With excellent mechanical, high electrical and thermal properties, graphene is the ideal filler for polymer-based nanocomposites. Graphene/polymer nanocomposites greatly draw researchers’ attentions in recent years. In this review, we presented and discussed the current development of graphene/polymer nanocomposites. After introducing various methods to synthesize graphene, covalent and noncovalent functionalization of graphene are briefly summarized. Particular emphasis is placed on general methods used to fabricate graphene/polymer nanocomposites and mechanical, electrical, thermal, and gas barrier properties of graphene/polymer nanocomposites. Finally, the challenge of this research area was summarized and its future outlook was prospected.

Contents
1 Introduction
2 Synthesis methods and surface modification of graphene
2.1 Synthesis methods of grapheme
2.2 Surface modification of graphene
3 Graphene-based polymer nanocomposites
3.1 Fabrication approaches to graphene-based polymer nanocomposites
3.2 Properties of graphene-based polymer nano-composites
4 Conclusions and application outlook

中图分类号: 

()

[1] Wallace P R. Phys. Rev., 1947, 71: 622.
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666.
[3] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8: 902.
[4] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Solid State Commun., 2008, 146: 351.
[5] Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321: 385.
[6] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442: 282.
[7] Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z Y, De S, Mcgovern I T, Holland B, Byrne M, Gun’ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrarri A C, Coleman J N. Nat. Nanotechnol., 2008, 3: 563.
[8] Pu N W, Wang C A, Sung Y, Liu Y M, Ger M D. Mater. Lett., 2009, 63: 1987.
[9] Sidorov A N, Yazdanpanah M M, Jalilian R, Ouseph P J, Cohn R W, Sumanasekera G U. Nanotechnology, 2007, 18: 135301.
[10] Liu N, Luo F, Wu H X, Liu Y H, Zhang C, Chen J. Adv. Funct. Mater., 2008, 18: 1518.
[11] Novoselov K S. Angew. Chem. Int. Ed., 2011, 50: 6986.
[12] Singh V, Joung D, Zhai a L, Das S, Khondaker S I, Seal S. Prog. Mater. Sci., 2011, 56: 1178.
[13] Bai H, Li C, Shi G Q. Adv. Mater., 2011, 23: 1089.
[14] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45: 1558.
[15] Li D, Müller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nanotechnol., 2008, 3: 101.
[16] Liang Y Y, Wu D Q, Feng X L, Müllen K. Adv. Mater., 2009, 21: 1679.
[17] Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J Y, Lee Y H. Adv. Funct. Mater., 2009, 19: 1987.
[18] Gao W, Alemany L B, Ci L, Ajayan P M. Nat. Chem., 2009, 1: 403.
[19] Wang G X, Shen X P, Wang B, Yao J, Park J. Carbon, 2009, 47: 1359.
[20] Xu Y X, Lin Z Y, Huang X Q, Wang Y, Huang Y, Duan X F. Adv. Mater., 2013, 25: 5779.
[21] Zhu C Z, Guo S J, Fang Y X, Dong S J. ACS Nano, 2010, 4: 2429.
[22] Zhang J L, Yang H J, Shen G X, Cheng P, Zhang J, Guo S W. Chem. Commun., 2010, 46: 1112.
[23] Wang Y, Shi Z X, Yin J. ACS Appl. Mater. Interfaces, 2011, 3: 1127.
[24] Salas E C, Sun Z Z, Lüttge A, Tour J M. ACS Nano, 2010, 4: 4852.
[25] Dreyer D R, Murali S, Zhu Y W, Ruoff R S. Bielawski C W. J. Mater. Chem., 2011, 21: 3443.
[26] Zhu Y W, Stoller M D, Cai W W, Velamakanni A, Piner R D, Chen D, Ruoff R S. ACS Nano, 2010, 4: 1227.
[27] Chen W F, Yan L F. Nanoscale, 2010, 2: 559.
[28] Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Science, 2009, 324: 1312.
[29] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 457: 706.
[30] Chen Z P, Ren W C, Gao L B, Liu B L, Pei S F, Cheng H M. Nat. Mater., 2011, 10: 424.
[31] Wang G, Zhang M, Zhu Y, Ding G Q, Jiang D, Guo Q L, Liu S, Xie X M, Chu P K, Di Z F, Wang X. Scientific reports, 2013, 3: 2465.
[32] Obraztsov A N. Nat. Nanotechnol., 2009, 4: 212.
[33] Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N, Heer W A D. J. Phys. Chem. B, 2004, 108: 19912.
[34] Huang H, Chen W, Chen S, Wee A T S. ACS Nano, 2: 2513.
[35] Hannon J B, Tromp R M. Phys. Rev. B, 2008, 77: 241404.
[36] Riedl C, Coletti C, Starke U. J. Phys. D: Appl. Phys., 2010, 43: 374009.
[37] Hu Y K, Ruan M, Guo Z L, Dong R, Palmer J, Hankinson J, Berger C, Heer W A D. J. Phys. D: Appl. Phys., 2012, 45: 154010.
[38] Rutter G M, Crain J N, Guisinger N P, Li T, First P N, Stroscio J A. Science, 2007, 317: 219.
[39] Wu J S, Pisula W, Müllen K. Chem. Rev., 2007, 107: 718.
[40] Dietz F, Tyutyulkov N, Madjarova G, Müllen K. J. Phys. Chem. B, 2000, 104: 1746.
[41] Wu Z S, Ren W C, Gao L B, Zhao J P, Chen Z P, Liu B L, Tang D M, Yu B, Jiang C B, Cheng H M. ACS Nano, 2009, 3: 411.
[42] Subrahmanyam K S, Panchakarla L S, Govindaraj A, Rao C N R. J. Phys. Chem. C, 2009, 113: 4257.
[43] 田圆(Tian Y), 赵倩莹(Zhao Q Y), 胡靖(Hu J), 周辰(Zhou C), 缪灵(Miao L), 江建军(Jiang J J). 化学进展(Progress in Chemistry), 2012, 24 (4): 512.
[44] 马秀芳(Ma X F), 孙科举(Sun K J), 李微雪(Li W X). 科学通报(Chinese Science Bulletin), 2012, 57(12): 987.
[45] Wang J L, Ma L, Yuan Q H, Zhu L Y, Ding F. Angew. Chem. Int. Ed., 2011, 50: 8041.
[46] Jiao L Y, Zhang L, Wang X R, Diankov G, Dai H J. Nature, 2009, 458: 877.
[47] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458: 872.
[48] Terrones M. ACS Nano, 2010, 4: 1775.
[49] Terrones M. Nature, 2009, 458: 845.
[50] Subrahmanyam K S, Vivekchand S R C, Govindaraj A, Rao C N R. J. Mater. Chem., 2008, 18: 1517.
[51] Longun J, Iroh J O. Carbon, 2012, 50: 1823.
[52] Fang M, Wang K G, Lu H B, Yang Y L, Nutt S. J. Mater. Chem., 2009, 19: 7098.
[53] Loh K P, Bao Q L, Ang P K, Yang J Y. J. Mater. Chem., 2010, 20: 2277.
[54] Chen X Y, Yuan L, Yang P Y, Hu J H, Yang D. J. Polym. Sci. Polym. Chem., 2011, 49: 4977.
[55] Wang B D, Yang D, Zhang J Z, Xi C B, Hu J H. J. Phys. Chem. C, 2011, 115: 24636.
[56] Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Langmuir, 2009, 25: 12030.
[57] Hsiao M C, Liao S H, Yen M Y, Liu P I, Pu N W, Wang C A, Ma C C M. ACS Appl. Mater. Interfaces, 2010, 2: 3092.
[58] Yang H F, Li F H, Shan C S, Han D X, Zhang Q X, Niu L, Ivaska A. J. Mater. Chem., 2009, 19: 4632.
[59] Englert J M, Dotzer C, Yang G, Schmid M, Papp C, Gottfried J M, Steinrück H P, Spiecker E, Hauke F, Hirsch A. Nat. Chem., 2011, 3: 279.
[60] Lin Y, Jin J, Song M. J. Mater. Chem., 2011, 21: 3455.
[61] Salavagione H J, Martínez G, Ellis G. Macromol. Rapid Commun., 2011, 32: 1771.
[62] Stankovich S, Piner R D, Nguyen S T, Ruoff R S. Carbon, 2006, 44: 3342.
[63] Vallés C, Drummond C, Saadaoui H, Furtado C A, He M S, Roubeau O, Ortolani L, Monthioux M, Pénicaud A. J. Am. Chem. Soc., 2008, 130: 15802.
[64] Patil A J, Vickery J L, Scott T B, Mann S. Adv. Mater., 2009, 21: 3159.
[65] Yang X Y, Zhang X Y, Liu Z F, Ma Y F, Huang Y, Chen Y S. J. Phys. Chem. C, 2008, 112: 17554.
[66] Zhang X Q, Feng Y Y, Tang S D, Feng W. Carbon, 2010, 48: 211.
[67] Bai H, Xu Y X, Zhao L, Li C, Shi G Q. Chem. Commun., 2009, 1667.
[68] Su Q, Pang S P, Alijani V, Li C, Feng X L, Müllen K. Adv. Mater., 2009, 21: 3191.
[69] Chen D, Zhu H, Liu T X. ACS Appl. Mater. Interfaces, 2010, 2: 3702.
[70] Wang J Y, Yang S Y, Huang Y L, Tien H W, Chin W K, Ma C C M. J. Mater. Chem., 2011, 21: 13569.
[71] Liao W H, Yang S Y, Wang J Y, Tien H W, Hsiao S T, Wang Y S, Li S M, Ma C C M, Wu Y F. ACS Appl. Mater. Interfaces, 2013, 5: 869.
[72] Shi H G, Li Y, Guo T Y. J. Appl. Polym. Sci., 2013, 128: 3163.
[73] Wang X, Hu Y, Song L, Yang H Y, Xing W Y, Lu H D. J. Mater. Chem., 2011, 21: 4222.
[74] Kim H, Miura Y, Macosko C W. Chem. Mater., 2010, 22: 3441.
[75] Chen Z X, Lu H B. J. Mater. Chem., 2012, 22: 12479.
[76] Yang S D, Shen C M, Liang Y Y, Tong H, He W, Shi X Z, Zhang X G, Gao H J. Nanoscale, 2011, 3: 3277.
[77] Xu C H, Sun J, Gao. L. J. Mater. Chem., 2011, 21: 11253.
[78] Li J, Xie H Q, Li Y, Liu J, Li Z X. J. Power Sources, 2011, 196: 10775.
[79] Feng L, Guan G H, Li C C, Zhang D, Xiao Y N, Zheng L C, Zhu W X. J. Macromol. Sci. Part A, 2013, 50: 720.
[80] Hazarika M, Jana T. Compos. Sci. Technol., 2013, 87: 94.
[81] Liang J J, Xu Y F, Huang Y, Zhang L, Wang Y, Ma Y F, Li F F, Guo T Y, Chen Y S. J. Phys. Chem. C, 2009, 113: 9921.
[82] Yang L P, Phua S L, Toh C L, Zhang L Y, Ling H, Chang M, Zhou D, Dong Y L, Lu X H. RSC Adv., 2013, 3: 6377.
[83] Yoonessi M, Gaier J R. ACS Nano, 2010, 4: 7211.
[84] Zhang H B, Yan Q, Zheng W G, He Z X, Yu Z Z. ACS Appl. Mater. Interfaces, 2011, 3: 918.
[85] Zhao X, Zhang Q H, Chen D J. Macromolecules, 2010, 43: 2357.
[86] Liang J J, Huang Y, Zhang L, Wang Y, Ma Y F, Guo T Y, Chen Y S. Adv. Funct. Mater., 2009, 19: 2297.
[87] Xu Y X, Hong W J, Bai H, Li C, Shi G Q. Carbon, 2009, 47: 3538.
[88] Salavagione H J, Martínez G, Gomez M A. J. Mater. Chem., 2009, 19: 5027.
[89] Bao C L, Guo Y Q, Song L, Hu Y. J. Mater. Chem., 2011, 21: 13942.
[90] Yang X M, Li L, Shang S M, Tao X M. Polymer, 2010, 51: 3431.
[91] Li Y Q, Yu T, Yang T Y, Zheng L X, Liao K. Adv. Mater., 2012, 24: 3426.
[92] Rafiee M A, Rafiee J, Wang Z, Song H H, Yu Z Z, Koratkar N. ACS Nano, 2009, 3: 3884.
[93] Kim H, Macosko C W. Polymer, 2009, 50: 3797.
[94] Gorrasi G, Lieto R D, Patimo G, Pasquale S D, Sorrentino A. Polymer, 2011, 52: 1124.
[95] Huang T, Lu R G, Su C, Wang H N, Guo Z, Liu P, Huang Z Y, Chen H M, Li T S. ACS Appl. Mater. Interfaces, 2012, 4: 2699.
[96] Satti A, Larpent P, Gun’ko Y. Carbon, 2010, 48: 3376.
[97] Fang M, Zhang Z, Li J F, Zhang H D, Lu H B, Yang Y L. J. Mater. Chem., 2010, 20: 9635.
[98] Patole A S, Patole S P, Kang H, Yoo J B, Kim T H, Ahn J H. J. Colloid Interf. Sci., 2010, 350: 530.
[99] Lu H B, Chen Z X, Ma C. J. Mater. Chem., 2012, 22: 16182.
[100] Ritchie R O. Nat. Mater., 2011, 10: 817.
[101] Vickery J L, Patil A J, Mann S. Adv. Mater., 2009, 21: 2180.
[102] Huang L, Li C, Yuan W J, Shi G Q. Nanoscale, 2013, 5: 3780.
[103] Putz K W, Compton O C, Segar C, An Z, Nguyen S T, Brinson L C. ACS Nano, 2011, 5: 6601.
[104] Putz K W, Compton O C, Palmeri M J, Nguyen S T, Brinson L C. Adv. Funct. Mater., 2010, 20: 3322.
[105] Zhu J, Zhang H N, Kotov N A. ACS Nano, 2013, 7: 4818.
[106] Zhao X, Zhang Q H, Hao Y P, Li Y Z, Fang Y, Chen D. Macromolecules, 2010, 43: 9411.
[107] Tang Y H, Wu N, Luo S L, Liu C B, Wang K, Chen L Y. Macromol. Rapid Commun., 2012, 33: 1780.
[108] Fantner G E, Hassenkam T, Kindt J H, WeaverJ C, Birkedal H, Pechenik L, Cutroni J A, Cidade G G, Stucky G D, Morse D E, Hansma P K. Nat. Mater., 2005, 4: 612.
[109] Yang S Y, Lin W N, Huang Y L, Tien H W, Wang J Y, Ma C C M, Li S M, Wang Y S. Carbon, 2011, 49: 793.
[110] Shin M K, Lee B, Kim S H, Lee J A, Spinks G M, Gambhir S, Wallace G G, Kozlov M E, Baughman R H, Kim S J. Nat. Commun., 2012, 3: 650.
[111] Syurik Y V, Ghislandi M G, Tkalya E E, Paterson G, McGrouther D, Ageev O A, Loos J. Macromol. Chem. Phys., 2012, 213: 1251.
[112] Lee Y R, Raghu A V, Jeong H M, Kim B K. Macromol. Chem. Phys., 2009, 210: 1247.
[113] Bao C L, Guo Y Q, Song L, Kan Y C, Qian X D, Hu Y. J. Mater. Chem., 2011, 21: 13290.
[114] Yan J, Wei T, Shao B, Fan Z J, Qian W Z, Zhang M L, Wei F. Carbon, 2010, 48: 487.
[115] Wu Q, Xu Y X, Yao Z Y, Liu A R, Shi G Q. ACS Nano, 2010, 4: 1963.
[116] Wang H L, Hao Q L, Yang X J, Lu L D, Wang X. Nanoscale, 2010, 2: 2164.
[117] Luong N D, Hippi U, Korhonen J T, Soininen A J, Ruokolainen J, Johansson L S, Nam J D, Sinh L H, Seppl J. Polymer, 2011, 52: 5237.
[118] Park O K, Hahm M G, Lee S, Joh H I, Na S I, Vajtai R, Lee J H, Ku B C, Ajayan P M. Nano Lett., 2012, 12: 1789.
[119] Song Z P, Xu T, Gordin M L, Jiang Y B, Bae I T, Xiao Q F, Zhan H, Liu J, Wang D H. Nano Lett., 2012, 12: 2205.
[120] Ha H W, Choudhury A, Kamal T, Kim D H, Park S Y. ACS Appl. Mater. Interfaces, 2012, 4: 4623.
[121] Tkalya E, Ghislandi M, Alekseev A, Koning C, Loos J. J. Mater. Chem., 2010, 20: 3035.
[122] Pham V H, Cuong T V, Dang T T, Hur S H, Kong B S, Kim E J, Shin E W, Chung J S. J. Mater. Chem., 2011, 21: 11312.
[123] Wu N, She X L, Yang D J, Wu X F, Su F B, Chen Y F. J. Mater. Chem., 2012, 22: 17254.
[124] Pham V H, Dang T T, Hur S H, Kim E J, Chung J S. ACS Appl. Mater. Interfaces, 2012, 4: 2630.
[125] Yang Y K, He C E, Peng R G, Baji A, Du X S, Huang Y L, Xie X L, Mai Y W. J. Mater. Chem., 2012, 22: 5666.
[126] Zhang H B, Zheng W G, Yan Q, Jiang Z G, Yu Z Z. Carbon, 2012, 50: 5117.
[127] Kuila T, Bose S, Khanra P, Kim N H, Rhee K Y, Lee J H. Composites: Part A, 2011, 42: 1856.
[128] Yousefi N, Gudarzi M M, Zheng Q B, Aboutalebi S H, Sharif F, Kim J K. J. Mater. Chem., 2012, 22: 12709.
[129] Ding J N, Fan Y, Zhao C X, Liu Y B, Yu C T, Yuan N Y. J. Compos. Mater., 2012, 46: 747.
[130] Raghu A V, Lee Y R, Jeong H M, Shin C M. Macromol. Chem. Phys., 2008, 209: 2487.
[131] Kim S C, Oh S M, Lee H I, Ryu K S, Jeong H M, Shin H S, Lee S C, Shin C M. Macromol. Res., 2012, 20: 768.
[132] Si P, Ding S J, Lou X W, Kim D H. RSC Advances, 2011, 1: 1271.
[133] Bora C, Dolui S K. Polymer, 2012, 53: 923.
[134] Chen F, Liu P, Zhao Q Q. Electrochim. Acta, 2012, 76: 62.
[135] Schwamb T, Burg B R, Schirmer N C, Poulikakos D. Nanotechnology, 2009, 20: 405704.
[136] Luo T F, Lloyd J R. Adv. Funct. Mater., 2012, 22: 2495.
[137] Hu L, Desai T, Keblinski P. J. Appl. Phys., 2011, 110: 033517.
[138] Ganguli S, Roy A K, Anderson D P. Carbon, 2008, 46: 806.
[139] Yu A P, Ramesh P, Itkis M E, Bekyarova E, Haddon R C. J. Phys. Chem. C, 2007, 111: 7565.
[140] Ramanathan T, Abdala A A, Stankovich S, Dikin D A, Alonso H M, Piner R D, Adamson D H, Schniepp H C, Chen X, Ruoff R S, Nguyen S T, Aksay I A, Prud'homme R K, Brinson L C. Nat. Nanotechnol., 2008, 3: 327.
[141] Koo M, Bae J S, Shim S E, Kim D, Nam D G, Lee J W, Lee G W, Yeum J H, Oh W. Colloid Polym. Sci., 2011, 289: 1503.
[142] Bao C L, Song L, Wilkie C A, Yuan B H, Guo Y Q, Hu Y, Gong X L. J. Mater. Chem., 2012, 22: 16399.
[143] Huang G B, Liang H D, Wang Y, Wang X, Gao J R, Fei Z D. Mater. Chem. Phys., 2012, 132: 520.
[144] Bunch J S, Verbridge S S, Alden J S, Zande A M V D, Parpia J M, Craighead H G, McEuen P L. Nano Lett., 2008, 8: 2458.
[145] Compton O C, Kim S, Pierre C, Torkelson J M, Nguyen S T. Adv. Mater., 2010, 22: 4759.
[146] Tseng I H, Liao Y F, Chiang J C, Tsai M H. Mater. Chem. Phys., 2012, 136: 247.
[147] Paul D R, Robeson L M. Polymer, 2008, 49: 3187.

[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[7] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[8] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[9] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[12] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[13] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[14] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[15] 付素芊, 汪英, 刘凯, 贺军辉. 微纳多孔聚合物薄膜的制备与应用[J]. 化学进展, 2022, 34(2): 241-258.
阅读次数
全文


摘要

石墨烯及其聚合物纳米复合材料