English
新闻公告
More
化学进展 2021, Vol. 33 Issue (11): 1953-1963 DOI: 10.7536/PC200856 前一篇   后一篇

• 综述 •

基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料

冯业娜1,2, 刘书河2, 张书博2, 薛彤2, 庄鸿麟2, 冯岸超1,2,*()   

  1. 1 北京化工大学 北京新型高分子材料制备与加工重点实验室 北京 100029
    2 北京化工大学材料科学与工程学院 先进弹性体材料研究中心 北京 100029
  • 收稿日期:2020-08-24 修回日期:2021-01-06 出版日期:2021-11-20 发布日期:2021-03-04
  • 通讯作者: 冯岸超
  • 基金资助:
    国家自然科学基金项目(21704001); 中国石油化工股份有限公司项目(H2019485)

Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly

Yena Feng1,2, Shuhe Liu2, Shubo Zhang2, Tong Xue2, Honglin Zhuang2, Anchao Feng1,2()   

  1. 1 Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology,Beijing 100029, China
    2 Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology,Beijing 100029, China
  • Received:2020-08-24 Revised:2021-01-06 Online:2021-11-20 Published:2021-03-04
  • Contact: Anchao Feng
  • Supported by:
    National Natural Science Foundation of China(21704001); SINOPEC(H2019485)

纳米二氧化硅(SiO2)颗粒以其高硬度、高比表面积、高稳定、价格合理等优势被广泛应用于复合材料的制备中,获得的SiO2/聚合物复合材料通常具有优良的机械性能、很好的热稳定性以及增强的光学和电性能。近年来,随着聚合诱导自组装(PISA)的提出与发展,研究者们基于PISA发展了多种制备不同形貌聚合物纳米粒子的简便方法,为制备SiO2/聚合物复合材料提供了新的思路。作者调研了近十年来基于PISA制备SiO2/聚合物复合材料的相关研究,按照SiO2与聚合物的结合作用和复合机理的不同,创新性地将SiO2/聚合物复合材料的制备分为物理包封法、化学接枝法、超分子作用法和原位生长法。本综述重点论述复合材料的合成方法、主要性能及用途,同时分析各种复合方法的优缺点并对制备方法的未来发展做出展望,以期为相关领域科研工作者提供更清晰的脉络和更丰富的启示。

Nano-silica(SiO2) particles are widely used in the preparation of composite materials due to their high hardness, high specific surface area, high stability and reasonable price. The obtained SiO2/polymer composite materials generally have excellent mechanical properties, good thermal stability, enhanced optical and electrical properties. In recent years, with the development of polymerization-induced self-assembly(PISA), scientists have developed a variety of simple methods for preparing polymeric nanoparticles with different morphologies based on PISA, which provides a new way to prepare SiO2/polymer composites. Although there are many related reviews of SiO2/polymer composites, while there is no review on the preparation of nanocomposites based on PISA. Thus we investigated the relevant research in the past ten years on the preparation of SiO2/polymer composite materials based on PISA. According to the different interaction between SiO2 and polymer and the compound mechanism, the preparation of SiO2/polymer composite materials was innovatively divided into physical encapsulation method, chemical grafting method, supramolecular interaction method and in-situ growth method. This review focuses on the synthesis methods, main properties and applications of composite materials, while analyzes the advantages and disadvantages of various composite methods and makes prospects for the future development of preparation methods. It is hoped to provide a clearer context and richer information for scientific researchers in related fields.

Contents

1 Introduction

2 Physical encapsulation

3 Chemical grafting

3.1 Grafting to

3.2 Grafting from

4 Supramolecular interaction

4.1 Hydrogen bond interaction

4.2 Electrostatic interaction

5 In-situ growth

6 Conclusions and outlooks

()
图1 一锅法制备复合聚合物电解质[10]
Fig. 1 One-pot preparation of composite polymer electrolyte[10]
图2 光引发制备聚合物组装体[11]
Fig. 2 Photo-initiated preparation of polymer assemblies[11]
图3 共聚物囊泡(1a),包封SiO2纳米颗粒的囊泡(1b),纯SiO2纳米颗粒(1c),不同温度冷却处理TEM图(2a~d)[13]
Fig. 3 Copolymer vesicles(1a), vesicles encapsulating SiO2 nanoparticles(1b), pure SiO2 nanoparticles(1c), TEM images after cooling treatment at different temperature(2a~d)[13]
图4 PTFEMA/SiO2复合胶乳合成示意图(a),电镜照片(b),AFM图及水接触角数据(c)[20]
Fig. 4 Schematic diagram(a), TEM images(b), AFM images and corresponding water contact angle(c) of PTFEMA/SiO2 composite latex[20]
图5 SiO2接枝聚合物复合囊泡示意图[26]
Fig. 5 Schematic diagram of SiO2 grafted polymer composite vesicles[26]
图6 SiO2纳米颗粒表面聚合物形态变化[28]
Fig. 6 Change of polymer morphology on the surface of SiO2 nanoparticles[28]
图7 多足状SiO2/聚合物复合胶乳颗粒示意及电镜图[35]
Fig. 7 Schematic and electron micrograph of multi-pod SiO2/polymer composite latex particles[35]
图8 (a,b)SiO2/PAM复合颗粒的TEM和FESEM图;(c)静电吸附作用制备SiO2/PMAC复合颗粒示意图[41]
Fig. 8 (a,b) TEM and FESEM images of SiO2/PAM core-shell nanoparticles;(c) schematic diagram of SiO2/PMAC composite particles prepared by electrostatic adsorption[41]
图9 (a)硅壳的生长示意图(通过TEOS水解和缩合);(b)硅胶壳生长前后DLS的体积分布;(c~f)硅壳生长后颗粒的TEM和SEM图像[49]
Fig. 9 (a) Schematic diagram of silicon shell growth(through TEOS hydrolysis and condensation);(b) volume distribution of DLS before and after the growth of silica shell;(c~f) TEM and SEM images of particles after silicon shell growth[49]
表1 四种合成方法优劣势比较
Table 1 The comparison of four synthesis methods
[1]
Sanchez C, Julián B, Belleville P, Popall M. J. Mater. Chem., 2005, 15(35/36): 3559.

doi: 10.1039/b509097k     URL    
[2]
Zhang X, Sun F J. Materials Review, 2006, 11(20): 212.
(张旭, 孙凤九. 材料导报, 2006, 11(20): 212.)
[3]
Mallakpour S, Naghdi M. Prog. Mater. Sci., 2018, 97: 409.

doi: 10.1016/j.pmatsci.2018.04.002     URL    
[4]
Rahman I A, Padavettan V. J. Nanomater., 2012, 2012: 1.
[5]
Thickett S C, Teo G H. Polym. Chem., 2019, 10(23): 2906.

doi: 10.1039/C9PY00097F     URL    
[6]
Canning S L, Smith G N, Armes S P. Macromolecules, 2016, 49(6): 1985.

pmid: 27019522
[7]
Allahverdi A, Ehsani M, Janpour H, Ahmadi S. Prog. Org. Coat., 2012, 75(4): 543.

doi: 10.1016/j.porgcoat.2012.05.013     URL    
[8]
Ortega P F R, Trigueiro J P C, Silva G G, Lavall R L. ElectroChim. Acta., 2016, 188: 809.

doi: 10.1016/j.electacta.2015.12.056     URL    
[9]
Caldona E B, de Leon A C C, Thomas P G, Naylor D F III, Pajarito B B, Advincula R C. Ind. Eng. Chem. Res., 2017, 56(6): 1485.

doi: 10.1021/acs.iecr.6b04382     URL    
[10]
Yuan B, Luo G M, Liang J, Cheng F Y, Zhang W Q, Chen J. J. Energy Chem., 2019, 38: 55.

doi: 10.1016/j.jechem.2019.01.004     URL    
[11]
Tan J B, Sun H, Yu M G, Sumerlin B S, Zhang L. ACS Macro Lett., 2015, 4(11): 1249.

doi: 10.1021/acsmacrolett.5b00748     URL    
[12]
Yu L L, Zhang Y X, Dai X C, Xu Q, Zhang L, Tan J B. Chem. Commun., 2019, 55(79): 11920.

doi: 10.1039/C9CC05812E     URL    
[13]
Mable C J, Gibson R R, Prevost S, McKenzie B E, Mykhaylyk O O, Armes S P. J. Am. Chem. Soc., 2015, 137(51): 16098.

doi: 10.1021/jacs.5b10415     URL    
[14]
Deng R H, Derry M J, Mable C J, Ning Y, Armes S P. J. Am. Chem. Soc., 2017, 139(22): 7616.

doi: 10.1021/jacs.7b02642     URL    
[15]
Yu Y Y, Chien W C, Tsai T W. Polym. Test, 2010, 29: 33.

doi: 10.1016/j.polymertesting.2009.09.002     URL    
[16]
Dong H C, Ye P L, Zhong M J, Pietrasik J, Drumright R, Matyjaszewski K. Langmuir, 2010, 26(19): 15567.

doi: 10.1021/la102145s     URL    
[17]
Hu X L, Hou G M, Zhang M Q, Rong M Z, Ruan W H, Giannelis E P. J. Mater. Chem., 2012, 22(36): 18961.

doi: 10.1039/c2jm33156j     URL    
[18]
Zhou C, Lu X, Xin Z, Liu J, Zhang Y. Corrosion Sci., 2014, 80: 269.

doi: 10.1016/j.corsci.2013.11.042     URL    
[19]
Wu X, Zheng J, Han B, Zhang L, Lu J, Ye X. Compos Pt. B-Eng., 2019, 178: 1.
[20]
Chakrabarty A, Ponnupandian S, Kang N G, Mays J W, Singha N K. J. Polym. Sci. A: Polym. Chem., 2018, 56(3): 266.

doi: 10.1002/pola.v56.3     URL    
[21]
Wu G M, Liu D, Chen J, Liu G F, Kong Z W. Prog. Org. Coat., 2019, 127: 80.
[22]
Farrukh A, Ashraf F, Kaltbeitzel A, Ling X, Wagner M, Duran H, Ghaffar A ur Rehman H, Parekh S H, Domke K F, Yameen B. Polym. Chem., 2015, 6(31): 5782.

doi: 10.1039/C5PY00514K     URL    
[23]
Zhu L J, Zhu L P, Jiang J H, Yi Z, Zhao Y F, Zhu B K, Xu Y Y. J. Membr. Sci., 2014, 451: 157.

doi: 10.1016/j.memsci.2013.09.053     URL    
[24]
Ma A Y, Zhang J K, Wang N, Bai L J, Chen H, Wang W X, Yang H W, Yang L X, Niu Y Z, Wei D L. Ind. Eng. Chem. Res., 2018, 57(51): 17417.

doi: 10.1021/acs.iecr.8b05020     URL    
[25]
Rungta A, Natarajan B, Neely T, Dukes D, Schadler L S, Benicewicz B C. Macromolecules, 2012, 45(23): 9303.

doi: 10.1021/ma3018876     URL    
[26]
Zheng Y, Huang Y C, Abbas Z M, Benicewicz B C. Polym. Chem., 2017, 8(2): 370.

doi: 10.1039/C6PY01956K     URL    
[27]
Zhou J M, Zhang W J, Hong C Y, Pan C Y. ACS Appl. Mater. Interfaces, 2015, 7(6): 3618.

doi: 10.1021/am507832n     URL    
[28]
Hou W M, Wang H, Cui Y L, Liu Y Z, Ma X T, Zhao H Y. Macromolecules, 2019, 52(21): 8404.

doi: 10.1021/acs.macromol.9b01664     URL    
[29]
Buerkle L E, Rowan S J. Chem. Soc. Rev., 2012, 41(18): 6089.

doi: 10.1039/c2cs35106d     pmid: 22677951
[30]
Wang M, Choi B, Sun Z, Wei X, Feng A, Thang S H. Chem. Commun., 2019, 55: 1462.

doi: 10.1039/C8CC09923E     URL    
[31]
Wang M, Choi B, Wei X H, Feng A C, Thang S H. Polym. Chem., 2018, 9(41): 5086.

doi: 10.1039/C8PY01201F     URL    
[32]
Zhang X, Wang C. Chem. Soc. Rev., 2011, 40(1): 94.

doi: 10.1039/b919678c     pmid: 20890490
[33]
Pal S, Ghorai S, Das C, Samrat S, Ghosh A, Panda A B. Ind. Eng. Chem. Res., 2012, 51(48): 15546.

doi: 10.1021/ie301134a     URL    
[34]
Jain R, Mahto V, Sharma V P. J. Nat. Gas Sci. Eng., 2015, 26: 526.

doi: 10.1016/j.jngse.2015.06.051     URL    
[35]
Qiao X G, Dugas P Y, Charleux B, Lansalot M, Bourgeat-Lami E. Macromolecules, 2015, 48(3): 545.

doi: 10.1021/ma5019473     URL    
[36]
Bourgeat-Lami E, França A J P G, Chaparro T C, Silva R D, Dugas P Y, Alves G M, Santos A M. Macromolecules, 2016, 49(12): 4431.

doi: 10.1021/acs.macromol.6b00737     URL    
[37]
Qiao X G, Lambert O, Taveau J C, Dugas P Y, Charleux B, Lansalot M, Bourgeat-Lami E. Macromolecules, 2017, 50(10): 3796.

doi: 10.1021/acs.macromol.7b00033     URL    
[38]
Wang X, Wang L, Su Q, Zheng J P. Compos. Sci. Technol., 2013, 89: 52.

doi: 10.1016/j.compscitech.2013.09.018     URL    
[39]
Lee S, Hong J Y, Jang J. J. Colloid Interface Sci., 2013, 398: 33.

doi: 10.1016/j.jcis.2013.01.066     URL    
[40]
Wang Z, Guo F, Chen C, Shi L, Yuan S, Sun L, Zhu J. ACS Appl. Mater. Inter., 2015, 7: 3314.

doi: 10.1021/am508149n     URL    
[41]
Qiu Q H, Liu T, Li Z H, Ding X B. J. Mater. Chem. B, 2015, 3(36): 7203.

doi: 10.1039/C5TB00973A     URL    
[42]
Samanta S, Banerjee S L, Ghosh S K, Singha N K. ACS Appl. Mater. Interfaces, 2019, 11(47): 44722.

doi: 10.1021/acsami.9b15964     URL    
[43]
Pan A Z, He L. J. Colloid Interface Sci., 2014, 414: 1.

doi: 10.1016/j.jcis.2013.09.044     URL    
[44]
Kim S K, Wang X Y, Ando S, Wang X G. Eur. Polym. J., 2015, 64: 206.

doi: 10.1016/j.eurpolymj.2015.01.012     URL    
[45]
Mittal H, Maity A, Ray S S. Chem. Eng. J., 2015, 279: 166.

doi: 10.1016/j.cej.2015.05.002     URL    
[46]
Iftekhar S, Srivastava V, Casas A, Sillanpää M. J. Clean. Prod., 2018, 170: 251.

doi: 10.1016/j.jclepro.2017.09.166     URL    
[47]
Lin D, Liu W, Liu Y, Lee H R, Hsu P C, Liu K, Cui Y. Nano. Lett., 2016, 16: 459.

doi: 10.1021/acs.nanolett.5b04117     URL    
[48]
Depa K, Strachota A, Šlouf M, Brus J, Cimrová V. Sens. Actuat. B: Chem., 2017, 244: 616.

doi: 10.1016/j.snb.2016.12.121     URL    
[49]
Teo G H, Kuchel R P, Zetterlund P B, Thickett S C. Polym. Chem., 2016, 7(43): 6575.

doi: 10.1039/C6PY01447J     URL    
[50]
Zhang W J, Hong C Y, Pan C Y. J. Mater. Chem. A, 2014, 2(21): 7819.

doi: 10.1039/c4ta00465e     URL    
[51]
Zhang Y M, Wang Z Y, Matyjaszewski K, Pietrasik J. Eur. Polym. J., 2019, 110: 49.

doi: 10.1016/j.eurpolymj.2018.11.014     URL    
[52]
Rubio A, Desnos G, Semsarilar M. Macromol. Chem. Phys., 2018, 219(20): 1800351.
[1] 李思超, 韩朋, 许华平*. 自修复高分子材料[J]. 化学进展, 2012, 24(07): 1346-1352.
[2] 黄平, 柴仕淦, 袁建军, 路国红, 杨婷婷, 程时远. SiO2/聚合物核壳型杂化粒子及其空心结构的制备[J]. 化学进展, 2012, 24(01): 31-38.
[3] 刘琼 杨婷婷 高庆 袁建军 程时远. 聚合物/SiO2杂化材料在药物控制释放中的应用*[J]. 化学进展, 2009, 21(12): 2689-2695.
[4] 王娟,张长瑞,冯坚. 低介电常数介质薄膜的研究进展*[J]. 化学进展, 2005, 17(06): 1001-1011.
阅读次数
全文


摘要